6.3 Linear Algebra and Matrix Inversion
Linear Algebra

Two matrices A and B are equal if they have same number of rows and columns n X m and if a;; = b;;.
If Aand B are n X m matrices, sum A + B is n X m matrix with entries a;; + b;;.
If A'is n X m matrix and 4 a real number, the scalar multiplication A4 is n X m matrix with entries Aa;;.

Properties
Let A, B, C be n X m matrices, A, u real numbers.
(@) (commutativelaw)A+ B =B+ A
(b) (associative law) (A+B)+C=A+ (B+ ()
(c) A+ 0=0+ A = A. Here 0 is n X m matrix with zero entries
d A+ (-A)=—-A+A4=0
(e) (distributive law of scale multiplication) A(A+ B) = AA + AB
() Aud) = (AwA
@ A+wA=214+pA
(h) 14=A4

Matrix multiplication
Let A be n X m and B be m X p. The matrix product C = AB is n X p matrix with entries
m
Cij = Z Aikbrj = Qinbyj + Qipbyj + o + Ay by
k=1
(Matrix vector multiplication can be viewed as a special case of matrix multiplication)

Special Matrices
e A square matrix hasm =n
e A diagonal matrix D = [d;;] is square with d;; = 0 when i # j.
1 ifi = j,

e The identity matrix of order n, I,, = [§;;], is diagonal with &;; = {0 ifi ]



e Anupper-triangular n X n matrix U = [u;;] hasu;; =0, ifi=j+1,..,n
e Alower-triangular n x n matrix L = [[;;] hasl;; =0, ifi=12,..,j—1.

Theorem 6.8 Let Abenxm,Bbem Xk, Cbe k X p, Dbem Xk, and A be a real number.
(@) A(BC) = (AB)C
(b) A(B+ D) =AB + AD
(¢c) I, B=BandBIl, =B
(d) A(AB) = (AA)B = A(AB)

Matrix Inversion
e Ann xn matrix A is nonsingular or invertible if n x n A™1 exists with AA™1 = A4 =1

e The matrix A~ is called the inverse of A
e A matrix without an inverse is called singular or noninvertible

Theorem 6.12 For any nonsingular n X n matrix 4,
(@) A~1isunique
(b) A Yisnonsingularand (A" 1)1 =4
(c) If Bisnonsingularn x n,then (AB)™! = B~1471

Matrix Transpose
e Thetranspose of n x m A = [a;;] ism x n A" = [a;]
e A square matrix A is called symmetric if A = At

Theorem 6.14
@ (AH' =4
(b) (A+B)t = At + Bt
(c) (AB)! = B'A!
(d) If A~1 exists, then (A1)t = (45)?



6.4 Determinant of Matrix
(@) If A = [a] is 1 X 1 matrix, then detA = a
(b) If Aisn X n, the minor M;; is the determinant of the (n — 1) X (n — 1) submatrix by deleting row i and column j of A
(c) The cofactor 4;; = (—1)"*/ M;;
(d) The determinant of n X n matrix A forn > 1 is

n n
detd = Z a;jA;j = z(—l)”jaijMij
j=1 j=1
Theorem 6.16 Let A be n X n matrix.

(@) If any row or column of A has all zeros, then detA = 0
(b) If A has two rows or two columns equal, then detA = 0
(c) If A is obtained from A by (E;) < (E;), then detd = —detd
(d) If A is obtained from A by (AE;) — (E;), then detd = AdetA
(e) If Ais obtained from A by (E; + AE;) - (E;), then detd = detA
(f) If Bisn X n,then det(AB) = detAdetB
(g) detAt = detA
(h) When A~1 exists, detA™! = 1/(det4)
(i) If A is upper/lower triangular or diagonal matrix, then detA = [[}%, a;;

Theorem 6.17 The following statements are equivalent for any n X n matrix A:

(@) The equation Ax = 0 has unique solution x = 0

(b) The system Ax = b has a unique solution for any b

(c) The matrix A is nonsingular

(d) detA #0

(e) Gaussian elimination with row interchanges can be performed on Ax = b forany b



6.5 Matrix Factorization

Motivation: Consider to solve Ax = b. Here A is n X n matrix. Suppose A = LU, where L is a lower triangular matrix and U is
an upper triangular matrix.

Firstsolve Ly = b
Thensolve Ux = y

aiq aqy . Qqn

. . . .. . . arxq ar, e Qop
Consider the first step of Gaussian elimination (assume no row interchange) on A = | ; .

anl anz ann

Do (E; —mj,E;) — (E;) forj =23,..,n. Here m;; = %to obtain

11

LY 1)1
a11 a12 aen agn)
2
A0 =] 0 agz) agi)
@ @
[ 0 a,, .. a,,]
; 1 1 1
NOte ail) = a1, agz) = aAqy, - agn) == aln.
This is equivalent to
AD = Dy
1 0 .. 0
M(l) — _m21 1 O
—Mp1 0 |

M@ js called the first Gaussian transformation matrix.



Similarly, the kth Gaussian transformation matrix is

i 0 S
M(k)—; : Mgtk

0...0 —Mpx 0...1]

Gaussian elimination (without row interchange) can be written as
AW = =Dy ®=2) MDA with

r (1) (€Y 1)7
a11 alz e agn)
Am =] 0 ag? agi)
Lo o0 .. %
LU Factorization A = LU
Reversing the elimination steps gives the inverses:
10 0
0- 0
1O =M@t =10 Ty

0.0 My 0...1]
We define A = LU = [M®-DM®=2)  pyD]-140
Here U = A™ is the upper triangular matrix.

L=[M®Dy®-2) MD]-1 = [MD] 1 MP]~1  [M®~D]~1 s the lower triangular matrix.



Theorem 6.19 If Gaussian elimination can be performed on the linear system Ax = b without row interchange, A can be
factored into the product of lower triangular matrix L and upper triangular matrix U as A = LU’
(1) 1) (17

Ay Q1 . Agy 1 0 .. 0
(2) 2 :
U= 0 a,, agn) ) L = m:21 1
e Sl e e
1 0 0
Example. Consider matrix P =0 0 1], which is obtained by interchanging the 2™ and 3" rows of identity matrix I; =
0 1 0
1 0 0 a1 aqp a3
0 1 O] MatrixA=|a,; a,, a23|.Whatis PA?
0 0 1 az1 dzz 0az3

Permutation Matrices
Definition. Suppose k4, ky, ..., k,, is a permutation of 1,2, ..., n. The permutation matrix P = [p;;] is defined by

Pij = 10 otherwise
e PA permutes the rows of A:
ag,1 o Ggn
PA=| : :
Ag,1 =+ Qg,n

e P lexistsand P71 = pt
Gaussian elimination with row interchanges can be written as:
A=PLU = (PtL)U
Remark: PtL is not lower triangular matrix unless P is identity matrix.

Example. Find a factorization A = (PtL)U for the matrix



Solution (E;) < (E,), then (E5 + E;) — (E3) and (E, — E;) — (E,)

(Ez) © (E,) then (Ey + E3) — (Ey)

Two row interchanges ((E;) < (E,) and (E,) < (E,))

Gaussian elimination is performed on PA without ro

Since P71 = pt,

PA =

0 0O -1 1
11 1 -1 2
A= -1 -1 2 0
1 2 0 2
1 1 -1 2
0O 0 -1 1
O 0 1 2
01 1 o0
1 1 -1 2
101 1 0
U= O 0 1 2
0O 0 0 3
0 1 0 O 1
{0 0 0 1 |1
P—O 0 1 0 and PA = 1
1 0 0 O 0
w interchanges.
1 1 -1 2 1 0 0 O
1 2 0 2f_|1 1 0 0
-1 -1 2 0 -1 0 1 0
0 0o -1 1 0O 0 -1 1
0O 0 -1 1]
 olrir Dt |1 0 0 O
A=P LU = (P'L)U = 10 1 0
1 1 0 0l
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