7.3 The Jacobi and Gauss-Seidel Iterative Methods

The Jacobi Method

Two assumptions made on Jacobi Method:

1. The system given by

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

Has a unique solution.

2. The coefficient matrix A has no zeros on its main diagonal, namely, a_{11} , a_{22} , ..., a_{nn} are nonzeros.

Main idea of Jacobi

To begin, solve the 1st equation for x_1 , the 2nd equation for x_2 and so on to obtain the rewritten equations:

$$x_{1} = \frac{1}{a_{11}} (b_{1} - a_{12}x_{2} - a_{13}x_{3} - \cdots a_{1n}x_{n})$$

$$x_{2} = \frac{1}{a_{22}} (b_{2} - a_{21}x_{1} - a_{23}x_{3} - \cdots a_{2n}x_{n})$$

$$\vdots$$

$$x_{n} = \frac{1}{a_{nn}} (b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \cdots a_{n,n-1}x_{n-1})$$

Then make an initial guess of the solution $\mathbf{x}^{(0)} = (x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots x_n^{(0)})$. Substitute these values into the right hand side the of the rewritten equations to obtain the *first approximation*, $(x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, \dots x_n^{(1)})$.

This accomplishes one **iteration**.

In the same way, the *second approximation* $(x_1^{(2)}, x_2^{(2)}, x_3^{(2)}, ... x_n^{(2)})$ is computed by substituting the first approximation's *x*-vales into the right hand side of the rewritten equations.

By repeated iterations, we form a sequence of approximations $\mathbf{x}^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, \dots x_n^{(k)}\right)^t$, $k = 1, 2, 3, \dots$

The Jacobi Method. For each $k \ge 1$, generate the components $x_i^{(k)}$ of $x^{(k)}$ from $x^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1,\\j\neq i}}^{n} (-a_{ij} x_j^{(k-1)}) + b_i \right], \quad \text{for } i = 1, 2, \dots n$$

Example. Apply the Jacobi method to solve

$$5x_1 - 2x_2 + 3x_3 = -1$$

$$-3x_1 + 9x_2 + x_3 = 2$$

$$2x_1 - x_2 - 7x_3 = 3$$

Continue iterations until two successive approximations are identical when rounded to three significant digits.

Solution To begin, rewrite the system

$$x_1 = \frac{-1}{5} + \frac{2}{5}x_2 - \frac{3}{5}x_3$$

$$x_2 = \frac{2}{9} + \frac{3}{9}x_1 - \frac{1}{9}x_3$$

$$x_3 = -\frac{3}{7} + \frac{2}{7}x_1 - \frac{1}{7}x_2$$

Choose the initial guess $x_1 = 0, x_2 = 0, x_3 = 0$

The first approximation is

$$x_1^{(1)} = \frac{-1}{5} + \frac{2}{5}(0) - \frac{3}{5}(0) = -0.200$$

$$x_2^{(1)} = \frac{2}{9} + \frac{3}{9}(0) - \frac{1}{9}(0) = 0.222$$

$$x_3^{(1)} = -\frac{3}{7} + \frac{2}{7}(0) - \frac{1}{7}(0) = -0.429$$

Continue iteration, we obtain

n	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
$x_1^{(k)}$	0.000	-0.200	0.146	0.192			
$x_2^{(k)}$	0.000	0.222	0.203	0.328			
$x_2^{(k)}$	0.000	-0.429	-0.517	-0.416			

When to stop: 1. $\frac{||x^{(k)}-x^{(k-1)}||}{||x^{(k)}||} < \varepsilon$; or $2\left|\left|x^{(k)}-x^{(k-1)}\right|\right| < \varepsilon$. Here ε is a given small number.

The Jacobi Method in Matrix Form

Consider to solve an $n \times n$ size system of linear equations $A\mathbf{x} = \mathbf{b}$ with $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ for $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$.

We split A into

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & \dots & 0 & 0 \\ -a_{21} & \dots & 0 & 0 \\ \vdots & & \ddots & \vdots \\ -a_{n1} & \dots & -a_{n,n-1} & 0 \end{bmatrix} - \begin{bmatrix} 0 & -a_{12} & \dots & -a_{1n} \\ 0 & 0 & & \vdots \\ \vdots & \vdots & \ddots & -a_{n-1,n} \\ 0 & 0 & \dots & 0 \end{bmatrix} = D - L - U$$

Ax = b is transformed into (D - L - U)x = b

$$D\boldsymbol{x} = (L+U)\boldsymbol{x} + \boldsymbol{b}$$

Assume
$$D^{-1}$$
 exists and $D^{-1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \dots & 0 \\ 0 & \frac{1}{a_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{1}{a_{nn}} \end{bmatrix}$

Then

$$x = D^{-1}(L+U)x + D^{-1}b$$

The matrix form of Jacobi iterative method is

$$\mathbf{x}^{(k)} = D^{-1}(L+U)\mathbf{x}^{(k-1)} + D^{-1}\mathbf{b}$$
 $k = 1,2,3,...$

Define
$$T_j = D^{-1}(L+U)$$
 and $\boldsymbol{c} = D^{-1}\boldsymbol{b}$, Jacobi iteration method can also be written as $\boldsymbol{x}^{(k)} = T_j \boldsymbol{x}^{(k-1)} + \boldsymbol{c}$ $k = 1,2,3,...$

Numerical Algorithm of Jacobi Method

Input: $A = [a_{ij}]$, $b, XO = x^{(0)}$, tolerance TOL, maximum number of iterations N.

Step 1 Set k = 1

Step 2 while $(k \le N)$ do Steps 3-6

Step 3 For for i = 1, 2, ... n

$$x_i = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1, \\ j \neq i}}^{n} (-a_{ij} X \mathbf{O}_j) + b_i \right],$$

Step 4 If ||x - XO|| < TOL, then OUTPUT $(x_1, x_2, x_3, ..., x_n)$; STOP.

Step 5 Set k = k + 1.

Step 6 For for i = 1, 2, ... nSet $XO_i = x_i$.

Step 7 OUTPUT $(x_1, x_2, x_3, ... x_n)$;

STOP.

Another stopping criterion in Step 4: $\frac{||x^{(k)}-x^{(k-1)}||}{||x^{(k)}||}$

The Gauss-Seidel Method

Main idea of Gauss-Seidel

With the Jacobi method, only the values of $x_i^{(k)}$ obtained in the kth iteration are used to compute $x_i^{(k+1)}$. With the Gauss-Seidel method, we use the new values $x_i^{(k+1)}$ as soon as they are known. For example, once we have computed $x_1^{(k+1)}$ from the first equation, its value is then used in the second equation to obtain the new $x_2^{(k+1)}$, and so on.

Example. Derive iteration equations for the Jacobi method and Gauss-Seidel method to solve

$$5x_1 - 2x_2 + 3x_3 = -1$$

$$-3x_1 + 9x_2 + x_3 = 2$$

$$2x_1 - x_2 - 7x_3 = 3$$

Choose the initial guess $x_1 = 0$, $x_2 = 0$, $x_3 = 0$

n	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
$x_1^{(k)}$	0.000	-0.200	0.167				
$\chi_2^{(k)}$	0.000	0.156	0.334				
$\chi_2^{(k)}$	0.000	-0.508	-0.429				

The Gauss-Seidel Method. For each $k \geq 1$, generate the components $x_i^{(k)}$ of $x^{(k)}$ from $x^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_j^{(k-1)}) + b_i \right], \quad \text{for } i = 1, 2, \dots, n$$

Namely,

$$\begin{aligned} a_{11}x_1^{(k)} &= -a_{12}x_2^{(k-1)} - \dots - a_{1n}x_n^{(k-1)} + b_1 \\ a_{22}x_2^{(k)} &= -a_{21}x_1^{(k)} - a_{23}x_3^{(k-1)} - \dots - a_{2n}x_n^{(k-1)} + b_2 \\ &\vdots \\ a_{nn}x_n^{(k)} &= -a_{n1}x_1^{(k)} - a_{n2}x_2^{(k)} - \dots + b_n \end{aligned}$$

Matrix form of Gauss-Seidel method.

STOP.

$$(D-L)\boldsymbol{x}^{(k)} = U\boldsymbol{x}^{(k-1)} + \boldsymbol{b}$$

$$\boldsymbol{x}^{(k)} = (D-L)^{-1}U\boldsymbol{x}^{(k-1)} + (D-L)^{-1}\boldsymbol{b}$$
 Define $T_g = (D-L)^{-1}U$ and $\boldsymbol{c}_g = (D-L)^{-1}\boldsymbol{b}$, Gauss-Seidel method can be written as
$$\boldsymbol{x}^{(k)} = T_g\boldsymbol{x}^{(k-1)} + \boldsymbol{c}_g \qquad k = 1,2,3,...$$

Numerical Algorithm of Gauss-Seidel Method

Input: $A = [a_{ij}]$, $\boldsymbol{b}, \boldsymbol{XO} = \boldsymbol{x}^{(0)}$, tolerance TOL, maximum number of iterations N. Step 1 Set k = 1Step 2 while $(k \leq N)$ do Steps 3-6

Step 3 For for i = 1, 2, ... n $x_i = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij}x_j) - \sum_{j=i+1}^{n} (a_{ij}\boldsymbol{XO}_j) + b_i \right],$ Step 4 If $\left| |\boldsymbol{x} - \boldsymbol{XO}| \right| < TOL$, then OUTPUT $\left(x_1, x_2, x_3, ... x_n \right)$;

STOP.

Step 5 Set k = k + 1.

Step 6 For for i = 1, 2, ... nSet $\boldsymbol{XO}_i = x_i$.

Step 7 OUTPUT $\left(x_1, x_2, x_3, ... x_n \right)$;

Convergence theorems of the iteration methods

Let the iteration method be written as $\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$ for each k = 1,2,3,...

Lemma 7.18 If the spectral radius satisfies $\rho(T) < 1$, then $(I - T)^{-1}$ exists, and

$$(I-T)^{-1} = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j$$

Theorem 7.19 For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$
 for each $k \ge 1$

converges to the unique solution of x = Tx + c if and only if $\rho(T) < 1$.

Proof (only show $\rho(T) < 1$ is sufficient condition)

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c} = T(T\mathbf{x}^{(k-2)} + \mathbf{c}) + \mathbf{c} = \dots = T^k\mathbf{x}^{(0)} + (T^{k-1} + \dots + T + I)\mathbf{c}$$

Since $\rho(T) < 1$, $\lim_{k \to \infty} T^k \mathbf{x}^{(0)} = \mathbf{0}$

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{0} + \lim_{k \to \infty} (\sum_{j=0}^{k-1} T^j) \, \mathbf{c} = (I - T)^{-1} \mathbf{c}$$

Corollary 7.20 If |T| < 1 for any natural matrix norm and c is a given vector, then the sequence $\{x^{(k)}\}_{k=0}^{\infty}$ defined by $x^{(k)} = Tx^{(k-1)} + c$ converges, for any $x^{(0)} \in R^n$, to a vector $x \in R^n$, with x = Tx + c, and the following error bound hold:

(i)
$$||x - x^{(k)}|| \le ||T||^k ||x^{(0)} - x||$$

(ii)
$$||x - x^{(k)}|| \le \frac{||T||^k}{1 - ||T||} ||x^{(1)} - x^{(0)}||$$

Theorem 7.21 If A is strictly diagonally dominant, then for any choice of $x^{(0)}$, both the Jacobi and Gauss-Seidel methods give sequences $\{x^{(k)}\}_{k=0}^{\infty}$ that converges to the unique solution of Ax = b.

Rate of Convergence

Corollary 7.20 (i) implies $||x - x^{(k)}|| \approx \rho(T)^k ||x^{(0)} - x||$

Theorem 7.22 (Stein-Rosenberg) If $a_{ij} \le 0$, for each $i \ne j$ and $a_{ii} \ge 0$, for each i = 1, 2, ..., n, then one and only one of following statements holds:

- (i) $0 \le \rho(T_g) < \rho(T_i) < 1$;
- (ii) $1 < \rho(T_i) < \rho(T_g)$;
- (iii) $\rho(T_j) = \rho(T_g) = 0;$
- (iv) $\rho(T_i) = \rho(T_g) = 1$.

Simple iteration

Assume there is an initial guess $\mathbf{x}^{(0)}$ for the solution to $A\mathbf{x} = \mathbf{b}$. If one could compute the *error* $\mathbf{e}^{(0)} = A^{-1}\mathbf{b} - \mathbf{x}^{(0)}$, then one could find the solution $\mathbf{x} = \mathbf{x}^{(0)} + \mathbf{e}^{(0)}$. However, $A^{-1}\mathbf{b}$ is expensive to compute.

Instead, let's compute the *residual* $\mathbf{r}^{(0)} = \mathbf{b} - A\mathbf{x}^{(0)}$. Note that $\mathbf{r}^{(0)} = A\mathbf{e}^{(0)}$.

If M is a matrix with the property that $M^{-1}A$ approximates the identity, yet $\mathbf{r}^{(0)} = M\mathbf{z}^{(0)}$ is easy to solve for $\mathbf{z}^{(0)}$, one could approximate the *error* by $M^{-1}\mathbf{r}^{(0)}$.

Thus, one solve $M\mathbf{z}^{(0)} = \mathbf{r}^{(0)}$ for $\mathbf{z}^{(0)}$, which approximates $\mathbf{e}^{(0)}$, and then replace $\mathbf{x}^{(0)}$ by $\mathbf{x}^{(1)} \equiv \mathbf{x}^{(0)} + \mathbf{z}^{(0)}$. Repeat this process with $\mathbf{x}^{(1)}$.

Simple iteration algorithm

Given an initial guess $\mathbf{x}^{(0)}$, compute $\mathbf{r}^{(0)} = \mathbf{b} - A\mathbf{x}^{(0)}$, and solve $\mathbf{r}^{(0)} = M\mathbf{z}^{(0)}$ for $\mathbf{z}^{(0)}$.

for k = 1, 2, ...

Set
$$\mathbf{x}^{(k)} \equiv \mathbf{x}^{(k-1)} + \mathbf{z}^{(k-1)}$$
.

Compute
$$r^{(k)} = \boldsymbol{b} - A\boldsymbol{x}^{(k)}$$
.

Solve
$$M\mathbf{z}^{(k)} = \mathbf{r}^{(k)}$$
 for $\mathbf{z}^{(k)}$.

Remark:

1. For $M \equiv D$, the method is Jacobi iteration

$$\boldsymbol{x}^{(k)} = D^{-1}(L+U)\boldsymbol{x}^{(k-1)} + D^{-1}\boldsymbol{b} = D^{-1}(D-D+L+U)\boldsymbol{x}^{(k-1)} + D^{-1}\boldsymbol{b} = D^{-1}(D-A)\boldsymbol{x}^{(k-1)} + D^{-1}\boldsymbol{b} = \boldsymbol{x}^{(k-1)} + D^{-1}(\boldsymbol{b} - A\boldsymbol{x}^{(k-1)}) \equiv \boldsymbol{x}^{(k-1)} + \boldsymbol{z}^{(k-1)},$$

2. For $M \equiv D - L$, the method is GS.

$$\boldsymbol{x}^{(k)} = (D-L)^{-1}U\boldsymbol{x}^{(k-1)} + (D-L)^{-1}\boldsymbol{b} = (D-L)^{-1}(U-D+L+D-L)\boldsymbol{x}^{(k-1)} + (D-L)^{-1}\boldsymbol{b}$$
$$= (D-L)^{-1}(D-L-A)\boldsymbol{x}^{(k-1)} + (D-L)^{-1}\boldsymbol{b} = \boldsymbol{x}^{(k-1)} - (D-L)^{-1}(\boldsymbol{b} - A\boldsymbol{x}^{(k-1)}) \equiv \boldsymbol{x}^{(k-1)} + \boldsymbol{z}^{(k-1)}$$