7.1 Norms of Vectors and Matrices

Column vector: $\boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$, or $\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{t}$.
Motivation: Consider to solve the linear system

$$
\begin{aligned}
& 3.3330 x_{1}+15920 x_{2}-10.333 x_{3}=15913 \\
& 2.2220 x_{1}+16.710 x_{2}+9.6120 x_{3}=28.544 \\
& 1.5611 x_{1}+5.1791 x_{2}+1.6852 x_{n}=8.4254
\end{aligned}
$$

by Gaussian elimination with 5 -digit rounding arithmetic and partial pivoting. The system has exact solution $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}\right]^{t}=$ $[1,1,1]^{t}$. The approximate solution is $\widetilde{\boldsymbol{x}}=[1.2001,0.99991,0.92538]^{t}$. How to quantify the approximation error?

Definition. A vector norm on R^{n} is a function, $\|\cdot\|$, from R^{n} to R with the properties:
(i) $\|x\| \geq 0$ for all $x \in R^{n}$
(ii) $||x||=0$ if and only if $\boldsymbol{x}=\mathbf{0}$
(iii) $\quad|\alpha x||=|\alpha|||x| \mid$ for all $\alpha \in R \quad$ and $x \in R^{n}$
(iv) $\left|\left|x+\boldsymbol{y}\|\leq||x||+\| y \|\right.\right.$ for all $\boldsymbol{x}, \boldsymbol{y} \in R^{n}$

Definition. The Euclidean norm l_{2} and the infinity norm l_{∞} for the vector $\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{t}$ are defined by

$$
\|x\|_{2}=\left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{1 / 2}
$$

and

$$
\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|
$$

Example. Compute l_{2} norm and l_{∞} norm of the vector $\boldsymbol{x}=[-1,1,-2]^{t}$.

Theorem 7.3 Cauchy-Schwarz Inequality for Sums. For each $\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{t}$ and $\boldsymbol{y}=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{t}$ in R^{n},

$$
\boldsymbol{x}^{t} \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i} \leq\left\{\sum_{i=1}^{n} x_{i}^{2}\right\}^{\frac{1}{2}}\left\{\sum_{i=1}^{n} y_{i}^{2}\right\}^{\frac{1}{2}}=\left|\left|\boldsymbol{x}\left\|_{2} \cdot| | \boldsymbol{y}\right\|_{2}\right.\right.
$$

Remark: $\|\boldsymbol{x}+\boldsymbol{y}\|_{2} \leq\left|\left|\boldsymbol{x}\left\|_{2}+| | \boldsymbol{y}\right\|_{2}\right.\right.$
Definition. The distance between two vectors $\boldsymbol{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{t}$ and $\boldsymbol{y}=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{t}$ is the norm of the difference of the vectors. The l_{2} and l_{∞} distances are:

$$
\begin{gathered}
\|\boldsymbol{x}-\boldsymbol{y}\|_{2}=\left\{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}\right\}^{1 / 2} \\
\|\boldsymbol{x}-\boldsymbol{y}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|
\end{gathered}
$$

Example.

$$
\begin{aligned}
& 3.3330 x_{1}+15920 x_{2}-10.333 x_{3}=15913 \\
& 2.2220 x_{1}+16.710 x_{2}+9.6120 x_{3}=28.544 \\
& 1.5611 x_{1}+5.1791 x_{2}+1.6852 x_{n}=8.4254
\end{aligned}
$$

has exact solution $\boldsymbol{x}=\left[x_{1}, x_{2}, x_{3}\right]^{t}=[1,1,1]^{t}$. The Gaussian elimination with 5 -digit rounding arithmetic and partial pivoting produces approximate solution $\widetilde{\boldsymbol{x}}=[1.2001,0.99991,0.92538]^{t}$. Determine l_{2} and l_{∞} distances between exact and approximate solutions.

Solution:

$$
\begin{gathered}
\|x-\widetilde{x}\|_{\infty}=\max \{|1-1.2001|,|1-0.99991|,|1-0.92538|\}=\max \{0.2001,0.00009,0.07462\}=0.2001 \\
\left|\mid x-\widetilde{x} \|_{2}=\sqrt{(1-1.2001)^{2}+(1-0.99991)^{2}+(1-0.92538)^{2}}=0.21356\right.
\end{gathered}
$$

Definition. A sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ of vectors in R^{n} is said to converge to \boldsymbol{x} with respect to the norm \| \| \| if, given any $\varepsilon>0$, there exists an integer $N(\varepsilon)$ such that

$$
\left|\left|\boldsymbol{x}^{(k)}-x\right|\right|<\varepsilon, \quad \text { for all } k \geq N(\varepsilon)
$$

Theorem 7.6. The sequence of vectors $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ converges to \boldsymbol{x} in R^{n} with respect to the norm $\|\cdot\|_{\infty}$ if and only if

$$
\lim _{k \rightarrow \infty} x_{i}^{(k)}=x_{i}
$$

Example. Show that $\boldsymbol{x}^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, x_{3}^{(k)}, x_{4}^{(k)}\right)^{t}=\left(1,2+\frac{1}{k}, \frac{3}{k^{2}}, e^{-k} \sin (k)\right)^{t}$ converges to $\boldsymbol{x}=(1,2,0,0)^{t}$.

Solution:

$$
\begin{gathered}
\lim _{k \rightarrow \infty} x_{1}^{(k)}=\lim _{k \rightarrow \infty} 1=1 \\
\lim _{k \rightarrow \infty} x_{2}^{(k)}=\lim _{k \rightarrow \infty} 2+\frac{1}{k}=2 \\
\lim _{k \rightarrow \infty} x_{3}^{(k)}=\lim _{k \rightarrow \infty} \frac{3}{k^{2}}=0 \\
\lim _{k \rightarrow \infty} x_{4}^{(k)}=\lim _{k \rightarrow \infty} e^{-k} \sin (k)=0
\end{gathered}
$$

By Theorem 7.6, the sequence $\left\{\boldsymbol{x}^{(k)}\right\}$ converges to $(1,2,0,0)^{t}$.

Theorem 7.7. For each $\boldsymbol{x} \in R^{n},\|\boldsymbol{x}\|_{\infty} \leq\|\boldsymbol{x}\|_{2} \leq \sqrt{n}\|\boldsymbol{x}\|_{\infty}$
Remark: All norms in R^{n} are equivalent with respect to convergence, that is, if $\|\cdot\|$ and $\|\cdot\|^{\prime}$ are any two norms on R^{n} and $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ converges to \boldsymbol{x} in $\|\cdot\|$, then $\left\{\boldsymbol{x}^{(k)}\right\}_{k=1}^{\infty}$ converges to \boldsymbol{x} in $\|\cdot\|^{\prime}$.

Definition. A matrix norm $\|\cdot\|$ on $n \times n$ matrices is a real-valued function satisfying
(i) $\quad||A|| \geq 0$
(ii) $||A||=0$ if and only if $A=0$
(iii) $\quad|\alpha A||=|\alpha|||A| \mid$
(iv) $\quad||A+B|| \leq||A||+\| B| |$
(v) $\quad||A B|| \leq||A|||B| \mid$

The distance between $n \times n$ matrices A and B with respect to a matrix norm is $\|A-B\|$.
Theorem 7.9. If $\|\cdot\|$ is a vector norm, the induced (or natural) matrix norm is given by

$$
\|A\|=\max _{\|x\|=1}\|A x\|
$$

Example. $\|A\|_{\infty}=\max _{\|x\|_{\infty}=1}\|A x\|_{\infty}$, the l_{∞} induced norm.

$$
\|A\|_{2}=\max _{\|x\|_{2}=1}\|A x\|_{2}, \text { the } l_{2} \text { induced norm. }
$$

Alternative definition: For any vector $\mathbf{z} \neq \mathbf{0}$, the vector $\boldsymbol{x}=\boldsymbol{z} /\|\boldsymbol{z}\|$ has $\|\boldsymbol{x}\|=1$.
Since $\max _{||x|=1}\|A x\|=\max _{z \neq 0}\left\|A\left(\frac{z}{\mid z\| \|}\right)\right\|=\max _{z \neq 0} \frac{\|A z\|}{\|z\|}$,
we can alternatively define $\left||A| \|=\max _{z \neq 0} \frac{\|A z\|}{\|z\|}\right.$.
Corollary 7.10. For any vector $\mathbf{z} \neq \mathbf{0}$, matrix A and induced matrix norm $\|\cdot\|$,

$$
|\mid A z\|\leq\| A\|\cdot\| z \|
$$

Theorem 7.11. If $A=\left[a_{i j}\right]$ is an $n \times n$ matrix, then

$$
||A||_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

Example. Determine $\left||A| \|_{\infty}\right.$ for the matrix $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1\end{array}\right]$

7.2 Eigenvalues and Eigenvectors

Definition. If A is an $n \times n$ matrix, the characteristic polynomial of A is

$$
p(\lambda)=\operatorname{det}(A-\lambda I)
$$

Definition. If $p(\lambda)$ is the characteristic polynomial of the matrix A, the zeros of $p(\lambda)$ are eigenvalues of the matrix A. If λ is an eigenvalue of A and $\boldsymbol{x} \neq \mathbf{0}$ satisfies $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$, then \boldsymbol{x} is an eigenvector corresponding to λ.

Geometric interpretation of eigenvector \boldsymbol{x} corresponding to λ.
Example. Find eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ 1 & 1 & 2 \\ 1 & -1 & 4\end{array}\right]$.

Definition. The spectral radius $\rho(A)$ of a matrix A is defined by

$$
\rho(A)=\max |\lambda|, \quad \text { where } \lambda \text { is an eigenvalue of } A
$$

Remark: For complex $\lambda=a+b j$, we define $|\lambda|=\sqrt{a^{2}+b^{2}}$.

Theorem 7.15. If A is an $n \times n$ matrix, then
(i) $\quad||A||_{2}=\left[\rho\left(A^{t} A\right)\right]^{1 / 2}$
(ii) $\quad \rho(A) \leq \| A| |$, for any induced matrix norm $\|\cdot\|$.

Example. Determine l_{2} induced norm of $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2\end{array}\right]$

Solution

$$
\begin{gathered}
A^{t} A=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 2 & 1 \\
-1 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
3 & 2 & -1 \\
2 & 6 & 4 \\
-1 & 4 & 5
\end{array}\right] \\
\operatorname{Solve} \operatorname{det}\left(A^{t} A-\lambda I\right)=0 \\
0=-\lambda\left(\lambda^{2}-14 \lambda+42\right) \\
\text { Then } \lambda=0, \lambda=7 \pm \sqrt{7} \\
\left|\mid A \|_{2}=\left[\rho\left(A^{t} A\right)\right]^{1 / 2}=\sqrt{\max (0,7+\sqrt{7}, 7-\sqrt{7})}=\sqrt{7+\sqrt{7}}\right.
\end{gathered}
$$

Convergent Matrices

Definition. An $n \times n$ matrix A is convergent if $\lim _{k \rightarrow \infty}\left(A^{k}\right)_{i j}=0$ for each $i=1,2, \ldots n$ and $j=1,2, \ldots n$.
Example. Show that $A=\left[\begin{array}{cc}1 / 2 & 0 \\ 1 / 4 & 1 / 2\end{array}\right]$ is a convergent matrix.
Theorem 7.17 The following statements are equivalent.
(i) A is convergent matrix.
(ii) $\quad \lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0$ for some natural norm.
(iii) $\lim _{n \rightarrow \infty}\left\|A^{n}\right\|=0$ for all natural norm.
(iv) $\rho(A)<1$
(v) $\lim _{n \rightarrow \infty} A^{n} \boldsymbol{x}=\mathbf{0}$ for every \boldsymbol{x}.

