7.4 Relaxation Techniques for Solving Linear Systems

Definition Suppose X € R™ is an approximation to the solution of the linear system defined by Ax = b. The residual vector for
X with respect to this system is r = b — AX.

Obijective of accelerating convergence: Let residual vector converge to O rapidly.

In  Gauss-Seidel method, we first associate with each calculation of an approximate component
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Gauss-Seidel method is characterized by
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Idea of Successive Over-Relaxation (SOR) (technique to accelerate convergence)
Modify Eq. (3) to

k
k) _ (k-1) rig) Eq. (4
X =X +wa” q-(4)
2

(k)

so that norm of residual vector r;

converges to O rapidly. Here w > 0.

Under-relaxation method when 0 < w < 1
Over-relaxation method when w > 1
Use Eq. (4) and Eq. (1),
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Matrix form of SOR
Rewrite Eq. (5) as
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Define T, = (D — wL) (1 — w)D + wU], ¢, = w(D — wL)"1h
SOR can be written as x® = T, x®*=D + ¢,,.

Example Use SOR with w = 1.25 to solve

4x, + 3x, = 24
3X1 + 4‘x2 _X3 = 30
_xZ + 4X3 = _24

with x©@ = (1,1,1)%.

Theorem 7.24(Kahan) If a; # 0, for each i = 1,2, ...,n, then p(T,)) = |w — 1|. This implies that the SOR method can
convergeonly if 0 < w < 2.

Recall: Theorem 7.19 p(T) < 1.

Theorem 7.25(Ostrowski-Reich) If A is a positive definite matrix and 0 < w < 2, then the SOR method converges for any
choice of initial approximate vector x(®,



Theorem 7.26 If A is a positive definite and tridiagonal, then p(Tg) = [p(T})]* < 1, and the optimal choice of w for the SOR
method is
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With this choice of w, we have p(T,) = w — 1.
Example Find the optimal choice of w for the SOR method for the matrix

4 3 0
A=13 4 -1
0O -1 4
Soln:
4 0 O 0O 0 O 0 -3 0
D=0 4 0|, L=|-3 0 0], U=|]0 0 1
0O 0 4 0O 1 O 0O 0 O
B (0 32 ¢
4 4
T,=D'L+U)=[0o - o||-3 0 1|=|-> 0 =
4 0 1 0 4 4
0 O - 0 - 0
i 4. i 4 |

Compute eigenvalues of T;.
det(T; —Al) =0
So —A(A%? — 0.625) = 0.> 1, =0, 1, =0.625, 1; = —V0.625.
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Thus p(T;) = V0.625. And w = = ~ 1.24

1+ ,1—[p(Tj)]2 1+/1-0.625




7.5 Error Bounds and Iterative Refinement
Motivation. Residual vector r = b — AX can fail to provide accurate measurement on convergence
Example Ax = b given by

10001 2) bl = [5.0001]

1.0001 211Lx; 3.0001

has the unique solution x = (1,1)¢ Determine the residual vector for approximation ¥ = (3,—0.0001)¢
: L 3 _ 1 2 3 1_10.0002

Solution = b= 4% =[5 10|~ 1 6001 2/ l_0.0001/ =" 0 |

Theorem 7.27 Suppose that X is an approximation to the solution of Ax = b, A is a nonsingular matrix, and r is the residual
vector for X. Then for any natural norm,

[lx = || < [Ir]| - [IA7]

andifx+0andb %0

|l — | |I7]|
— < |A| . |A_1| -
- ATy
Condition Numbers
Definition The condition number of the nonsingular matrix A relative to the norm || - || is
K(A) = [IAll - |lA7H]
Remark: Condition number of identity matrix K(I) = 1 relative to || - ||«

A matrix A is well-conditioned if K(A) is close to 1, and is ill-conditioned if K (A) is significantly greater than 1.

Example Determine the condition number for A = [1 0%)01 2].

) _1 _ [—10000 10000
Solution A7 = £000.5 _5000].

1A71]|_ = 20000



K(4) = ||A || [1471]]_ = 3.0001 - 20000 = 60002
Significance of condition number Well-conditioned Ax = b implies a small residual error corresponds to accurate
approximate solution.
Estimate condition number

Assume that t-digit arithmetic and Gaussian elimination are used to solve Ax = b, the residual vector r for the approximation x
has

lIrl] ~ 1071 Al| - |||
Consider to solve Ay = r with t-digit arithmetic. Let y be approximation to Ay =r
J~Ar=A"Y(b—A%) =A"'h - A AX = x — ¥
This implies x = X + y.
71| = [lA7 ]| < [IA7H] - [Ir]| = [lA7H|(10~¢]1Al| - [1%]]) = 107¢|1%]|K (4)
Therefore
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3.3330 15920 —10.333][*1 15913
Example Estimate condition number for system [2.2220 16.710 9.6120 ||Xz2| = |28.544] solved by 5-digit rounding
X3

. . o 1.5611 5.1791 1.6852 8.4254
arithmetic. The exact solution is x = (1,1,1)¢

Solution Use Gaussian elimination to solve with 5-digit rounding arithmetic gives
X = (1.2001,0.99991,0.92538)*
The corresponding residual vector » = (—0.00518,0.27412914, —0.186160367)"
Solving Ay = r by Gaussian elimination gives ¥ = (—0.20008,8.9987 x 107>,0.074607)"
17|, 0.20008
—=210 = —
||x||oo 1.2001

K(A) ~ 105 = 16672



How does the round-off errors affect a s stemlike[ 1 2] [xl]—[ 3 ]9
y 1.0001 2/ lx2l T 13.0001)°

Let the (A + 5A)x = b + &b be the perturbed system associated with Ax = b.

”A:”. The solution X to (A + §A)x = b + &b approximates the
x=X|| < K(4)|lAll (II(SbII n IISAII).
llxll — [lAl|=k@l1sal] \ [Ipl] ~ [14l]

Theorem 7.29. Suppose 4 is nonsingular and [|54]| <

solution x of Ax = b with the error estimate 1



