5.6 Multistep Methods

Motivation: Solve the IVP: y' = f(t, y), $a \le t \le b$, $y(a) = \alpha$. To compute solution at t_{i+1} , approximate solutions at mesh points $t_0, t_1, t_2, ..., t_i$ are already obtained. Since in general error $|y(t_{i+1}) - w_{i+1}|$ grows with respect to time t, it then makes sense to use more previously computed approximate solution w_i , $w_{i-1}, w_{i-2}, ...$ when computing w_{i+1} .

Adams-Bashforth two-step *explicit* method.

$$w_{0} = \alpha, \quad w_{1} = \alpha_{1}$$

$$w_{i+1} = w_{i} + \frac{h}{2} [3f(t_{i}, w_{i}) - f(t_{i-1}, w_{i-1})] \text{ where } i = 1, 2, \dots N - 1.$$

Adams-Moulton two-step *implicit* method.

$$w_{0} = \alpha, \quad w_{1} = \alpha_{1}$$

$$w_{i+1} = w_{i} + \frac{h}{12} [5f(t_{i+1}, w_{i+1}) + 8f(t_{i}, w_{i}) - f(t_{i-1}, w_{i-1})] \quad \text{where } i = 1, 2, \dots N - 1.$$

Example. Solve the IVP $y' = y - t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5 by Adams-Bashforth two-step explicit method and Adams-Moulton two-step implicit method respectively. Use the exact values given by $y(t) = (t + 1)^2 - 0.5e^t$ to get needed starting values for approximation and h = 0.2.

Solution:

$$w_0 = 0.5$$

 $w_1 = y(0.2) = (0.2 + 1)^2 - 0.5e^{0.2} = 0.8292986$ (by using $y(t)$)

1) Adams-Bashforth two-step explicit method

$$w_{i+1} = w_i + \frac{h}{2} [3(w_i - t_i^2 + 1) - (w_{i-1} - t_{i-1}^2 + 1)]$$

$$w_2 = 0.8292986 + 0.1 [3(0.8292986 - 0.2^2 + 1) - (0.5 + 1)] = 1.2160882$$

$$w_3 = 1.2160882 + 0.1 [3(1.2160882 - 0.4^2 + 1) - (0.8292986 - 0.2^2 + 1)] = 1.6539848$$

.... and so on till to compute w_{10} .

2) Adams-Moulton two-step implicit method

$$w_{i+1} = w_i + \frac{h}{12} [5(w_{i+1} - t_{i+1}^2 + 1) + 8(w_i - t_i^2 + 1) - (w_{i-1} - t_{i-1}^2 + 1)]$$

$$w_2 = 0.8292986 + \frac{0.2}{12} [5(w_2 - 0.4^2 + 1) + 8(0.8292986 - 0.2^2 + 1) - (0.5 + 1)]$$

Solve for w_2 :

 $w_2 = 1.21404191$ $w_3 = 1.21404191 + \frac{0.2}{12} [5(w_3 - 0.6^2 + 1) + 8(1.21404191 - 0.4^2 + 1) - (0.8292986 - 0.2^2 + 1)]$ Solve for w_3 : and so on till to compute w_{10} .

Definition

An *m*-step multistep method for solving the IVP

$$y' = f(t, y), \quad a \le t \le b, \ y(a) = \alpha$$

has a difference equation for approximate w_{i+1} at t_{i+1} :

$$w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \dots + a_0w_{i+1-m} +h[b_m f(t_{i+1}, w_{i+1}) + b_{m-1}f(t_i, w_i) + \dots +b_0 f(t_{i+1-m}, w_{i+1-m})],$$

where $h = \frac{b-a}{N}$, and starting values are specified:

$$w_0 = \alpha$$
, $w_1 = \alpha_1$, ..., $w_{m-1} = \alpha_{m-1}$.

Explicit method if $b_m = 0$, *implicit* method if $b_m \neq 0$.

Example. Derive Adams-Bashforth two-step *explicit* **method:** Solve the IVP: y' = f(t, y), $a \le t \le b$, $y(a) = \alpha$. Integrate y' = f(t, y) over $[y_i, y_{i+1}]$

$$y_{i+1} - y_i = \int_{t_i}^{t_{i+1}} y'(t) dt = \int_{t_i}^{t_{i+1}} f(t, y(t)) dt$$

Use (t_i, y_i) and (t_{i-1}, y_{i-1}) to form interpolating polynomial $P_1(t)$ (by Newton backward difference (Page 129)) to approximate f(t, y).

$$\int_{t_i}^{t_{i+1}} f(t, y) dt = \int_{t_i}^{t_{i+1}} (f(t_i, y_i) + \nabla f(t_i, y_i) \frac{(t - t_i)}{h} + \text{error}) dt$$
$$y_{i+1} - y_i = h \left[f(t_i, y_i) + \frac{1}{2} (f(t_i, y_i) - f(t_{i-1}, y_{i-1})) \right] + \text{Error}$$

where $h = t_{i+1} - t_i$, and the backward difference $\nabla f(t_i, y_i) = hf[t_i, t_{i-1}] = (f(t_i, y_i) - f(t_{i-1}, y_{i-1}))$. Consequently, Adams-Bashforth two-step *explicit* method is:

$$w_0 = \alpha, \quad w_1 = \alpha_1$$

 $w_{i+1} = w_i + \frac{h}{2} [3f(t_i, w_i) - f(t_{i-1}, w_{i-1})] \text{ where } i = 1, 2, ..., N - 1.$

Local Truncation Error. If y(t) solves the IVP y' = f(t, y), $a \le t \le b$, $y(a) = \alpha$ and $w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \dots + a_0w_{i+1-m}$ $h[b_m f(t_{i+1}, w_{i+1}) + b_{m-1}f(t_i, w_i) + \dots + b_0 f(t_{i+1-m}, w_{i+1-m})],$

the local truncation error is

$$\tau_{i+1}(h) = \frac{y(t_{i+1}) - a_{m-1}y(t_i) - a_{m-2}y(t_{i-1}) - \dots - a_0y(t_{i+1-m})}{h} - [b_m f(t_{i+1}, y(t_{i+1})) + \dots + b_0 f(t_{i+1-m}, y(t_i))]$$

NOTE: the local truncation error of a *m*-step *explicit* step is $O(h^m)$.

the local truncation error of a *m*-step *implicit* step is $O(h^{m+1})$.

m-step *explicit* step method *vs*. (*m*-1)-step *implicit* step method

- **a**) both have the same order of local truncation error, $O(h^m)$.
- **b**) Implicit method usually has greater stability and smaller round-off errors.

For example, local truncation error of Adams-Bashforth 3-step explicit method, $\tau_{i+1}(h) = \frac{3}{8}y^{(4)}(\mu_i)h^3$.

Local truncation error of Adams-Moulton 2-step implicit method, $\tau_{i+1}(h) = -\frac{1}{24}y^{(4)}(\xi_i)h^3$.

Predictor-Corrector Method

Motivation: (1) Solve the IVP $y' = e^y$, $0 \le t \le 0.25$, y(0) = 1 by the three-step Adams-Moulton method. Solution: The three-step Adams-Moulton method is

$$w_{i+1} = w_i + \frac{h}{24} [9e^{w_{i+1}} + 19e^{w_i} - 5e^{w_{i-1}} + e^{w_{i-2}}] \qquad Eq. (1)$$

Eq. (1) can be solved by Newton's method. However, this can be quite computationally expensive.

(2) combine explicit and implicit methods.

4th order Predictor-Corrector Method

(we will combine 4^{th} order Runge-Kutta method + 4^{th} order 4-step explicit Adams-Bashforth method + 4^{th} order three-step Adams-Moulton implicit method)

Step 1: Use 4th order Runge-Kutta method to compute w_0 , w_1 , w_2 and w_3 .

Step 2: For i = 3, 5, ... N

(a) Predictor sub-step. Use 4th order 4-step explicit Adams-Bashforth method to compute a predicated value

$$w_{i+1,p} = w_i + \frac{h}{24} [55f(t_i, w_i) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3})]$$

(b)Correction sub-step. Use 4^{th} order three-step Adams-Moulton implicit method to compute a correction (the approximation at i + 1 time step)

$$w_{i+1} = w_i + \frac{h}{24} [9f(t_{i+1}, w_{i+1,p}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2})]$$

4