6.3 Linear Algebra and Matrix Inversion

Linear Algebra

Two matrices *A* and *B* are **equal** if they have same number of rows and columns $n \times m$ and if $a_{ij} = b_{ij}$.

If A and B are $n \times m$ matrices, sum A + B is $n \times m$ matrix with entries $a_{ii} + b_{ii}$.

If A is $n \times m$ matrix and λ a real number, the scalar multiplication λA is $n \times m$ matrix with entries λa_{ii} .

Properties

Let A, B, C be $n \times m$ matrices, λ , μ real numbers.

- (a) (commutative law) A + B = B + A
- (b) (associative law) (A + B) + C = A + (B + C)
- (c) A + 0 = 0 + A = A. Here 0 is $n \times m$ matrix with zero entries
- (d) A + (-A) = -A + A = 0
- (e) (distributive law of scale multiplication) $\lambda(A + B) = \lambda A + \lambda B$
- (f) $\lambda(\mu A) = (\lambda \mu)A$
- (g) $(\lambda + \mu)A = \lambda A + \mu A$
- (h) 1A = A

Matrix multiplication

Let *A* be $n \times m$ and *B* be $m \times p$. The matrix product C = AB is $n \times p$ matrix with entries

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{im} b_{mj}$$

(Matrix vector multiplication can be viewed as a special case of matrix multiplication) **Special Matrices**

- A *square* matrix has m = n
- A diagonal matrix $D = [d_{ij}]$ is square with $d_{ij} = 0$ when $i \neq j$.
- The *identity* matrix of order n, $I_n = [\delta_{ij}]$, is diagonal with $\delta_{ij} = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j \end{cases}$

- An upper-triangular $n \times n$ matrix $U = [u_{ij}]$ has $u_{ij} = 0$, if i = j + 1, ..., n.
- A lower-triangular $n \times n$ matrix $L = [l_{ij}]$ has $l_{ij} = 0$, if i = 1, 2, ..., j 1.

Theorem 6.8 Let *A* be $n \times m$, *B* be $m \times k$, *C* be $k \times p$, *D* be $m \times k$, and λ be a real number.

- (a) A(BC) = (AB)C
- (b) A(B+D) = AB + AD
- (c) $I_m B = B$ and $BI_k = B$
- (d) $\lambda(AB) = (\lambda A)B = A(\lambda B)$

Matrix Inversion

- An $n \times n$ matrix A is nonsingular or invertible if $n \times n A^{-1}$ exists with $AA^{-1} = A^{-1}A = I$
- The matrix A^{-1} is called the *inverse* of A
- A matrix without an inverse is called singular or noninvertible

Theorem 6.12 For any nonsingular $n \times n$ matrix A,

- (a) A^{-1} is unique
- (b) A^{-1} is nonsingular and $(A^{-1})^{-1} = A$
- (c) If *B* is nonsingular $n \times n$, then $(AB)^{-1} = B^{-1}A^{-1}$

Matrix Transpose

- The transpose of $n \times m A = [a_{ij}]$ is $m \times n A^t = [a_{ji}]$
- A square matrix A is called *symmetric* if $A = A^t$

Theorem 6.14

- (a) $(A^t)^t = A$
- (b) $(A + B)^t = A^t + B^t$
- (c) $(AB)^t = B^t A^t$
- (d) If A^{-1} exists, then $(A^{-1})^t = (A^t)^{-1}$

6.4 Determinant of Matrix

- (a) If A = [a] is 1×1 matrix, then detA = a
- (b) If A is $n \times n$, the minor M_{ij} is the determinant of the $(n-1) \times (n-1)$ submatrix by deleting row i and column j of A
- (c) The cofactor $A_{ij} = (-1)^{i+j} M_{ij}$
- (d) The determinant of $n \times n$ matrix A for n > 1 is

$$\det A = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_{ij}$$

Theorem 6.16 Let *A* be $n \times n$ matrix.

- (a) If any row or column of A has all zeros, then det A = 0
- (b) If A has two rows or two columns equal, then det A = 0
- (c) If \tilde{A} is obtained from A by $(E_i) \leftrightarrow (E_i)$, then det $\tilde{A} = -\det A$
- (d) If \tilde{A} is obtained from A by $(\lambda E_i) \to (E_i)$, then det $\tilde{A} = \lambda det A$
- (e) If \tilde{A} is obtained from A by $(E_i + \lambda E_i) \rightarrow (E_i)$, then det $\tilde{A} = \text{det}A$
- (f) If *B* is $n \times n$, then det(*AB*) = detAdetB
- (g) $detA^t = detA$
- (h) When A^{-1} exists, $det A^{-1} = 1/(det A)$
- (i) If A is upper/lower triangular or diagonal matrix, then det $A = \prod_{i=1}^{n} a_{ii}$

Theorem 6.17 The following statements are equivalent for any $n \times n$ matrix A:

- (a) The equation Ax = 0 has unique solution x = 0
- (b) The system $A\mathbf{x} = \mathbf{b}$ has a unique solution for any \mathbf{b}
- (c) The matrix *A* is nonsingular
- (d) det $A \neq 0$
- (e) Gaussian elimination with row interchanges can be performed on Ax = b for any b

6.5 Matrix Factorization

Motivation: Consider to solve $A\mathbf{x} = \mathbf{b}$. Here *A* is $n \times n$ matrix. Suppose A = LU, where *L* is a lower triangular matrix and *U* is an upper triangular matrix.

First solve Ly = bThen solve Ux = y

Consider the first step of Gaussian elimination (assume no row interchange) on $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$

$$a_{n1} \ a_{n2} \ \dots \ a_{nn}$$

 $Do(E_j - m_{j1}E_1) \to (E_j) \text{ for } j = 2,3, \dots, n. \text{ Here } m_{j1} = \frac{a_{j1}}{a_{11}} \text{ to obtain}$ $A^{(1)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \dots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n2}^{(2)} & \dots & a_{nn}^{(2)} \end{bmatrix}$

Note: $a_{11}^{(1)} = a_{11}, \ a_{12}^{(1)} = a_{12}, \dots a_{1n}^{(1)} = a_{1n}.$

This is equivalent to

 $A^{(1)} = M^{(1)}A$

$$M^{(1)} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ -m_{21} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -m_{n1} & 0 & \dots & 1 \end{bmatrix}$$

 $M^{(1)}$ is called the first Gaussian transformation matrix.

Similarly, the kth Gaussian transformation matrix is

Gaussian elimination (without row interchange) can be written as $A^{(n)} = M^{(n-1)}M^{(n-2)} \dots M^{(1)}A$ with

$$A^{(n)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \dots & a_{2n}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn}^{(n)} \end{bmatrix}$$

LU Factorization A = LU

Reversing the elimination steps gives the inverses:

$$L^{(k)} = [M^{(k)}]^{-1} = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & \ddots & & 0 & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & m_{k+1,k} & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & m_{n,k} & 0 & \dots \end{bmatrix}$$

We define $A = LU = [M^{(n-1)}M^{(n-2)} \dots M^{(1)}]^{-1}A^{(n)}$ Here $U = A^{(n)}$ is the **upper triangular** matrix.

 $L = [M^{(n-1)}M^{(n-2)} \dots M^{(1)}]^{-1} = [M^{(1)}]^{-1}[M^{(2)}]^{-1} \dots [M^{(n-1)}]^{-1}$ is the **lower triangular** matrix.

Theorem 6.19 If Gaussian elimination can be performed on the linear system Ax = b without row interchange, A can be factored into the product of *lower triangular* matrix L and *upper triangular* matrix U as A = LU:

$$U = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \dots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \dots & a_{22}^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn}^{(n)} \end{bmatrix}, \quad L = \begin{bmatrix} 1 & 0 & \dots & 0 \\ m_{21} & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ m_{n1} & \dots & m_{n,n-1} & 1 \end{bmatrix}$$

Example. Consider matrix $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, which is obtained by interchanging the 2nd and 3rd rows of identity matrix $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Matrix $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$. What is *PA*?

Permutation Matrices

Definition. Suppose $k_1, k_2, ..., k_n$ is a permutation of 1,2, ..., n. The permutation matrix $P = [p_{ij}]$ is defined by

$$p_{ij} = \begin{cases} 1, & \text{if } j = k_i \\ 0 & \text{otherwise} \end{cases}$$

• *PA* permutes the rows of *A*:

$$PA = \begin{bmatrix} a_{k_11} & \dots & a_{k_1n} \\ \vdots & \ddots & \vdots \\ a_{k_n1} & \dots & a_{k_nn} \end{bmatrix}$$

• P^{-1} exists and $P^{-1} = P^t$

Gaussian elimination with row interchanges can be written as:

$$A = P^{-1}LU = (P^tL)U$$

Remark: $P^{t}L$ is not lower triangular matrix unless P is identity matrix.

Example. Find a factorization $A = (P^t L)U$ for the matrix

$$A = \begin{bmatrix} 0 & 0 & -1 & 1 \\ 1 & 1 & -1 & 2 \\ -1 & -1 & 2 & 0 \\ 1 & 2 & 0 & 2 \end{bmatrix}$$

Solution $(E_1) \leftrightarrow (E_2)$, then $(E_3 + E_1) \rightarrow (E_3)$ and $(E_4 - E_1) \rightarrow (E_4)$
$$\begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

 $(E_2) \leftrightarrow (E_4)$ then $(E_4 + E_3) \rightarrow (E_4)$
$$U = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Two row interchanges $((E_1) \leftrightarrow (E_2) \leftrightarrow (E_3))$

Two row interchanges $((E_1) \leftrightarrow (E_2) \text{ and } (E_2) \leftrightarrow (E_4))$

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \text{ and } PA = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 1 & 2 & 0 & 2 \\ -1 & -1 & 2 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Gaussian elimination is performed on *PA* without row interchanges.

$$PA = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 1 & 2 & 0 & 2 \\ -1 & -1 & 2 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix} = LU$$

Since $P^{-1} = P^t$,

$$A = P^{-1}LU = (P^{t}L)U = \begin{bmatrix} 0 & 0 & -1 & 1\\ 1 & 0 & 0 & 0\\ -1 & 0 & 1 & 0\\ 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 & 2\\ 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 3 \end{bmatrix}$$