### 5.3 High-Order Taylor Methods

Consider the IVP

$$
y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\beta .
$$

Definition: The difference method

$$
w_{0}=\beta
$$

$$
w_{i+1}=w_{i}+h \phi\left(t_{i}, w_{i}\right), \quad \text { for each } i=0,1,2, \cdots, N-1, \quad \text { with step size } h=\frac{b-a}{N}
$$

has Local Truncation Error

$$
\tau_{i+1}(h)=\frac{y_{i+1}-\left(y_{i}+h \phi\left(t_{i}, y_{i}\right)\right)}{h}=\frac{y_{i+1}-y_{i}}{h}-\phi\left(t_{i}, y_{i}\right) \quad \text { for each } i=0,1,2, \cdots, N-1 .
$$

Note: $y_{i}:=y\left(t_{i}\right)$ and $y_{i+1}:=y\left(t_{i+1}\right)$.
Geometric view of local truncation error


Example. Analyze the local truncation error of Euler's method for solving $y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\beta$. Assume $\left|y^{\prime \prime}(t)\right|<M$ with $M>0$ constant.
Solution:

$$
\begin{aligned}
& \tau_{i+1}(h)=\frac{y_{i+1}-\left(y_{i}+h f\left(t_{i}, y_{i}\right)\right)}{h}=\frac{y_{i+1}-y_{i}}{h}-f\left(t_{i}, y_{i}\right)=\frac{y\left(t_{i}\right)+h f\left(t_{i}, y_{i}\right)+\frac{h^{2}}{2} y \prime \prime\left(\xi_{i}\right)-y_{i}}{h}-f\left(t_{i}, y_{i}\right) \\
& \text { with } \xi_{i} \in\left(t_{i}, t_{i+1}\right) . \\
& \tau_{i+1}(h)=\frac{h}{2} y^{\prime \prime}\left(\xi_{i}\right) . \\
& \text { Thus }\left|\tau_{i+1}(h)\right| \leq \frac{h}{2} M .
\end{aligned}
$$

So the local truncation error in Euler's method is $O(h)$.

Consider the IVP

$$
y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\beta
$$

Compute $y^{\prime \prime}, y^{(3)} \cdots$.
First, by IVP: $y^{\prime \prime}=f^{\prime}(t, y(t))$

$$
\begin{aligned}
y^{(3)}(t) & =f^{\prime \prime}(t, y(t)) \\
\vdots & \\
y^{(k)}(t) & =f^{(k-1)}(t, y(t))
\end{aligned}
$$

Second, by chain rule:

$$
y^{\prime \prime}\left(=\frac{d y^{\prime}(t)}{d t}\right)=\frac{d f(t, y(t))}{d t}=\frac{\partial f}{\partial t}(t, y(t))+\frac{\partial f}{\partial y}(t, y(t)) \cdot y^{\prime}(t)=\frac{\partial f}{\partial t}(t, y(t))+\frac{\partial f}{\partial y}(t, y(t)) \cdot f(t, y(t))
$$

## Derivation of higher-order Taylor methods

Consider the IVP

$$
y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\beta, \quad \text { with step size } h=\frac{b-a}{N}, \quad t_{i+1}=a+i h .
$$

Expand $y(t)$ in the $n$th Taylor polynomial about $t_{i}$, evaluated at $t_{i+1}$

$$
\begin{gathered}
y\left(t_{i+1}\right)=y\left(t_{i}\right)+h y^{\prime}\left(t_{i}\right)+\frac{h^{2}}{2} y^{\prime \prime}\left(t_{i}\right)+\cdots+\frac{h^{n}}{n!} y^{(n)}\left(t_{i}\right)+\frac{h^{n+1}}{(n+1)!} y^{(n+1)}\left(\xi_{i}\right) \\
=y\left(t_{i}\right)+h f\left(t_{i}, y\left(t_{i}\right)\right)+\frac{h^{2}}{2} f^{\prime}\left(t_{i}, y\left(t_{i}\right)\right)+\cdots+\frac{h^{n}}{n!} f^{(n-1)}\left(t_{i}, y\left(t_{i}\right)\right)+\frac{h^{n+1}}{(n+1)!} f^{(n)}\left(\xi_{i}, y\left(\xi_{i}\right)\right)
\end{gathered}
$$

for some $\xi_{i} \in\left(t_{i}, t_{i+1}\right)$. Delete remainder term to obtain the $n$th Taylor method of order $n$.
Denote $T^{(n)}\left(t_{i}, w_{i}\right)=f\left(t_{i}, w_{i}\right)+\frac{h}{2} f^{\prime}\left(t_{i}, w_{i}\right)+\cdots+\frac{h^{n-1}}{n!} f^{(n-1)}\left(t_{i}, w_{i}\right)$
Taylor method of order $\boldsymbol{n}$
$w_{0}=\beta$
$w_{i+1}=w_{i}+h T^{(n)}\left(t_{i}, w_{i}\right) \quad$ for each $i=0,1,2, \cdots, N-1$.

Remark: Euler's method is Taylor method of order one.
Example 1. Use Taylor method of orders (a) two and (b) four with $\mathrm{N}=10$ to the IVP

$$
y^{\prime}=y-t^{2}+1, \quad 0 \leq t \leq 2, \quad y(0)=0.5
$$

## Solution:

$$
h=\frac{2-0}{N}=\frac{2-0}{10}=0.2 . \text { So } t_{i}=0+0.2 i=0.2 i \quad \text { for each } i=0,1,2, \cdots, 10 .
$$

(a) $f^{\prime}(t, y(t))=\frac{d}{d t}\left(y-t^{2}+1\right)=y^{\prime}-2 t=y-t^{2}+1-2 t$

So $T^{(2)}\left(t_{i}, w_{i}\right)=f\left(t_{i}, w_{i}\right)+\frac{h}{2} f^{\prime}\left(t_{i}, w_{i}\right)=\left(w_{i}-t_{i}^{2}+1\right)+0.1\left(w_{i}-t_{i}^{2}+1-2 t_{i}\right)=1.1\left(w_{i}-t_{i}^{2}+1\right)-0.2 t_{i}$
The $2^{\text {nd }}$ order Taylor method is

$$
\begin{gathered}
w_{0}=0.5 \\
w_{i+1}=w_{i}+0.2\left(1.1\left(w_{i}-t_{i}^{2}+1\right)-0.2 t_{i}\right) \quad \text { for each } i=0,1,2, \cdots, 9
\end{gathered}
$$

Now compute approximations at each time step:

$$
\begin{aligned}
& w_{0}=0.5 \\
& w_{1}=w_{0}+0.2\left(1.1\left(w_{0}-(0)^{2}+1\right)-0.2(0)\right)=0.83 \\
& w_{2}=w_{2}+0.2\left(1.1\left(w_{2}-(0.2)^{2}+1\right)-0.2(0.2)\right)=1.2158
\end{aligned}
$$

$$
w_{1}=w_{0}+0.2\left(1.1\left(w_{0}-(0)^{2}+1\right)-0.2(0)\right)=0.83 ; \quad \text { abs. eror: } \quad\left|w_{1}-y_{1}\right|=0.000701
$$

$$
\text { abs. eror: }\left|w_{2}-y_{2}\right|=0.001712
$$

$$
\begin{gathered}
\text { (b) } f^{\prime \prime}(t, y(t))=\frac{d}{d t}\left(f^{\prime}\right)=\left(y-t^{2}+1-2 t\right)^{\prime}=y^{\prime}-2 t-2=y-t^{2}+1-2 t-2=y-t^{2}-2 t-1 \\
f^{(3)}(t, y(t))=\frac{d}{d t}\left(f^{\prime \prime}\right)=\left(y-t^{2}-2 t-1\right)^{\prime}=y^{\prime}-2 t-2=y-t^{2}+1-2 t-2=y-t^{2}-2 t-1 \\
T^{(4)}\left(t_{i}, w_{i}\right)=f\left(t_{i}, w_{i}\right)+\frac{h}{2} f^{\prime}\left(t_{i}, w_{i}\right)+\frac{h^{2}}{3!} f^{\prime \prime}\left(t_{i}, w_{i}\right)+\frac{h^{3}}{4!} f^{(3)}\left(t_{i}, w_{i}\right) \\
=\left(w_{i}-t_{i}^{2}+1\right)+\frac{h}{2}\left(w_{i}-t_{i}^{2}+1-2 t_{i}\right)+\frac{h^{2}}{6}\left(w_{i}-t_{i}^{2}-2 t_{i}-1\right)+\frac{h^{3}}{24}\left(w_{i}-t_{i}^{2}-2 t_{i}-1\right) \\
=\left(1+\frac{h}{2}+\frac{h^{2}}{6}+\frac{h^{3}}{24}\right)\left(w_{i}-t_{i}^{2}\right)-\left(1+\frac{h}{3}+\frac{h^{2}}{12}\right)\left(h t_{i}\right)+1+\frac{h}{2}-\frac{h^{2}}{6}-\frac{h^{3}}{24}
\end{gathered}
$$

The $4^{\text {th }}$ order Taylor method is

$$
w_{i+1}=w_{i}+h\left(\left(1+\frac{h}{2}+\frac{h^{2}}{6}+\frac{h^{3}}{24}\right)\left(w_{i}-t_{i}^{2}\right)-\left(1+\frac{h}{3}+\frac{h^{2}}{12}\right)\left(h t_{i}\right)+1+\frac{h}{2}-\frac{h^{2}}{6}-\frac{h^{3}}{24}\right)
$$

for each $i=0,1,2, \cdots, 9$.
Now compute approximate solutions at each time step:

$$
\begin{gathered}
w_{1}=0.5+0.2\left(\left(1+\frac{0.2}{2}+\frac{0.2^{2}}{6}+\frac{0.2^{3}}{24}\right)(0.5-0)-\left(1+\frac{0.2}{3}+\frac{0.2^{2}}{12}\right)(0)+1+\frac{0.2}{2}-\frac{0.2^{2}}{6}-\frac{0.2^{3}}{24}\right)=0.8293 \\
\quad \text { abs. eror of 4th order Taylor at } t_{1}:\left|w_{1}-y_{1}\right|=0.000001 \\
w_{2}=0.8293+0.2\left(\left(1+\frac{0.2}{2}+\frac{0.2^{2}}{6}+\frac{0.2^{3}}{24}\right)\left(0.8293-0.2^{2}\right)-\left(1+\frac{0.2}{3}+\frac{0.2^{2}}{12}\right)(0.2(0.2))+1+\frac{0.2}{2}-\frac{0.2^{2}}{6}-\frac{0.2^{3}}{24}\right) \\
=1.214091
\end{gathered}
$$

abs. eror 4 th order Taylor at $t_{2}: \quad\left|w_{2}-y_{2}\right|=0.000003$

## Finding approximations at time other than $\boldsymbol{t}_{\boldsymbol{i}}$

Example. (Table 5.4 on Page 259). Assume the IVP $y^{\prime}=y-t^{2}+1,0 \leq t \leq 2, y(0)=0.5$ is solved by the $4^{\text {th }}$ order
Taylors method with time step size $h=0.2 . w_{6}=3.1799640\left(t_{6}=1.2\right), w_{7}=3.7324321\left(t_{7}=1.4\right)$. Find $y(1.25)$.

## Solution:

Method 1: use linear Lagrange interpolation.
$y(1.25) \approx \frac{1.25-1.4}{1.2-1.4} w_{6}+\frac{1.25-1.2}{1.4-1.2} w_{7}=3.3180810$
Method 2: use Hermite polynomial interpolation (more accurate than the result by linear Lagrange interpolation).
First use $y^{\prime}=y-t^{2}+1$ to approximate $y^{\prime}(1.2)$ and $y^{\prime}(1.4)$.

$$
\begin{aligned}
& y^{\prime}(1.2)=y(1.2)-(1.2)^{2}+1 \approx 3.1799640-(1.2)^{2}+1=2.7399640 \\
& y^{\prime}(1.4)=y(1.4)-(1.4)^{2}+1 \approx 3.7324321-(1.4)^{2}+1=2.7724321
\end{aligned}
$$

Then use Theorem 3.9 to construct Hermite polynomial $H_{3}(x)$.
$y(1.25) \approx H_{3}(1.25)$.

## Error analysis

Theorem 5.12 If Taylor method of order $n$ is used to approximate the solution to the IVP

$$
y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\beta
$$

with step size $h$ and if $y \in C^{n+1}[a, b]$, then the local truncation error is $O\left(h^{n}\right)$.
Remark: $y\left(t_{i+1}\right)=y\left(t_{i}\right)+h f\left(t_{i}, y\left(t_{i}\right)\right)+\frac{h^{2}}{2} f^{\prime}\left(t_{i}, y\left(t_{i}\right)\right)+\cdots+\frac{h^{n}}{n!} f^{(n-1)}\left(t_{i}, y\left(t_{i}\right)\right)+\frac{h^{n+1}}{(n+1)!} f^{(n)}\left(\xi_{i}, y\left(\xi_{i}\right)\right)$

$$
\tau_{i+1}(h)=\frac{y_{i+1}-y_{i}}{h}-T^{(n)}\left(t_{i}, y_{i}\right)=\frac{h^{n}}{(n+1)!} f^{(n)}\left(\xi_{i}, y\left(\xi_{i}\right)\right)
$$

$y^{(n+1)}(t)=f^{(n)}(t, y(t))$ is bounded by $\left|y^{(n+1)}(t)\right| \leq M$.
Thus $\left|\tau_{i+1}(h)\right| \leq \frac{h^{n}}{(n+1)!} M$.
So the local truncation error in Euler's method is $O\left(h^{n}\right)$.

