7.3 The Jacobi and Gauss-Seidel Iterative Methods

The Jacobi Method

Two assumptions made on Jacobi Method:

1. The system given by

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots a_{n n} x_{n}=b_{n}
\end{gathered}
$$

Has a unique solution.
2. The coefficient matrix A has no zeros on its main diagonal, namely, $a_{11}, a_{22}, \ldots, a_{n n}$ are nonzeros.

Main idea of Jacobi

To begin, solve the $1^{\text {st }}$ equation for x_{1}, the $2^{\text {nd }}$ equation for x_{2} and so on to obtain the rewritten equations:

$$
\begin{gathered}
x_{1}=\frac{1}{a_{11}}\left(b_{1}-a_{12} x_{2}-a_{13} x_{3}-\cdots a_{1 n} x_{n}\right) \\
x_{2}=\frac{1}{a_{22}}\left(b_{2}-a_{21} x_{1}-a_{23} x_{3}-\cdots a_{2 n} x_{n}\right) \\
\vdots \\
x_{n}=\frac{1}{a_{n n}}\left(b_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\cdots a_{n, n-1} x_{n-1}\right)
\end{gathered}
$$

Then make an initial guess of the solution $\boldsymbol{x}^{(0)}=\left(x_{1}^{(0)}, x_{2}^{(0)}, x_{3}^{(0)}, \ldots x_{n}^{(0)}\right)$. Substitute these values into the right hand side the of the rewritten equations to obtain the first approximation, $\left(x_{1}^{(1)}, x_{2}^{(1)}, x_{3}^{(1)}, \ldots x_{n}^{(1)}\right)$.
This accomplishes one iteration.
In the same way, the second approximation $\left(x_{1}^{(2)}, x_{2}^{(2)}, x_{3}^{(2)}, \ldots x_{n}^{(2)}\right)$ is computed by substituting the first approximation's x vales into the right hand side of the rewritten equations.
By repeated iterations, we form a sequence of approximations $\boldsymbol{x}^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, x_{3}^{(k)}, \ldots x_{n}^{(k)}\right)^{t}, \quad k=1,2,3, \ldots$

The Jacobi Method. For each $k \geq 1$, generate the components $x_{i}^{(k)}$ of $\boldsymbol{x}^{(\boldsymbol{k})}$ from $\boldsymbol{x}^{(\boldsymbol{k}-\mathbf{1})}$ by

$$
x_{i}^{(k)}=\frac{1}{a_{i i}}\left[\sum_{\substack{j=1, j \neq i}}^{n}\left(-a_{i j} x_{j}^{(k-1)}\right)+b_{i}\right], \quad \text { for } i=1,2,, \ldots n
$$

Example. Apply the Jacobi method to solve

$$
\begin{gathered}
5 x_{1}-2 x_{2}+3 x_{3}=-1 \\
-3 x_{1}+9 x_{2}+x_{3}=2 \\
2 x_{1}-x_{2}-7 x_{3}=3
\end{gathered}
$$

Continue iterations until two successive approximations are identical when rounded to three significant digits.
Solution To begin, rewrite the system

$$
\begin{aligned}
& x_{1}=\frac{-1}{5}+\frac{2}{5} x_{2}-\frac{3}{5} x_{3} \\
& x_{2}=\frac{2}{9}+\frac{3}{9} x_{1}-\frac{1}{9} x_{3} \\
& x_{3}=-\frac{3}{7}+\frac{2}{7} x_{1}-\frac{1}{7} x_{2}
\end{aligned}
$$

Choose the initial guess $x_{1}=0, x_{2}=0, x_{3}=0$
The first approximation is

$$
\begin{gathered}
x_{1}^{(1)}=\frac{-1}{5}+\frac{2}{5}(0)-\frac{3}{5}(0)=-0.200 \\
x_{2}^{(1)}=\frac{2}{9}+\frac{3}{9}(0)-\frac{1}{9}(0)=0.222 \\
x_{3}^{(1)}=-\frac{3}{7}+\frac{2}{7}(0)-\frac{1}{7}(0)=-0.429
\end{gathered}
$$

Continue iteration, we obtain

n	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
$x_{1}^{(k)}$	0.000	-0.200	0.146	0.192			
$x_{2}^{(k)}$	0.000	0.222	0.203	0.328			
$x_{2}^{(k)}$	0.000	-0.429	-0.517	-0.416			

When to stop: $1 . \frac{\left\|x^{(k)}-\boldsymbol{x}^{(k-1)}\right\|}{\left\|x^{(k)}\right\|}<\varepsilon$; or $2\left|\left|\boldsymbol{x}^{(k)}-\boldsymbol{x}^{(k-1)} \|\right|<\varepsilon\right.$. Here ε is a given small number .

The Jacobi Method in Matrix Form

Consider to solve an $n \times n$ size system of linear equations $A \boldsymbol{x}=\boldsymbol{b}$ with $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right]$ and $\boldsymbol{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$ for $\boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$.
We split A into

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right]-\left[\begin{array}{cccc}
0 & \ldots & 0 & 0 \\
-a_{21} & \ldots & 0 & 0 \\
\vdots & & \ddots & \vdots \\
-a_{n 1} & \ldots & -a_{n, n-1} & 0
\end{array}\right]-\left[\begin{array}{cccc}
0 & -a_{12} & \ldots & -a_{1 n} \\
0 & 0 & & \vdots \\
\vdots & \vdots & \ddots & -a_{n-1, n} \\
0 & 0 & \ldots & 0
\end{array}\right]=D-L-U
$$

$A \boldsymbol{x}=\boldsymbol{b}$ is transformed into $(D-L-U) \boldsymbol{x}=\boldsymbol{b}$

$$
D \boldsymbol{x}=(L+U) \boldsymbol{x}+\boldsymbol{b}
$$

Assume D^{-1} exists and $D^{-1}=\left[\begin{array}{cccc}\frac{1}{a_{11}} & 0 & \ldots & 0 \\ 0 & \frac{1}{a_{22}} & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \frac{1}{a_{n n}}\end{array}\right]$

Then

$$
\boldsymbol{x}=D^{-1}(L+U) \boldsymbol{x}+D^{-1} \boldsymbol{b}
$$

The matrix form of Jacobi iterative method is

$$
\boldsymbol{x}^{(k)}=D^{-1}(L+U) \boldsymbol{x}^{(k-1)}+D^{-1} \boldsymbol{b} \quad k=1,2,3, \ldots
$$

Define $\quad T_{j}=D^{-1}(L+U) \quad$ and $\quad \begin{array}{rrrr}\boldsymbol{c}=D^{-1} \boldsymbol{b}, \quad \text { Jacobi } & \text { iteration } & \text { method } & \text { can } \\ \boldsymbol{x}^{(k)}=T_{j} \boldsymbol{x}^{(k-1)}+\boldsymbol{c} & k=1,2,3, \ldots\end{array}$

Numerical Algorithm of Jacobi Method

Input: $A=\left[a_{i j}\right], \boldsymbol{b}, \boldsymbol{X O}=\boldsymbol{x}^{(0)}$, tolerance $T O L$, maximum number of iterations N.
Step 1 Set $k=1$
Step 2 while $(k \leq N)$ do Steps 3-6
Step 3 For for $i=1,2, \ldots n$

$$
x_{i}=\frac{1}{a_{i i}}\left[\sum_{\substack{j=1, j \neq i}}^{n}\left(-a_{i j} \boldsymbol{X} \boldsymbol{O}_{j}\right)+b_{i}\right]
$$

Step 4 If $\left||\boldsymbol{x}-\boldsymbol{X O} \boldsymbol{O}|<T O L\right.$, then OUTPUT $\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)$; STOP.
Step 5 Set $k=k+1$.
Step 6 For for $i=1,2, \ldots n$
Set $\boldsymbol{X} \boldsymbol{O}_{i}=x_{i}$.
Step $7 \operatorname{OUTPUT}\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)$;
STOP.

Another stopping criterion in Step 4: $\frac{\left\|x^{(k)}-x^{(k-1)}\right\|}{\left\|x^{(k)}\right\|}$

The Gauss-Seidel Method

Main idea of Gauss-Seidel

With the Jacobi method, only the values of $x_{i}^{(k)}$ obtained in the k th iteration are used to compute $x_{i}^{(k+1)}$. With the Gauss-Seidel method, we use the new values $x_{i}^{(k+1)}$ as soon as they are known. For example, once we have computed $x_{1}^{(k+1)}$ from the first equation, its value is then used in the second equation to obtain the new $x_{2}^{(k+1)}$, and so on.
Example. Derive iteration equations for the Jacobi method and Gauss-Seidel method to solve

$$
\begin{gathered}
5 x_{1}-2 x_{2}+3 x_{3}=-1 \\
-3 x_{1}+9 x_{2}+x_{3}=2 \\
2 x_{1}-x_{2}-7 x_{3}=3
\end{gathered}
$$

Choose the initial guess $x_{1}=0, x_{2}=0, x_{3}=0$

n	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
$x_{1}^{(k)}$	0.000	-0.200	0.167				
$x_{2}^{(k)}$	0.000	0.156	0.334				
$x_{2}^{(k)}$	0.000	-0.508	-0.429				

The Gauss-Seidel Method. For each $k \geq 1$, generate the components $x_{i}^{(k)}$ of $\boldsymbol{x}^{(k)}$ from $\boldsymbol{x}^{(k-1)}$ by

$$
x_{i}^{(k)}=\frac{1}{a_{i i}}\left[-\sum_{j=1}^{i-1}\left(a_{i j} x_{j}^{(k)}\right)-\sum_{j=i+1}^{n}\left(a_{i j} x_{j}^{(k-1)}\right)+b_{i}\right], \quad \text { for } i=1,2, \ldots n
$$

Namely,

$$
\begin{gathered}
a_{11} x_{1}^{(k)}=-a_{12} x_{2}^{(k-1)}-\cdots-a_{1 n} x_{n}^{(k-1)}+b_{1} \\
a_{22} x_{2}^{(k)}=-a_{21} x_{1}^{(k)}-a_{23} x_{3}^{(k-1)}-\cdots-a_{2 n} x_{n}^{(k-1)}+b_{2} \\
\vdots \\
a_{n n} x_{n}^{(k)}=-a_{n 1} x_{1}^{(k)}-a_{n 2} x_{2}^{(k)}-\cdots+b_{n}
\end{gathered}
$$

Matrix form of Gauss-Seidel method.

$$
\begin{gathered}
(D-L) \boldsymbol{x}^{(\boldsymbol{k})}=U \boldsymbol{x}^{(k-1)}+\boldsymbol{b} \\
\boldsymbol{x}^{(\boldsymbol{k})}=(D-L)^{-1} U \boldsymbol{x}^{(k-1)}+(D-L)^{-1} \boldsymbol{b}
\end{gathered}
$$

Define $\quad T_{g}=(D-L)^{-1} U$ and $\boldsymbol{c}_{g}=(D-L)^{-1} \boldsymbol{b} \quad, \quad$ Gauss-Seidel method can be written as

$$
\boldsymbol{x}^{(k)}=T_{g} \boldsymbol{x}^{(k-1)}+\boldsymbol{c}_{g} \quad k=1,2,3, \ldots
$$

Numerical Algorithm of Gauss-Seidel Method

Input: $A=\left[a_{i j}\right], \boldsymbol{b}, \boldsymbol{X O}=\boldsymbol{x}^{(0)}$, tolerance $T O L$, maximum number of iterations N.
Step 1 Set $k=1$
Step 2 while ($k \leq N$) do Steps 3-6
Step 3 For for $i=1,2, \ldots n$

$$
x_{i}=\frac{1}{a_{i i}}\left[-\sum_{j=1}^{i-1}\left(a_{i j} x_{j}\right)-\sum_{j=i+1}^{n}\left(a_{i j} \boldsymbol{X} \boldsymbol{O}_{j}\right)+b_{i}\right]
$$

Step 4 If $||\boldsymbol{x}-\boldsymbol{X O}||<$ TOL, then OUTPUT $\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)$;
STOP.
Step 5 Set $k=k+1$.
Step 6 For for $i=1,2,, \ldots n$
Set $\boldsymbol{X} \boldsymbol{O}_{i}=x_{i}$.
Step $7 \operatorname{OUTPUT}\left(x_{1}, x_{2}, x_{3}, \ldots x_{n}\right)$;
STOP.

Convergence theorems of the iteration methods

Let the	iteration $\boldsymbol{x}^{(k)}=T \boldsymbol{x}^{(k-1)}+\boldsymbol{c}$
	method \quad for each $k=1,2,3, \ldots$

Lemma 7.18 If the spectral radius satisfies $\rho(T)<1$, then $(I-T)^{-1}$ exists, and

$$
(I-T)^{-1}=I+T+T^{2}+\cdots=\sum_{j=0}^{\infty} T^{j}
$$

Theorem 7.19 For any $\boldsymbol{x}^{(0)} \in R^{n}$, the sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k=0}^{\infty}$ defined by

$$
\boldsymbol{x}^{(k)}=T \boldsymbol{x}^{(k-1)}+\boldsymbol{c} \quad \text { for each } k \geq 1
$$

converges to the unique solution of $\boldsymbol{x}=\boldsymbol{T} \boldsymbol{x}+\boldsymbol{c}$ if and only if $\rho(T)<1$.
Proof (only show $\rho(T)<1$ is sufficient condition)
$\boldsymbol{x}^{(k)}=T \boldsymbol{x}^{(k-1)}+\boldsymbol{c}=T\left(T \boldsymbol{x}^{(k-2)}+\boldsymbol{c}\right)+\boldsymbol{c}=\cdots=T^{k} \boldsymbol{x}^{(0)}+\left(T^{k-1}+\cdots+T+I\right) \boldsymbol{c}$
Since $\rho(T)<1, \lim _{k \rightarrow \infty} T^{k} \boldsymbol{x}^{(0)}=\mathbf{0}$

$$
\lim _{k \rightarrow \infty} \boldsymbol{x}^{(k)}=\mathbf{0}+\lim _{k \rightarrow \infty}\left(\sum_{j=0}^{k-1} T^{j}\right) \boldsymbol{c}=(I-T)^{-1} \boldsymbol{c}
$$

Corollary 7.20 If $||T||<1$ for any natural matrix norm and \boldsymbol{c} is a given vector, then the sequence $\left\{\boldsymbol{x}^{(k)}\right\}_{k=0}^{\infty}$ defined by $\boldsymbol{x}^{(k)}=T \boldsymbol{x}^{(k-1)}+\boldsymbol{c}$ converges, for any $\boldsymbol{x}^{(0)} \in R^{n}$, to a vector $\boldsymbol{x} \in R^{n}$, with $\boldsymbol{x}=T \boldsymbol{x}+\boldsymbol{c}$, and the following error bound hold:
(i) $\quad\left|\left|x-x^{(k)}\right|\right| \leq||T||^{k}| | x^{(0)}-x| |$
(ii) $\quad\left|\left|x-x^{(k)}\right|\right| \leq \frac{| | T \|^{k}}{1-\|T\|} \| x^{(1)}-x^{(0)}| |$

Theorem 7.21 If A is strictly diagonally dominant, then for any choice of $\boldsymbol{x}^{(0)}$, both the Jacobi and Gauss-Seidel methods give sequences $\left\{\boldsymbol{x}^{(k)}\right\}_{k=0}^{\infty}$ that converges to the unique solution of $A \boldsymbol{x}=\boldsymbol{b}$.

Rate of Convergence

Corollary 7.20 (i) implies $\| \boldsymbol{x}-\boldsymbol{x}^{(k)}| | \approx \rho(T)^{k}| | \boldsymbol{x}^{(0)}-\boldsymbol{x}| |$
Theorem 7.22 (Stein-Rosenberg) If $a_{i j} \leq 0$, for each $i \neq j$ and $a_{i i} \geq 0$, for each $i=1,2, \ldots, n$, then one and only one of following statements holds:
(i) $0 \leq \rho\left(T_{g}\right)<\rho\left(T_{j}\right)<1$;
(ii) $1<\rho\left(T_{j}\right)<\rho\left(T_{g}\right)$;
(iii) $\rho\left(T_{j}\right)=\rho\left(T_{g}\right)=0$;
(iv) $\rho\left(T_{j}\right)=\rho\left(T_{g}\right)=1$.

Simple iteration

Assume there is an initial guess $\boldsymbol{x}^{(0)}$ for the solution to $A \boldsymbol{x}=\boldsymbol{b}$. If one could compute the error $\boldsymbol{e}^{(0)}=A^{-1} \boldsymbol{b}-\boldsymbol{x}^{(0)}$, then one could find the solution $\boldsymbol{x}=\boldsymbol{x}^{(0)}+\boldsymbol{e}^{(0)}$. However, $A^{-1} \boldsymbol{b}$ is expensive to compute.

Instead, let's compute the residual $\boldsymbol{r}^{(0)}=\boldsymbol{b}-A \boldsymbol{x}^{(0)}$. Note that $\boldsymbol{r}^{(0)}=A \boldsymbol{e}^{(0)}$.
If M is a matrix with the property that $M^{-1} A$ approximates the identity, yet $\boldsymbol{r}^{(0)}=M \boldsymbol{z}^{(0)}$ is easy to solve for $\boldsymbol{z}^{(0)}$, one could approximate the error by $M^{-1} \boldsymbol{r}^{(0)}$.

Thus, one solve $M \boldsymbol{z}^{(0)}=\boldsymbol{r}^{(0)}$ for $\boldsymbol{z}^{(0)}$, which approximates $\boldsymbol{e}^{(0)}$, and then replace $\boldsymbol{x}^{(0)}$ by $\boldsymbol{x}^{(1)} \equiv \boldsymbol{x}^{(0)}+\boldsymbol{z}^{(0)}$. Repeat this process with $\boldsymbol{x}^{(1)}$.

Simple iteration algorithm

Given an initial guess $\boldsymbol{x}^{(0)}$, compute $\boldsymbol{r}^{(0)}=\boldsymbol{b}-A \boldsymbol{x}^{(0)}$, and solve $\boldsymbol{r}^{(0)}=M \mathbf{z}^{(0)}$ for $\boldsymbol{z}^{(0)}$.
for $k=1,2, \ldots$
Set $\boldsymbol{x}^{(k)} \equiv \boldsymbol{x}^{(k-1)}+\boldsymbol{z}^{(k-1)}$.
Compute $\boldsymbol{r}^{(k)}=\boldsymbol{b}-A \boldsymbol{x}^{(k)}$.
Solve $M \mathbf{z}^{(k)}=\boldsymbol{r}^{(k)}$ for $\mathbf{z}^{(k)}$.

Remark:

1. For $M \equiv D$, the method is Jacobi iteration
$\boldsymbol{x}^{(k)}=D^{-1}(L+U) \boldsymbol{x}^{(k-1)}+D^{-1} \boldsymbol{b}=D^{-1}(D-D+L+U) \boldsymbol{x}^{(k-1)}+D^{-1} \boldsymbol{b}=D^{-1}(D-A) \boldsymbol{x}^{(k-1)}+D^{-1} \boldsymbol{b}=\boldsymbol{x}^{(k-1)}+$ $D^{-1}\left(\boldsymbol{b}-A \boldsymbol{x}^{(k-1)}\right) \equiv \boldsymbol{x}^{(k-1)}+\boldsymbol{z}^{(k-1)}$,
2. For $M \equiv D-L$, the method is GS.

$$
\begin{aligned}
& \boldsymbol{x}^{(k)}=(D-L)^{-1} U \boldsymbol{x}^{(k-1)}+(D-L)^{-1} \boldsymbol{b}=(D-L)^{-1}(U-D+L+D-L) \boldsymbol{x}^{(k-1)}+(D-L)^{-1} \boldsymbol{b} \\
&=(D-L)^{-1}(D-L-A) \boldsymbol{x}^{(k-1)}+(D-L)^{-1} \boldsymbol{b}=\boldsymbol{x}^{(k-1)}-(D-L)^{-1}\left(\boldsymbol{b}-A \boldsymbol{x}^{(k-1)}\right) \equiv \boldsymbol{x}^{(k-1)}+\mathbf{z}^{(k-1)}
\end{aligned}
$$

