5.6 Multistep Methods

Motivation: Solve the IVP: $y^{\prime}=f(t, y), \quad a \leq t \leq b, y(a)=\alpha$. To compute solution at t_{i+1}, approximate solutions at mesh points $t_{0}, t_{1}, t_{2}, \ldots t_{i}$ are already obtained. Since in general error $\left|y\left(t_{i+1}\right)-w_{i+1}\right|$ grows with respect to time t, it then makes sense to use more previously computed approximate solution $w_{i}, w_{i-1}, w_{i-2}, \ldots$ when computing w_{i+1}.
Adams-Bashforth two-step explicit method.

$$
\begin{aligned}
& \text { p explicit method. } \quad w_{0}=\alpha, w_{1}=\alpha_{1} \\
& w_{i+1}=w_{i}+\frac{h}{2}\left[3 f\left(t_{i}, w_{i}\right)-f\left(t_{i-1}, w_{i-1}\right)\right] \quad \text { where } i=1,2, \ldots N-1 .
\end{aligned}
$$

Adams-Moulton two-step implicit method.

$$
\begin{gathered}
w_{0}=\alpha, \\
w_{1}=\alpha_{1} \\
w_{i+1}=w_{i}+\frac{h}{12}\left[5 f\left(t_{i+1}, w_{i+1}\right)+8 f\left(t_{i}, w_{i}\right)-f\left(t_{i-1}, w_{i-1}\right)\right] \quad \text { where } i=1,2, \ldots N-1 .
\end{gathered}
$$

Example. Solve the IVP $y^{\prime}=y-t^{2}+1, \quad 0 \leq t \leq 2, y(0)=0.5$ by Adams-Bashforth two-step explicit method and Adams-Moulton two-step implicit method respectively. Use the exact values given by $y(t)=(t+1)^{2}-0.5 e^{t}$ to get needed starting values for approximation and $h=0.2$.

Solution:

$$
\begin{array}{cc}
& w_{0}=0.5 \\
w_{1}=y(0.2)=(0.2+1)^{2}-0.5 e^{0.2}= & 0.8292986
\end{array}
$$

1) Adams-Bashforth two-step explicit method

$$
\begin{gathered}
w_{i+1}=w_{i}+\frac{h}{2}\left[3\left(w_{i}-t_{i}^{2}+1\right)-\left(w_{i-1}-t_{i-1}^{2}+1\right)\right] \\
w_{2}=0.8292986+0.1\left[3\left(0.8292986-0.2^{2}+1\right)-(0.5+1)\right]=1.2160882 \\
w_{3}=1.2160882+0.1\left[3\left(1.2160882-0.4^{2}+1\right)-\left(0.8292986-0.2^{2}+1\right)\right]=1.6539848 \\
\quad \ldots \text { and so on till to compute } w_{10} .
\end{gathered}
$$

2) Adams-Moulton two-step implicit method

$$
\begin{gathered}
w_{i+1}=w_{i}+\frac{h}{12}\left[5\left(w_{i+1}-t_{i+1}^{2}+1\right)+8\left(w_{i}-t_{i}^{2}+1\right)-\left(w_{i-1}-t_{i-1}^{2}+1\right)\right] \\
w_{2}=0.8292986+\frac{0.2}{12}\left[5\left(w_{2}-0.4^{2}+1\right)+8\left(0.8292986-0.2^{2}+1\right)-(0.5+1)\right]
\end{gathered}
$$

Solve for w_{2} :

$$
w_{2}=1.21404191
$$

$$
w_{3}=1.21404191+\frac{0.2}{12}\left[5\left(w_{3}-0.6^{2}+1\right)+8\left(1.21404191-0.4^{2}+1\right)-\left(0.8292986-0.2^{2}+1\right)\right]
$$

Solve for $w_{3}: \ldots$
\ldots and so on till to compute w_{10}.

Definition

An m-step multistep method for solving the IVP

$$
y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\alpha
$$

has a difference equation for approximate w_{i+1} at t_{i+1} :

$$
\begin{gathered}
w_{i+1}=a_{m-1} w_{i}+a_{m-2} w_{i-1}+\cdots+a_{0} w_{i+1-m} \\
+h\left[b_{m} f\left(t_{i+1}, w_{i+1}\right)+b_{m-1} f\left(t_{i}, w_{i}\right)+\cdots\right. \\
\left.+b_{0} f\left(t_{i+1-m}, w_{i+1-m}\right)\right]
\end{gathered}
$$

where $h=\frac{b-a}{N}$, and starting values are specified:

$$
w_{0}=\alpha, w_{1}=\alpha_{1}, \ldots, w_{m-1}=\alpha_{m-1} .
$$

Explicit method if $b_{m}=0$, implicit method if $b_{m} \neq 0$.

Example. Derive Adams-Bashforth two-step explicit method: Solve the IVP: $y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\alpha$.
Integrate $y^{\prime}=f(t, y)$ over $\left[y_{i}, y_{i+1}\right]$

$$
y_{i+1}-y_{i}=\int_{t_{i}}^{t_{i+1}} y^{\prime}(t) d t=\int_{t_{i}}^{t_{i+1}} f(t, y(t)) d t
$$

Use $\left(t_{i}, y_{i}\right)$ and $\left(t_{i-1}, y_{i-1}\right)$ to form interpolating polynomial $P_{1}(t)$ (by Newton backward difference (Page 129)) to approximate $f(t, y)$.

$$
\begin{aligned}
& \int_{t_{i}}^{t_{i+1}} f(t, y) d t=\int_{t_{i}}^{t_{i+1}}\left(f\left(t_{i}, y_{i}\right)+\nabla f\left(t_{i}, y_{i}\right) \frac{\left(t-t_{i}\right)}{h}+\text { error }\right) d t \\
& y_{i+1}-y_{i}=h\left[f\left(t_{i}, y_{i}\right)+\frac{1}{2}\left(f\left(t_{i}, y_{i}\right)-f\left(t_{i-1}, y_{i-1}\right)\right)\right]+\text { Error }
\end{aligned}
$$

where $h=t_{i+1}-t_{i}$, and the backward difference $\nabla f\left(t_{i}, y_{i}\right)=h f\left[t_{i}, t_{i-1}\right]=\left(f\left(t_{i}, y_{i}\right)-f\left(t_{i-1}, y_{i-1}\right)\right)$.
Consequently, Adams-Bashforth two-step explicit method is:

$$
\begin{gathered}
w_{0}=\alpha, \quad w_{1}=\alpha_{1} \\
w_{i+1}=w_{i}+\frac{h}{2}\left[3 f\left(t_{i}, w_{i}\right)-f\left(t_{i-1}, w_{i-1}\right)\right] \quad \text { where } i=1,2, \ldots N-1 .
\end{gathered}
$$

Local Truncation Error. If $y(t)$ solves the IVP $y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\alpha$ and

$$
\begin{gathered}
w_{i+1}=a_{m-1} w_{i}+a_{m-2} w_{i-1}+\cdots+a_{0} w_{i+1-m} \\
h\left[b_{m} f\left(t_{i+1}, w_{i+1}\right)+b_{m-1} f\left(t_{i}, w_{i}\right)+\cdots\right. \\
\left.+b_{0} f\left(t_{i+1-m}, w_{i+1-m}\right)\right]
\end{gathered}
$$

the local truncation error is

$$
\tau_{i+1}(h)=\frac{y\left(t_{i+1}\right)-a_{m-1} y\left(t_{i}\right)-a_{m-2} y\left(t_{i-1}\right)-\cdots-a_{0} y\left(t_{i+1-m}\right)}{h}-\left[b_{m} f\left(t_{i+1}, y\left(t_{i+1}\right)\right)+\cdots+b_{0} f\left(t_{i+1-m}, y\left(t_{i}\right)\right)\right]
$$

NOTE: the local truncation error of a m-step explicit step is $O\left(h^{m}\right)$. the local truncation error of a m-step implicit step is $O\left(h^{m+1}\right)$.
m-step explicit step method $v s .(m-1)$-step implicit step method
a) both have the same order of local truncation error, $O\left(h^{m}\right)$.
b) Implicit method usually has greater stability and smaller round-off errors.

For example, local truncation error of Adams-Bashforth 3-step explicit method, $\tau_{i+1}(h)=\frac{3}{8} y^{(4)}\left(\mu_{i}\right) h^{3}$.
Local truncation error of Adams-Moulton 2-step implicit method, $\tau_{i+1}(h)=-\frac{1}{24} y^{(4)}\left(\xi_{i}\right) h^{3}$.

Predictor-Corrector Method

Motivation: (1) Solve the IVP $y^{\prime}=e^{y}, \quad 0 \leq t \leq 0.25, y(0)=1$ by the three-step Adams-Moulton method.
Solution: The three-step Adams-Moulton method is

$$
\begin{equation*}
w_{i+1}=w_{i}+\frac{h}{24}\left[9 e^{w_{i+1}}+19 e^{w_{i}}-5 e^{w_{i-1}}+e^{w_{i-2}}\right] \tag{1}
\end{equation*}
$$

Eq. (1) can be solved by Newton's method. However, this can be quite computationally expensive.
(2) combine explicit and implicit methods.

$4^{\text {th }}$ order Predictor-Corrector Method

(we will combine $4^{\text {th }}$ order Runge-Kutta method $+4^{\text {th }}$ order 4 -step explicit Adams-Bashforth method $+4^{\text {th }}$ order three-step Adams-Moulton implicit method)
Step 1: Use $4^{\text {th }}$ order Runge-Kutta method to compute w_{0}, w_{1}, w_{2} and w_{3}.
Step 2: For $i=3,5, \ldots N$
(a) Predictor sub-step. Use $4^{\text {th }}$ order 4-step explicit Adams-Bashforth method to compute a predicated value

$$
w_{i+1, p}=w_{i}+\frac{h}{24}\left[55 f\left(t_{i}, w_{i}\right)-59 f\left(t_{i-1}, w_{i-1}\right)+37 f\left(t_{i-2}, w_{i-2}\right)-9 f\left(t_{i-3}, w_{i-3}\right)\right]
$$

(b) Correction sub-step. Use $4^{\text {th }}$ order three-step Adams-Moulton implicit method to compute a correction (the approximation at $i+1$ time step)

$$
w_{i+1}=w_{i}+\frac{h}{24}\left[9 f\left(t_{i+1}, w_{i+1, p}\right)+19 f\left(t_{i}, w_{i}\right)-5 f\left(t_{i-1}, w_{i-1}\right)+f\left(t_{i-2}, w_{i-2}\right)\right]
$$

