6.1 Linear Systems of Equations

To solve a system of linear equations

$$E_{1}: a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1}$$

$$E_{2}: a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$E_{n}: a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{nn}x_{n} = b_{n}$$

for $x_1, x_2, ..., x_n$ by Gaussian elimination with backward substitution.

Matrix form:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Three elementary row operations.

- **1.** Multiply one row by a nonzero number: $(\lambda E_i) \rightarrow (E_i)$
- **2.** Interchange two rows: $(E_j) \leftrightarrow (E_i)$
- **3.** Add a multiple of one row to a different row: $(E_i + \lambda E_j) \rightarrow (E_i)$

Echelon form (upper triangular form)

A matrix is in row-echelon form if

- 1. All rows consisting entirely of zeros are at the bottom
- 2. Each leading entry (first nonzero entry from left) of a row is in a column to the right of the leading entry of the row above it.
- 3. All entries in a column below a leading entry are zeros.

Backward substitution

Example 1. To solve $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & -5/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ -3 \end{bmatrix}$ Solution: From $-\frac{5}{2}x_3 = -3$ $x_3 = \frac{6}{5}$. Then from $2x_2 + x_3 = 4$ $2x_2 + \frac{6}{5} = 4$ $x_2 = \frac{7}{5}$. Lastly from $x_1 + x_2 + 2x_3 = 6$ $x_1 + \frac{7}{5} + 2\left(\frac{6}{5}\right) = 6$ $x_1 = \frac{11}{5}$

Gaussian Elimination with Backward Substitution

- 1. Write the system of linear equations as an **augmented matrix** $[A \mid b]$.
- 2. Perform elementary row operations to put the augmented matrix in the echelon form
- 3. Solve the echelon form using backward substition

Example 2. Solve the system of linear equations $\begin{aligned} &2x_2+x_3=4\\ x_1+x_2+2x_3=6\\ &2x_1+x_2+x_3=7 \end{aligned}$

Solution:
$$\begin{bmatrix} 0 & 2 & 1 & | & 4 \\ 1 & 1 & 2 & | & 6 \\ 2 & 1 & 1 & | & 7 \end{bmatrix} \xrightarrow{\rightarrow} (E_1) \leftrightarrow (E_2) \begin{bmatrix} 1 & 1 & 2 & | & 6 \\ 0 & 2 & 1 & | & 4 \\ 2 & 1 & 1 & | & 7 \end{bmatrix} \xrightarrow{\rightarrow} (E_3) \begin{bmatrix} 1 & 1 & 2 & | & 6 \\ 0 & 2 & 1 & | & 4 \\ 0 & -1 & -3 & | & -5 \end{bmatrix} (E_3 + 0.5 * E_2) \rightarrow (E_3) \begin{bmatrix} 1 & 1 & 2 & | & 6 \\ 0 & 2 & 1 & | & 4 \\ 0 & -1 & -3 & | & -5 \end{bmatrix} (E_3 + 0.5 * E_2) \rightarrow (E_3)$$

Now use backward substation to solve for values of x_1, x_2, x_3 (see **Example 1**).

Remark: Gaussian elimination is computationally expensive. The total number of multiplication and divisions is about $n^3/3$, where *n* is the number of unknowns.

6.2 Pivoting Strategies

Motivation: To solve a system of linear equations

$$E_{1}: a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1}$$

$$E_{2}: a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$E_{n}: a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{nn}x_{n} = b_{n}$$

for $x_1, x_2, ..., x_n$ by Gaussian elimination where $a_{kk}^{(k)}$ are numbers with small magnitude.

• In Gaussian elimination, if a pivot element $a_{kk}^{(k)}$ is small compared to an element $a_{jk}^{(k)}$ below, the multiplier $m_{jk} = \frac{a_{jk}^{(k)}}{a_{kk}^{(k)}}$ will be large, leading to large round-off errors.

Example 1. Apply Gaussian elimination to solve

E1: $0.003000x_1 + 59.14x_2 = 59.17$ E2: $5.291x_1 - 6.130x_2 = 46.78$ using 4-digit arithmetic with rounding (The exact solution is $x_1 = 10.00$, $x_2 = 1.000$).

Ideas of Partial Pivoting.

Partial pivoting finds the smallest $p \ge k$ such that

$$\left|a_{pk}^{(k)}\right| = \max_{k \le i \le n} \left|a_{ik}^{(k)}\right|$$

and interchanges the rows $(E_k) \leftrightarrow (E_p)$

Example 2. Apply Gaussian elimination with partial pivoting to solve

*E*1: $0.003000x_1 + 59.14x_2 = 59.17$ *E*2: $5.291x_1 - 6.130x_2 = 46.78$

using 4-digit arithmetic with rounding.

Solution:

Step 1 of partial pivoting

$$\max\left\{|a_{11}^{(1)}|, |a_{21}^{(1)}|\right\} = \{|0.003000|, |5.291|\} = 5.291 = |a_{21}^{(1)}|.$$

So perform $(E_1) \leftrightarrow (E_2)$ to make 5.291 the pivot element.

*E*1:
$$5.291x_1 - 6.130x_2 = 46.78$$

*E*2: $0.003000x_1 + 59.14x_2 = 59.17$

$$m_{21} = \frac{a_{21}^{(1)}}{a_{11}^{(1)}} = \frac{0.003000}{5.29} = 0.0005670$$

 $\operatorname{Perform}\left(E_2-m_{21}E_1\right)\to (E_2)$

$$5.291x_1 - 6.130x_2 = 46.78$$

$$59.14x_2 \approx 59.14$$

Backward substitution with 4-digit rounding leads to $x_1 = 10.00$; $x_2 = 1.000$.

Gaussian Elimination with Partial Pivoting (Algorithm 6.2)

$$E_1 \qquad a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = a_{1,n+1}$$

$$E_2 \qquad a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = a_{2,n+1}$$

$$\vdots$$

$$E_n \qquad a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = a_{n,n+1}$$

INPUT: number of equations *n*; augmented matrix $A = [a_{ij}]$. Here $1 \le i \le N$; $1 \le j \le N + 1$ **OUTPUT:** solution $x_1, x_2, ..., x_n$ **STEP 1** For i = 1, ..., n set NROW(i)=i.

STEP 2 For i = 1, ..., n - 1 do **STEP**s 3 - 6

STEP 3 Let *p* be the smallest integer with $i \le p \le n$ and

 $\left|a_{NROW(p),i}\right| = \max_{i \le j \le n} \left|a_{NROW(j),i}\right|.$

STEP 4 If $a_{NROW(p),i} = 0$ then OUTPUT('no unique solution exists'); STOP.

STEP 5 If $NROW(i) \neq NROW(p)$ then set NCOPY = NROW(i); NROW(i) = NROW(p); NROW(p) = NCOPY.

STEP 6 For j = i + 1, ..., n do **STEP**s 7 and 8.

STEP 7 Set $m_{NROW(j),i} = \frac{a_{NROW(j),i}}{a_{NROW(j),i}}$

STEP 8 Perform $(E_{NROW(j)} - m_{NROW(j),i}E_{NROW(i)}) \rightarrow (E_{NROW(j)})$

STEP 9 If $a_{NROW(n),n} = 0$ then OUTPUT('no unique solution exists'); STOP.

STEP 10 Set $x_n = a_{NROW(n),n+1}/a_{NROW(n)n}$ // Start backward substitution

STEP 11 For
$$i = n - 1, ..., 1$$

set $x_i = (a_{NROW(i),n+1} - \sum_{j=i+1}^n a_{NROW(i),j} x_j) / a_{NROW(i),i}$

STEP 12 OUTPUT $(x_1, x_2, ..., x_n);$

STOP.

Example 3. Apply Gaussian elimination with partial pivoting to solve

E1: $30.00x_1 + 591400x_2 = 591700$ E2: $5.291x_1 - 6.130x_2 = 46.78$ using 4-digit arithmetic with rounding.

Solution:

 $m_{21} = \frac{a_{21}}{a_{11}} = \frac{5.291}{30.00} = 0.1764$ $30.00x_1 + 591400x_2 = 591700$ $-104300x_2 \approx -104400$

Using backward substitution with 4-digit arithmetic leads to $x_1 = -10.00$, $x_2 = 1.001$.

Scaled Partial Pivoting

- If there are large variations in magnitude of the elements within a row, scaled partial pivoting should be used.
- Define a scale factor s_i for each row
 - $s_i = \max_{1 \le j \le n} |a_{ij}|$
- At step i, find p (the element which will be used as pivot) such that

 $\frac{a_{pi}}{s_p} = \max_{i \le k \le n} \frac{|a_{ki}|}{s_k} \text{ and interchange the rows } (E_i) \leftrightarrow (E_p)$

NOTE: The effect of scaling is to ensure that the largest element in each row has a relative magnitude of 1 before the comparison for row interchange is performed.

Example 3. Apply Gaussian elimination with scaled partial pivoting to solve

*E*1: $30.00x_1 + 591400x_2 = 591700$ *E*2: $5.291x_1 - 6.130x_2 = 46.78$

using 4-digit arithmetic with rounding.

Solution:

 $s_1 = 591400$ $s_2 = 6.130$ Consequently

$$\frac{|a_{11}|}{s_1} = \frac{30.00}{591400} = 0.5073 \times 10^{-4}$$
$$\frac{|a_{21}|}{s_2} = \frac{5.291}{6.130} = 0.8631$$

5.291 should be used as pivot element. So $(E_1) \leftrightarrow (E_2)$

Solve $5.291x_1 - 6.130x_2 = 46.78$ $30.00x_1 + 591400x_2 = 591700$ $x_1 = 10.00, \ x_2 = 1.000.$

Gaussian Elimination with Scaled Partial Pivoting (Algorithm 6.3)

The only steps in Alg. 6.3 that differ from those of Alg. 6.2 are: **STEP 1** For i = 1, ..., n set $s_i = \max_{1 \le j \le n} |a_{ij}|$; If $s_i = 0$ then OUTPUT('no unique solution exists'); STOP. set NROW(i)=i. **STEP 2** For i = 1, ..., n - 1 do **STEPs** 3 - 6 **STEP 3** Let p be the smallest integer with $i \le p \le n$ and $\frac{|a_{NROW(p),i}|}{s_{NROW(p)}} = \max_{i \le j \le n} \frac{|a_{NROW(j),i}|}{s_{NROW(j)}}$.