6.1 Linear Systems of Equations

To solve a system of linear equations

$$
\begin{array}{cc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\cdots a_{1 n} x_{n}=b_{1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\cdots a_{2 n} x_{n}=b_{2} \\
\vdots \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots a_{n n} x_{n}=b_{n}
\end{array}
$$

for $x_{1}, x_{2}, \ldots, x_{n}$ by Gaussian elimination with backward substitution.

Matrix form:

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

Three elementary row operations.

1. Multiply one row by a nonzero number: $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$
2. Interchange two rows: : $\left(E_{j}\right) \leftrightarrow\left(E_{i}\right)$
3. Add a multiple of one row to a different row: $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$

Echelon form (upper triangular form)

A matrix is in row-echelon form if

1. All rows consisting entirely of zeros are at the bottom
2. Each leading entry (first nonzero entry from left) of a row is in a column to the right of the leading entry of the row above it.
3. All entries in a column below a leading entry are zeros.

Backward substitution

Example 1. To solve $\left[\begin{array}{ccc}1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & -5 / 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}6 \\ 4 \\ -3\end{array}\right]$
Solution: From $-\frac{5}{2} x_{3}=-3$

$$
x_{3}=\frac{6}{5}
$$

Then from $2 x_{2}+x_{3}=4$

$$
\begin{gathered}
2 x_{2}+\frac{6}{5}=4 \\
x_{2}=\frac{7}{5} .
\end{gathered}
$$

Lastly from $x_{1}+x_{2}+2 x_{3}=6$

$$
x_{1}+\frac{7}{5}+2\left(\frac{6}{5}\right)=6
$$

$$
x_{1}=\frac{11}{5}
$$

Gaussian Elimination with Backward Substitution

1. Write the system of linear equations as an augmented matrix $[A \mid b]$.
2. Perform elementary row operations to put the augmented matrix in the echelon form
3. Solve the echelon form using backward substition
$2 x_{2}+x_{3}=4$
Example 2. Solve the system of linear equations $x_{1}+x_{2}+2 x_{3}=6$
$2 x_{1}+x_{2}+x_{3}=7$
Solution: $\left[\begin{array}{lll|l}0 & 2 & 1 & 4 \\ 1 & 1 & 2 & 6 \\ 2 & 1 & 1 & 7\end{array}\right] \underset{\left(E_{1}\right) \xrightarrow{\rightarrow}\left(E_{2}\right)}{\rightarrow}\left[\begin{array}{lll|l}1 & 1 & 2 & 6 \\ 0 & 2 & 1 & 4 \\ 2 & 1 & 1 & 7\end{array}\right]\left(E_{3}-2 * E_{1}\right) \rightarrow\left(E_{3}\right)\left[\begin{array}{ccc|c}1 & 1 & 2 & 6 \\ 0 & 2 & 1 & 4 \\ 0 & -1 & -3 & -5\end{array}\right] \underset{\left(E_{3}+0.5 * E_{2}\right) \rightarrow\left(E_{3}\right)}{\rightarrow}$

$$
\left[\begin{array}{ccc|c}
1 & 1 & 2 & 6 \\
0 & 2 & 1 & 4 \\
0 & 0 & -\frac{5}{2} & -3
\end{array}\right]
$$

Now use backward substation to solve for values of x_{1}, x_{2}, x_{3} (see Example 1).
Remark: Gaussian elimination is computationally expensive. The total number of multiplication and divisions is about $n^{3} / 3$, where n is the number of unknowns.

6.2 Pivoting Strategies

Motivation: To solve a system of linear equations

$$
\begin{array}{cc}
E_{1}: & a_{11} x_{1}+a_{12} x_{2}+\cdots a_{1 n} x_{n}=b_{1} \\
E_{2}: & a_{21} x_{1}+a_{22} x_{2}+\cdots a_{2 n} x_{n}=b_{2} \\
\vdots \\
E_{n}: & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots a_{n n} x_{n}=b_{n}
\end{array}
$$

for $x_{1}, x_{2}, \ldots, x_{n}$ by Gaussian elimination where $a_{k k}^{(k)}$ are numbers with small magnitude.

- In Gaussian elimination, if a pivot element $a_{k k}^{(k)}$ is small compared to an element $a_{j k}^{(k)}$ below, the multiplier $m_{j k}=\frac{a_{j k}^{(k)}}{a_{k k}^{(k)}}$ will be large, leading to large round-off errors.

Example 1. Apply Gaussian elimination to solve
E1: $\quad 0.003000 x_{1}+59.14 x_{2}=59.17$
$E 2: \quad 5.291 x_{1}-6.130 x_{2}=46.78$
using 4-digit arithmetic with rounding (The exact solution is $x_{1}=10.00, x_{2}=1.000$).

Ideas of Partial Pivoting.

Partial pivoting finds the smallest $p \geq k$ such that

$$
\left|a_{p k}^{(k)}\right|=\max _{k \leq i \leq n}\left|a_{i k}^{(k)}\right|
$$

and interchanges the rows $\left(E_{k}\right) \leftrightarrow\left(E_{p}\right)$

Example 2. Apply Gaussian elimination with partial pivoting to solve
E1: $\quad 0.003000 x_{1}+59.14 x_{2}=59.17$
$E 2: \quad 5.291 x_{1}-6.130 x_{2}=46.78$
using 4-digit arithmetic with rounding.

Solution:

Step 1 of partial pivoting

$$
\max \left\{\left|a_{11}^{(1)}\right|,\left|a_{21}^{(1)}\right|\right\}=\{|0.003000|,|5.291|\}=5.291=\left|a_{21}^{(1)}\right| .
$$

So perform $\left(E_{1}\right) \leftrightarrow\left(E_{2}\right)$ to make 5.291 the pivot element.

$$
\begin{array}{cr}
E 1: & 5.291 x_{1}-6.130 x_{2}=46.78 \\
E 2: & 0.003000 x_{1}+59.14 x_{2}=59.17 \\
m_{21}= & \frac{a_{21}^{(1)}}{a_{11}^{(1)}}=\frac{0.003000}{5.29}=0.0005670
\end{array}
$$

$\operatorname{Perform}\left(E_{2}-m_{21} E_{1}\right) \rightarrow\left(E_{2}\right)$

$$
\begin{gathered}
5.291 x_{1}-6.130 x_{2}=46.78 \\
59.14 x_{2} \approx 59.14
\end{gathered}
$$

Backward substitution with 4-digit rounding leads to $x_{1}=10.00 ; x_{2}=1.000$.

Gaussian Elimination with Partial Pivoting (Algorithm 6.2)

$$
\begin{array}{cc}
E_{1} & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=a_{1, n+1} \\
E_{2} & a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=a_{2, n+1} \\
& \vdots \\
E_{n} & a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=a_{n, n+1}
\end{array}
$$

INPUT: number of equations n; augmented matrix $A=\left[a_{i j}\right]$. Here $1 \leq i \leq N ; 1 \leq j \leq N+1$ OUTPUT: solution $x_{1}, x_{2}, \ldots, x_{n}$

STEP 1 For $i=1, \ldots, n$ set $N R O W(i)=i$.
STEP 2 For $i=1, \ldots, n-1$ do STEPs $3-6$
STEP 3 Let p be the smallest integer with $i \leq p \leq n$ and

$$
\left|a_{N R O W(p), i}\right|=\max _{i \leq j \leq n}\left|a_{N R O W(j), i}\right| .
$$

STEP 4 If $a_{N R O W(p), i}=0$ then OUTPUT('no unique solution exists');
STOP.

STEP 5 If $N R O W(i) \neq N R O W(p)$ then set $N C O P Y=N R O W(i)$;

$$
\begin{aligned}
& \operatorname{NROW}(i)=\operatorname{NROW}(p) ; \\
& \operatorname{NROW}(p)=\operatorname{NCOPY} .
\end{aligned}
$$

STEP 6 For $j=i+1, \ldots, n$ do STEPs 7 and 8 .
STEP 7 Set $m_{\operatorname{NROW}(j), i}=\frac{a_{\operatorname{NROW}(\mathrm{j}, i}}{a_{\operatorname{NROW}(j), i}}$
STEP 8 Perform $\left(E_{N R O W(j)}-m_{\operatorname{NROW}(j), i} E_{N R O W(i)}\right) \rightarrow\left(E_{N R O W(j)}\right)$
STEP 9 If $a_{N R O W(n), n}=0$ then OUTPUT('no unique solution exists');
STOP.
STEP 10 Set $x_{n}=a_{\text {NROW }(n), n+1} / a_{\text {NROW (n)n }}$ // Start backward substitution
STEP 11 For $i=n-1, \ldots, 1$
set $x_{i}=\left(a_{N R O W(i), n+1}-\sum_{j=i+1}^{n} a_{N R O W(i), j} x_{j}\right) / a_{N R O W(i), i}$
STEP $12 \operatorname{OUTPUT}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$;
STOP.

Example 3. Apply Gaussian elimination with partial pivoting to solve
E1: $\quad 30.00 x_{1}+591400 x_{2}=591700$
$E 2: \quad 5.291 x_{1}-6.130 x_{2}=46.78$
using 4-digit arithmetic with rounding.

Solution:

$$
\begin{gathered}
m_{21}=\frac{a_{21}}{a_{11}}=\frac{5.291}{30.00}=0.1764 \\
30.00 x_{1}+591400 x_{2}=591700 \\
-104300 x_{2} \approx-104400
\end{gathered}
$$

Using backward substitution with 4-digit arithmetic leads to $x_{1}=-10.00, x_{2}=1.001$.

Scaled Partial Pivoting

- If there are large variations in magnitude of the elements within a row, scaled partial pivoting should be used.
- Define a scale factor s_{i} for each row

$$
s_{i}=\max _{1 \leq j \leq n}\left|a_{i j}\right|
$$

- At step i, find p (the element which will be used as pivot) such that

$$
\frac{a_{p i}}{s_{p}}=\max _{i \leq k \leq n} \frac{\left|a_{k i}\right|}{s_{k}} \text { and interchange the rows }\left(E_{i}\right) \leftrightarrow\left(E_{p}\right)
$$

NOTE: The effect of scaling is to ensure that the largest element in each row has a relative magnitude of 1 before the comparison for row interchange is performed.

Example 3. Apply Gaussian elimination with scaled partial pivoting to solve
$E 1: \quad 30.00 x_{1}+591400 x_{2}=591700$
$E 2: \quad 5.291 x_{1}-6.130 x_{2}=46.78$
using 4 -digit arithmetic with rounding.

Solution:

$$
\begin{aligned}
& s_{1}=591400 \\
& s_{2}=6.130
\end{aligned}
$$

Consequently

$$
\begin{gathered}
\frac{\left|a_{11}\right|}{s_{1}}=\frac{30.00}{591400}=0.5073 \times 10^{-4} \\
\frac{\left|a_{21}\right|}{s_{2}}=\frac{5.291}{6.130}=0.8631
\end{gathered}
$$

5.291 should be used as pivot element. So $\left(E_{1}\right) \leftrightarrow\left(E_{2}\right)$

Solve

$$
5.291 x_{1}-6.130 x_{2}=46.78
$$

$$
30.00 x_{1}+591400 x_{2}=591700
$$

$x_{1}=10.00, x_{2}=1.000$.

Gaussian Elimination with Scaled Partial Pivoting (Algorithm 6.3)

The only steps in Alg. 6.3 that differ from those of Alg. 6.2 are:
STEP 1 For $i=1, \ldots, n$ set $s_{i}=\max _{1 \leq j \leq n}\left|a_{i j}\right|$;

$$
\begin{aligned}
& \text { If } s_{i}=0 \text { then OUTPUT('no unique solution exists'); } \\
& \text { STOP. } \\
& \text { set } \quad N R O W(i)=i .
\end{aligned}
$$

STEP 2 For $i=1, \ldots, n-1$ do STEPs $3-6$
STEP 3 Let p be the smallest integer with $i \leq p \leq n$ and

$$
\frac{\left|a_{N R O W(p), i}\right|}{s_{N R O W(p)}}=\max _{i \leq j \leq n} \frac{\left|a_{N R O W(j), i}\right|}{s_{N R O W(j)}} .
$$

