5.3 High-Order Taylor Methods

Consider the IVP

$$y' = f(t, y), \quad a \le t \le b, \ y(a) = \beta$$

Definition: The difference method

$$w_0 = \beta$$

$$w_{i+1} = w_i + h\phi(t_i, w_i), \quad \text{for each } i = 0, 1, 2, \dots, N-1, \quad \text{with step size } h = \frac{b-a}{N}$$

has Local Truncation Error

$$\tau_{i+1}(h) = \frac{y_{i+1} - (y_i + h\phi(t_i, y_i))}{h} = \frac{y_{i+1} - y_i}{h} - \phi(t_i, y_i) \quad \text{for each } i = 0, 1, 2, \dots, N-1$$

Note: $y_i \coloneqq y(t_i)$ and $y_{i+1} \coloneqq y(t_{i+1})$.

Geometric view of local truncation error

Example. Analyze the local truncation error of Euler's method for solving y' = f(t, y), $a \le t \le b$, $y(a) = \beta$. Assume |y''(t)| < M with M > 0 constant. **Solution**:

$$\tau_{i+1}(h) = \frac{y_{i+1} - (y_i + hf(t_i, y_i))}{h} = \frac{y_{i+1} - y_i}{h} - f(t_i, y_i) = \frac{y(t_i) + hf(t_i, y_i) + \frac{h^2}{2}y''(\xi_i) - y_i}{h} - f(t_i, y_i)$$
with $\xi_i \in (t_i, t_{i+1})$.
 $\tau_{i+1}(h) = \frac{h}{2}y''(\xi_i)$.
Thus $|\tau_{i+1}(h)| \le \frac{h}{2}M$.
So the local truncation error in Euler's method is $O(h)$.

Consider the IVP

Compute
$$y'', y^{(3)} \dots$$

First, by IVP: $y'' = f'(t, y(t))$
 $y^{(3)}(t) = f''(t, y(t))$
 \vdots
 $y^{(k)}(t) = f^{(k-1)}(t, y(t))$

Second, by chain rule:

$$y''(=\frac{dy'(t)}{dt}) = \frac{df(t,y(t))}{dt} = \frac{\partial f}{\partial t}(t,y(t)) + \frac{\partial f}{\partial y}(t,y(t)) \cdot y'(t) = \frac{\partial f}{\partial t}(t,y(t)) + \frac{\partial f}{\partial y}(t,y(t)) \cdot f(t,y(t))$$

Derivation of higher-order Taylor methods Consider the IVP

$$y' = f(t, y), \quad a \le t \le b, \ y(a) = \beta, \quad \text{with step size } h = \frac{b-a}{N}, \quad t_{i+1} = a + ih.$$

Expand y(t) in the *n*th Taylor polynomial about t_i , evaluated at t_{i+1}

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \dots + \frac{h^n}{n!}y^{(n)}(t_i) + \frac{h^{n+1}}{(n+1)!}y^{(n+1)}(\xi_i)$$

= $y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}f'(t_i, y(t_i)) + \dots + \frac{h^n}{n!}f^{(n-1)}(t_i, y(t_i)) + \frac{h^{n+1}}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i))$

for some $\xi_i \in (t_i, t_{i+1})$. Delete remainder term to obtain the *n*th Taylor method of order *n*.

Denote
$$T^{(n)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) + \dots + \frac{h^{n-1}}{n!}f^{(n-1)}(t_i, w_i)$$

Taylor method of order n

 $w_0 = \beta$ $w_{i+1} = w_i + hT^{(n)}(t_i, w_i)$ for each $i = 0, 1, 2, \dots, N - 1$.

Remark: Euler's method is Taylor method of order one.

Example 1. Use Taylor method of orders (a) two and (b) four with N = 10 to the IVP
$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

Solution:

$$h = \frac{2-0}{N} = \frac{2-0}{10} = 0.2. \text{ So } t_i = 0 + 0.2i = 0.2i \quad \text{for each } i = 0, 1, 2, \dots, 10.$$
(a) $f'(t, y(t)) = \frac{d}{dt}(y - t^2 + 1) = y' - 2t = y - t^2 + 1 - 2t$
So $T^{(2)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) = (w_i - t_i^2 + 1) + 0.1(w_i - t_i^2 + 1 - 2t_i) = 1.1(w_i - t_i^2 + 1) - 0.2t_i$
The 2nd order Taylor method is
 $w_0 = 0.5$

$$w_{i+1} = w_i + 0.2(1.1(w_i - t_i^2 + 1) - 0.2t_i)$$
 for each $i = 0, 1, 2, \dots, 9$

Now compute approximations at each time step:

$$w_0 = 0.5$$

$$w_1 = w_0 + 0.2(1.1(w_0 - (0)^2 + 1) - 0.2(0)) = 0.83;$$
 abs. eror: $|w_1 - y_1| = 0.000701$

$$w_2 = w_2 + 0.2(1.1(w_2 - (0.2)^2 + 1) - 0.2(0.2)) = 1.2158;$$
 abs. eror: $|w_2 - y_2| = 0.001712$
:

(b)
$$f''(t, y(t)) = \frac{d}{dt}(f') = (y - t^2 + 1 - 2t)' = y' - 2t - 2 = y - t^2 + 1 - 2t - 2 = y - t^2 - 2t - 1$$

 $f^{(3)}(t, y(t)) = \frac{d}{dt}(f'') = (y - t^2 - 2t - 1)' = y' - 2t - 2 = y - t^2 + 1 - 2t - 2 = y - t^2 - 2t - 1$
So $T^{(4)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) + \frac{h^2}{3!}f''(t_i, w_i) + \frac{h^3}{4!}f^{(3)}(t_i, w_i)$
 $(w_i - t_i^2 + 1) + \frac{h}{2}(w_i - t_i^2 + 1 - 2t_i) + \frac{h^2}{6}(w_i - t_i^2 - 2t_i - 1) + \frac{h^3}{24}(w_i - t_i^2 - 2t_i - 1)$

$$= \left(1 + \frac{h}{2} + \frac{h^2}{6} + \frac{h^3}{24}\right) \left(w_i - t_i^2\right) - \left(1 + \frac{h}{3} + \frac{h^2}{12}\right) (ht_i) + 1 + \frac{h}{2} - \frac{h^2}{6} - \frac{h^3}{24}$$

The 4th order Taylor method is

=

$$w_{0} = 0.5$$

$$w_{i+1} = w_{i} + h\left(\left(1 + \frac{h}{2} + \frac{h^{2}}{6} + \frac{h^{3}}{24}\right)\left(w_{i} - t_{i}^{2}\right) - \left(1 + \frac{h}{3} + \frac{h^{2}}{12}\right)(ht_{i}) + 1 + \frac{h}{2} - \frac{h^{2}}{6} - \frac{h^{3}}{24}\right)$$
for each $i = 0, 1, 2, \dots, 9$.

Now compute approximate solutions at each time step:

$$w_{1} = 0.5 + 0.2 \left(\left(1 + \frac{0.2}{2} + \frac{0.2^{2}}{6} + \frac{0.2^{3}}{24} \right) (0.5 - 0) - \left(1 + \frac{0.2}{3} + \frac{0.2^{2}}{12} \right) (0) + 1 + \frac{0.2}{2} - \frac{0.2^{2}}{6} - \frac{0.2^{3}}{24} \right) = 0.8293$$

abs. eror of 4th order Taylor at t_{1} : $|w_{1} - y_{1}| = 0.000001$

$$w_{2} = 0.8293 + 0.2 \left(\left(1 + \frac{0.2}{2} + \frac{0.2^{2}}{6} + \frac{0.2^{3}}{24} \right) (0.8293 - 0.2^{2}) - \left(1 + \frac{0.2}{3} + \frac{0.2^{2}}{12} \right) (0.2(0.2)) + 1 + \frac{0.2}{2} - \frac{0.2^{2}}{6} - \frac{0.2^{3}}{24} \right) = 1.214091$$

abs. eror 4th order Taylor at t_2 : $|w_2 - y_2| = 0.000003$

Finding approximations at time other than t_i

Example. (Table 5.4 on Page 259). Assume the IVP $y' = y - t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5 is solved by the 4th order Taylors method with time step size h = 0.2. $w_6 = 3.1799640$ ($t_6 = 1.2$), $w_7 = 3.7324321$ ($t_7 = 1.4$). Find y(1.25). Solution:

Method 1: use linear Lagrange interpolation. $y(1.25) \approx \frac{1.25 - 1.4}{1.2 - 1.4} w_6 + \frac{1.25 - 1.2}{1.4 - 1.2} w_7 = 3.3180810$ Method 2: use Hermite polynomial interpolation (more accurate than the result by linear Lagrange interpolation). First use $y' = y - t^2 + 1$ to approximate y'(1.2) and y'(1.4). $y'(1.2) = y(1.2) - (1.2)^2 + 1 \approx 3.1799640 - (1.2)^2 + 1 = 2.7399640$ $v'(1.4) = v(1.4) - (1.4)^2 + 1 \approx 3.7324321 - (1.4)^2 + 1 = 2.7724321$ Then use **Theorem 3.9** to construct Hermite polynomial $H_3(x)$. $y(1.25) \approx H_3(1.25).$

Error analysis

Theorem 5.12 If Taylor method of order *n* is used to approximate the solution to the IVP $y' = f(t, y), \quad a \leq t \leq b, \ y(a) = \beta$ with step size h and if $y \in C^{n+1}[a, b]$, then the local truncation error is $O(h^n)$.

Remark:
$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}f'(t_i, y(t_i)) + \dots + \frac{h^n}{n!}f^{(n-1)}(t_i, y(t_i)) + \frac{h^{n+1}}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i))$$

 $\tau_{i+1}(h) = \frac{y_{i+1} - y_i}{h} - T^{(n)}(t_i, y_i) = \frac{h^n}{(n+1)!}f^{(n)}(\xi_i, y(\xi_i)).$
 $y^{(n+1)}(t) = f^{(n)}(t, y(t))$ is bounded by $|y^{(n+1)}(t)| \le M.$
Thus $|\tau_{i+1}(h)| \le \frac{h^n}{(n+1)!}M.$
So the local truncation error in Euler's method is $O(h^n)$

So the local numerication error in Euler's method is O(n).