6.3 Linear Algebra and Matrix Inversion

Linear Algebra

Two matrices A and B are equal if they have same number of rows and columns $n \times m$ and if $a_{i j}=b_{i j}$.
If A and B are $n \times m$ matrices, $\operatorname{sum} A+B$ is $n \times m$ matrix with entries $a_{i j}+b_{i j}$.
If A is $n \times m$ matrix and λ a real number, the scalar multiplication λA is $n \times m$ matrix with entries $\lambda a_{i j}$.

Properties

Let A, B, C be $n \times m$ matrices, λ, μ real numbers.
(a) (commutative law) $A+B=B+A$
(b) (associative law) $(A+B)+C=A+(B+C)$
(c) $A+0=0+A=A$. Here 0 is $n \times m$ matrix with zero entries
(d) $A+(-A)=-A+A=0$
(e) (distributive law of scale multiplication) $\lambda(A+B)=\lambda A+\lambda B$
(f) $\lambda(\mu A)=(\lambda \mu) A$
(g) $(\lambda+\mu) A=\lambda A+\mu A$
(h) $1 A=A$

Matrix multiplication

Let A be $n \times m$ and B be $\mathrm{m} \times p$. The matrix product $C=A B$ is $n \times p$ matrix with entries

$$
c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i m} b_{m j}
$$

(Matrix vector multiplication can be viewed as a special case of matrix multiplication)

Special Matrices

- A square matrix has $m=n$
- A diagonal matrix $D=\left[d_{i j}\right]$ is square with $d_{i j}=0$ when $i \neq j$.
- The identity matrix of order $n, I_{n}=\left[\delta_{i j}\right]$, is diagonal with $\delta_{i j}= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j\end{cases}$
- An upper-triangular $n \times n$ matrix $\mathrm{U}=\left[u_{i j}\right]$ has $u_{i j}=0$, if $i=j+1, \ldots, n$.
- A lower-triangular $n \times n$ matrix $\mathrm{L}=\left[l_{i j}\right]$ has $l_{i j}=0$, if $i=1,2, \ldots, j-1$.

Theorem 6.8 Let A be $n \times m, B$ be $m \times k, C$ be $k \times p, D$ be $m \times k$, and λ be a real number.
(a) $A(B C)=(A B) C$
(b) $A(B+D)=A B+A D$
(c) $I_{m} B=B$ and $B I_{k}=B$
(d) $\lambda(A B)=(\lambda A) B=A(\lambda B)$

Matrix Inversion

- An $n \times n$ matrix A is nonsingular or invertible if $n \times n A^{-1}$ exists with $A A^{-1}=A^{-1} A=I$
- The matrix A^{-1} is called the inverse of A
- A matrix without an inverse is called singular or noninvertible

Theorem 6.12 For any nonsingular $n \times n$ matrix A,
(a) A^{-1} is unique
(b) A^{-1} is nonsingular and $\left(A^{-1}\right)^{-1}=A$
(c) If B is nonsingular $n \times n$, then $(A B)^{-1}=B^{-1} A^{-1}$

Matrix Transpose

- The transpose of $n \times m A=\left[a_{i j}\right]$ is $m \times n A^{t}=\left[a_{j i}\right]$
- A square matrix A is called symmetric if $A=A^{t}$

Theorem 6.14

(a) $\left(A^{t}\right)^{t}=A$
(b) $(A+B)^{t}=A^{t}+B^{t}$
(c) $(A B)^{t}=B^{t} A^{t}$
(d) If A^{-1} exists, then $\left(A^{-1}\right)^{t}=\left(A^{t}\right)^{-1}$

6.4 Determinant of Matrix

(a) If $A=[a]$ is 1×1 matrix, then $\operatorname{det} A=a$
(b) If A is $n \times n$, the minor $M_{i j}$ is the determinant of the $(n-1) \times(n-1)$ submatrix by deleting row i and column j of A
(c) The cofactor $A_{i j}=(-1)^{i+j} M_{i j}$
(d) The determinant of $n \times n$ matrix A for $n>1$ is

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{i j} A_{i j}=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} M_{i j}
$$

Theorem 6.16 Let A be $n \times n$ matrix.
(a) If any row or column of A has all zeros, then $\operatorname{det} A=0$
(b) If A has two rows or two columns equal, then $\operatorname{det} A=0$
(c) If \tilde{A} is obtained from A by $\left(E_{i}\right) \leftrightarrow\left(E_{j}\right)$, then $\operatorname{det} \tilde{A}=-\operatorname{det} A$
(d) If \tilde{A} is obtained from A by $\left(\lambda E_{i}\right) \rightarrow\left(E_{i}\right)$, then $\operatorname{det} \tilde{A}=\lambda \operatorname{det} A$
(e) If \tilde{A} is obtained from A by $\left(E_{i}+\lambda E_{j}\right) \rightarrow\left(E_{i}\right)$, then $\operatorname{det} \tilde{A}=\operatorname{det} A$
(f) If B is $n \times n$, then $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$
(g) $\operatorname{det} A^{t}=\operatorname{det} A$
(h) When A^{-1} exists, $\operatorname{det} A^{-1}=1 /(\operatorname{det} A)$
(i) If A is upper/lower triangular or diagonal matrix, then $\operatorname{det} A=\prod_{i=1}^{n} a_{i i}$

Theorem 6.17 The following statements are equivalent for any $n \times n$ matrix A :
(a) The equation $A \boldsymbol{x}=\mathbf{0}$ has unique solution $\boldsymbol{x}=\mathbf{0}$
(b) The system $A \boldsymbol{x}=\boldsymbol{b}$ has a unique solution for any \boldsymbol{b}
(c) The matrix A is nonsingular
(d) $\operatorname{det} A \neq 0$
(e) Gaussian elimination with row interchanges can be performed on $A \boldsymbol{x}=\boldsymbol{b}$ for any \boldsymbol{b}

6.5 Matrix Factorization

Motivation: Consider to solve $A \boldsymbol{x}=\boldsymbol{b}$. Here A is $n \times n$ matrix. Suppose $A=L U$, where L is a lower triangular matrix and U is an upper triangular matrix.

First solve $L \boldsymbol{y}=\boldsymbol{b}$
Then solve $U \boldsymbol{x}=\boldsymbol{y}$
Consider the first step of Gaussian elimination (assume no row interchange) on $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right]$ Do $\left(E_{j}-m_{j 1} E_{1}\right) \rightarrow\left(E_{j}\right)$ for $j=2,3, \ldots, n$. Here $m_{j 1}=\frac{a_{j 1}}{a_{11}}$ to obtain

$$
A^{(1)}=\left[\begin{array}{cccc}
a_{11}^{(1)} & a_{12}^{(1)} & \ldots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \ldots & a_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & a_{n 2}^{(2)} & \ldots & a_{n n}^{(2)}
\end{array}\right]
$$

Note: $a_{11}^{(1)}=a_{11}, a_{12}^{(1)}=a_{12}, \ldots a_{1 n}^{(1)}=a_{1 n}$.
This is equivalent to

$$
\begin{gathered}
A^{(1)}=M^{(1)} A \\
M^{(1)}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
-m_{21} & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-m_{n 1} & 0 & \ldots & 1
\end{array}\right]
\end{gathered}
$$

$M^{(1)}$ is called the first Gaussian transformation matrix.

Similarly, the kth Gaussian transformation matrix is

$$
M^{(k)}=\left[\begin{array}{ccccc}
1 & 0 & & \cdots & \cdots \\
0 & \ddots & & & 0 \\
\vdots & \ddots & & \vdots & \vdots \\
\vdots & 0 & \ddots & \vdots & \vdots \\
\vdots & \vdots & m_{k+1, k} & \vdots & \vdots \\
\vdots & \vdots & \vdots & & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & -m_{n, k} & 0 \\
\cdots & 1
\end{array}\right]
$$

Gaussian elimination (without row interchange) can be written as
$A^{(n)}=M^{(n-1)} M^{(n-2)} \ldots M^{(1)} A$ with

$$
A^{(n)}=\left[\begin{array}{cccc}
a_{11}^{(1)} & a_{12}^{(1)} & \ldots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \ldots & a_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}^{(n)}
\end{array}\right]
$$

LU Factorization $A=L U$
Reversing the elimination steps gives the inverses:

$$
L^{(k)}=\left[M^{(k)}\right]^{-1}=\left[\begin{array}{cccccc}
1 & 0 & \cdots & \cdots & 0 \\
0 & & & & & 0 \\
\vdots & \ddots & & \vdots & \vdots \\
\vdots & 0 & \ddots & \vdots & \vdots \\
\vdots & \vdots & m_{k+1, k} & \vdots & & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & m_{n, k} & & \ldots
\end{array}\right]
$$

We define $A=L U=\left[M^{(n-1)} M^{(n-2)} \ldots M^{(1)}\right]^{-1} A^{(n)}$
Here $U=A^{(n)}$ is the upper triangular matrix.
$L=\left[M^{(n-1)} M^{(n-2)} \ldots M^{(1)}\right]^{-1}=\left[M^{(1)}\right]^{-1}\left[M^{(2)}\right]^{-1} \ldots\left[M^{(n-1)}\right]^{-1}$ is the lower triangular matrix.

Theorem 6.19 If Gaussian elimination can be performed on the linear system $A \boldsymbol{x}=\boldsymbol{b}$ without row interchange, A can be factored into the product of lower triangular matrix L and upper triangular matrix U as $A=L U$:

$$
U=\left[\begin{array}{cccc}
a_{11}^{(1)} & a_{12}^{(1)} & \ldots & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \ldots & a_{2 n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}^{(n)}
\end{array}\right], \quad L=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
m_{21} & 1 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
m_{n 1} & \ldots & m_{n, n-1} & 1
\end{array}\right]
$$

Example. Consider matrix $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, which is obtained by interchanging the $2^{\text {nd }}$ and $3^{\text {rd }}$ rows of identity matrix $I_{3}=$ $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$. What is $P A$?

Permutation Matrices

Definition. Suppose $k_{1}, k_{2}, \ldots, k_{n}$ is a permutation of $1,2, \ldots, n$. The permutation matrix $P=\left[p_{i j}\right]$ is defined by

$$
p_{i j}=\left\{\begin{array}{lr}
1, & \text { if } j=k_{i} \\
0 & \text { otherwise }
\end{array}\right.
$$

- $P A$ permutes the rows of A :

$$
P A=\left[\begin{array}{ccc}
a_{k_{1} 1} & \ldots & a_{k_{1} n} \\
\vdots & \ddots & \vdots \\
a_{k_{n} 1} & \cdots & a_{k_{n} n}
\end{array}\right]
$$

- P^{-1} exists and $P^{-1}=P^{t}$

Gaussian elimination with row interchanges can be written as:

$$
A=P^{-1} L U=\left(P^{t} L\right) U
$$

Remark: $P^{t} L$ is not lower triangular matrix unless P is identity matrix.

Example. Find a factorization $A=\left(P^{t} L\right) U$ for the matrix

$$
A=\left[\begin{array}{cccc}
0 & 0 & -1 & 1 \\
1 & 1 & -1 & 2 \\
-1 & -1 & 2 & 0 \\
1 & 2 & 0 & 2
\end{array}\right]
$$

Solution $\left(E_{1}\right) \leftrightarrow\left(E_{2}\right)$, then $\left(E_{3}+E_{1}\right) \rightarrow\left(E_{3}\right)$ and $\left(E_{4}-E_{1}\right) \rightarrow\left(E_{4}\right)$

$$
\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
0 & 0 & -1 & 1 \\
0 & 0 & 1 & 2 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

$\left(E_{2}\right) \leftrightarrow\left(E_{4}\right)$ then $\left(E_{4}+E_{3}\right) \rightarrow\left(E_{4}\right)$

$$
U=\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

Two row interchanges $\left(\left(E_{1}\right) \leftrightarrow\left(E_{2}\right)\right.$ and $\left.\left(E_{2}\right) \leftrightarrow\left(E_{4}\right)\right)$

$$
P=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right] \text { and } P A=\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
1 & 2 & 0 & 2 \\
-1 & -1 & 2 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

Gaussian elimination is performed on $P A$ without row interchanges.

$$
P A=\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
1 & 2 & 0 & 2 \\
-1 & -1 & 2 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3
\end{array}\right]=L U
$$

Since $P^{-1}=P^{t}$,

$$
A=P^{-1} L U=\left(P^{t} L\right) U=\left[\begin{array}{cccc}
0 & 0 & -1 & 1 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & -1 & 2 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

