7.4 Relaxation Techniques for Solving Linear Systems

Definition Suppose $\tilde{\boldsymbol{x}} \in R^{n}$ is an approximation to the solution of the linear system defined by $A \boldsymbol{x}=\boldsymbol{b}$. The residual vector for $\widetilde{\boldsymbol{x}}$ with respect to this system is $\boldsymbol{r}=\boldsymbol{b}-A \widetilde{\boldsymbol{x}}$.

Objective of accelerating convergence: Let residual vector converge to $\mathbf{0}$ rapidly.

In Gauss-Seidel method, we first associate with each calculation of an approximate component $\boldsymbol{x}_{i}^{(k)} \equiv\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{i-1}^{(k)}, x_{i}^{(k-1)}, \ldots, x_{n}^{(k-1)}\right)^{t}$
to the solution a residual vector

$$
\boldsymbol{r}_{i}^{(k)}=\left(r_{1 i}^{(k)}, r_{2 i}^{(k)}, \ldots, r_{n i}^{(k)}\right)^{t}
$$

The i th component of $\boldsymbol{r}_{i}^{(k)}$ is

$$
\begin{equation*}
r_{i i}^{(k)}=b_{i}-\sum_{j=1}^{i-1}\left(a_{i j} x_{j}^{(k)}\right)-\sum_{j=i+1}^{n}\left(a_{i j} x_{j}^{(k-1)}\right)-a_{i i} x_{i}^{(k-1)} \tag{1}
\end{equation*}
$$

so

$$
a_{i i} x_{i}^{(k-1)}+r_{i i}^{(k)}=b_{i}-\sum_{j=1}^{i-1}\left(a_{i j} x_{j}^{(k)}\right)-\sum_{j=i+1}^{n}\left(a_{i j} x_{j}^{(k-1)}\right) .
$$

Also, $x_{i}^{(k)}$ is computed by

$$
\begin{equation*}
x_{i}^{(k)}=\frac{1}{a_{i i}}\left[-\sum_{j=1}^{i-1}\left(a_{i j} x_{j}^{(k)}\right)-\sum_{j=i+1}^{n}\left(a_{i j} x_{j}^{(k-1)}\right)+b_{i}\right] \tag{2}
\end{equation*}
$$

Therefore

$$
a_{i i} x_{i}^{(k-1)}+r_{i i}^{(k)}=a_{i i} x_{i}^{(k)}
$$

Gauss-Seidel method is characterized by

$$
\begin{equation*}
x_{i}^{(k)}=x_{i}^{(k-1)}+\frac{r_{i i}^{(k)}}{a_{i i}} \tag{3}
\end{equation*}
$$

Now consider the residual
with the
vector $\boldsymbol{x}_{i+1}^{(k)}=\left(x_{1}^{(k)}, x_{2}^{(k)}, \ldots, x_{i}^{(k)}, x_{i+1}^{(k-1)}, \ldots, x_{n}^{(k-1)}\right)^{t}$
The i th component of $\boldsymbol{r}_{i+1}^{(k)}$ is

$$
r_{i, i+1}^{(k)}=b_{i}-\sum_{j=1}^{i-1}\left(a_{i j} x_{j}^{(k)}\right)-\sum_{j=i+1}^{n}\left(a_{i j} x_{j}^{(k-1)}\right)-a_{i i} x_{i}^{(k)}
$$

By Eq. (2), $r_{i, i+1}^{(k)}=0$.

Idea of Successive Over-Relaxation (SOR) (technique to accelerate convergence)
Modify Eq. (3) to

$$
\begin{equation*}
x_{i}^{(k)}=x_{i}^{(k-1)}+\omega \frac{r_{i i}^{(k)}}{a_{i i}} \tag{4}
\end{equation*}
$$

so that norm of residual vector $\boldsymbol{r}_{i+1}^{(k)}$ converges to 0 rapidly. Here $\omega>0$.

Under-relaxation method when $0<\omega<1$
Over-relaxation method when $\omega>1$
Use Eq. (4) and Eq. (1),

$$
\begin{equation*}
x_{i}^{(k)}=(1-\omega) x_{i}^{(k-1)}+\frac{\omega}{a_{i i}}\left[b_{i}-\sum_{j=1}^{i-1}\left(a_{i j} x_{j}^{(k)}\right)-\sum_{j=i+1}^{n}\left(a_{i j} x_{j}^{(k-1)}\right)\right] \quad \text { for } i=1,2, \ldots n \tag{5}
\end{equation*}
$$

Matrix form of SOR

Rewrite Eq. (5) as

$$
\begin{gathered}
a_{i i} x_{i}^{(k)}+\omega \sum_{j=1}^{i-1}\left(a_{i j} x_{j}^{(k)}\right)=(1-\omega) a_{i i} x_{i}^{(k-1)}-\omega \sum_{j=i+1}^{n}\left(a_{i j} x_{j}^{(k-1)}\right)+\omega b_{i} \\
\quad(D-\omega L) \boldsymbol{x}^{(k)}=[(1-\omega) D+\omega U] \boldsymbol{x}^{(k-1)}+\omega \boldsymbol{b} \\
\boldsymbol{x}^{(k)}=(D-\omega L)^{-1}[(1-\omega) D+\omega U] \boldsymbol{x}^{(k-1)}+\omega(D-\omega L)^{-1} \boldsymbol{b}
\end{gathered}
$$

Define $T_{\omega}=(D-\omega L)^{-1}[(1-\omega) D+\omega U], \boldsymbol{c}_{\omega}=\omega(D-\omega L)^{-1} \boldsymbol{b}$
SOR can be written as $\boldsymbol{x}^{(k)}=T_{\omega} \boldsymbol{x}^{(k-1)}+\boldsymbol{c}_{\omega}$.

Example Use SOR with $\omega=1.25$ to solve

$$
\begin{gathered}
4 x_{1}+3 x_{2}=24 \\
3 x_{1}+4 x_{2}-x_{3}=30 \\
-x_{2}+4 x_{3}=-24
\end{gathered}
$$

with $\boldsymbol{x}^{(0)}=(1,1,1)^{t}$.

Theorem 7.24(Kahan) If $a_{i i} \neq 0$, for each $i=1,2, \ldots, n$, then $\rho\left(T_{\omega}\right) \geq|\omega-1|$. This implies that the SOR method can converge only if $0<\omega<2$.

Recall: Theorem $7.19 \rho(T) \leq 1$.

Theorem 7.25(Ostrowski-Reich) If A is a positive definite matrix and $0<\omega<2$, then the SOR method converges for any choice of initial approximate vector $\boldsymbol{x}^{(0)}$.

Theorem 7.26 If A is a positive definite and tridiagonal, then $\rho\left(T_{g}\right)=\left[\rho\left(T_{j}\right)\right]^{2}<1$, and the optimal choice of ω for the SOR method is

$$
\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{j}\right)\right]^{2}}}
$$

With this choice of ω, we have $\rho\left(T_{\omega}\right)=\omega-1$.
Example Find the optimal choice of ω for the SOR method for the matrix

$$
A=\left[\begin{array}{ccc}
4 & 3 & 0 \\
3 & 4 & -1 \\
0 & -1 & 4
\end{array}\right]
$$

Soln:

$$
\begin{gathered}
D=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right], \quad L=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-3 & 0 & 0 \\
0 & 1 & 0
\end{array}\right], \quad U=\left[\begin{array}{ccc}
0 & -3 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \\
T_{j}=D^{-1}(L+U)=\left[\begin{array}{lll}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{4}
\end{array}\right]\left[\begin{array}{ccc}
0 & -3 & 0 \\
-3 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & -\frac{3}{4} & 0 \\
-\frac{3}{4} & 0 & \frac{1}{4} \\
0 & \frac{1}{4} & 0
\end{array}\right]
\end{gathered}
$$

Compute eigenvalues of T_{j}.

$$
\operatorname{det}\left(T_{j}-\lambda I\right)=0
$$

So $-\lambda\left(\lambda^{2}-0.625\right)=0 . \Rightarrow \lambda_{1}=0, \lambda_{2}=\sqrt{0.625}, \lambda_{3}=-\sqrt{0.625}$.
Thus $\rho\left(T_{j}\right)=\sqrt{0.625}$. And $\omega=\frac{2}{1+\sqrt{1-\left[\rho\left(T_{j}\right)\right]^{2}}}=\frac{2}{1+\sqrt{1-0.625}} \approx 1.24$

7.5 Error Bounds and Iterative Refinement

Motivation. Residual vector $\boldsymbol{r}=\boldsymbol{b}-A \widetilde{\boldsymbol{x}}$ can fail to provide accurate measurement on convergence
Example $A \boldsymbol{x}=\boldsymbol{b}$ given by

$$
\left[\begin{array}{cc}
1 & 2 \\
1.0001 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
3 \\
3.0001
\end{array}\right]
$$

has the unique solution $\boldsymbol{x}=(1,1)^{t}$ Determine the residual vector for approximation $\widetilde{\boldsymbol{x}}=(3,-0.0001)^{t}$
Solution $r=\boldsymbol{b}-A \widetilde{\boldsymbol{x}}=\left[\begin{array}{c}3 \\ 3.0001\end{array}\right]-\left[\begin{array}{cc}1 & 2 \\ 1.0001 & 2\end{array}\right]\left[\begin{array}{c}3 \\ -0.0001\end{array}\right]=\left[\begin{array}{c}0.0002 \\ 0\end{array}\right]$

Theorem 7.27 Suppose that $\widetilde{\boldsymbol{x}}$ is an approximation to the solution of $A \boldsymbol{x}=\boldsymbol{b}, A$ is a nonsingular matrix, and \boldsymbol{r} is the residual vector for $\widetilde{\boldsymbol{x}}$. Then for any natural norm,

$$
\|x-\widetilde{x}| | \leq\| \boldsymbol{r}||\cdot|| A^{-1}| |
$$

and if $\boldsymbol{x} \neq \mathbf{0}$ and $\boldsymbol{b} \neq \mathbf{0}$

$$
\frac{\|\boldsymbol{x}-\widetilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \leq\|A\| \cdot\left\|A^{-1}\right\| \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|}
$$

Condition Numbers

Definition The condition number of the nonsingular matrix A relative to the norm $\|\cdot\|$ is

$$
K(A)=\|A\| \cdot\left\|A^{-1}\right\|
$$

Remark: Condition number of identity matrix $K(I)=1$ relative to $\|\cdot\|_{\infty}$
A matrix A is well-conditioned if $K(A)$ is close to 1 , and is ill-conditioned if $K(A)$ is significantly greater than 1 .
Example Determine the condition number for $A=\left[\begin{array}{cc}1 & 2 \\ 1.0001 & 2\end{array}\right]$.
Solution $A^{-1}=\left[\begin{array}{cc}-10000 & 10000 \\ 5000.5 & -5000\end{array}\right]$.

$$
\left|\mid A^{-1} \|_{\infty}=20000\right.
$$

$$
K(A)=\left||A|\left\|_{\infty} \cdot| | A^{-1}\right\|_{\infty}=3.0001 \cdot 20000=60002 .\right.
$$

Significance of condition number Well-conditioned $A \boldsymbol{x}=\boldsymbol{b}$ implies a small residual error corresponds to accurate approximate solution.

Estimate condition number

Assume that t-digit arithmetic and Gaussian elimination are used to solve $A \boldsymbol{x}=\boldsymbol{b}$, the residual vector \boldsymbol{r} for the approximation $\widetilde{\boldsymbol{x}}$ has

$$
\|\boldsymbol{r}\| \approx 10^{-t}\|A\| \cdot\|\widetilde{x}\|
$$

Consider to solve $A \boldsymbol{y}=\boldsymbol{r}$ with t-digit arithmetic. Let $\widetilde{\boldsymbol{y}}$ be approximation to $A \boldsymbol{y}=\boldsymbol{r}$

$$
\widetilde{\boldsymbol{y}} \approx A^{-1} \boldsymbol{r}=A^{-1}(\boldsymbol{b}-A \widetilde{\boldsymbol{x}})=A^{-1} \boldsymbol{b}-A^{-1} A \widetilde{\boldsymbol{x}}=\boldsymbol{x}-\widetilde{\boldsymbol{x}}
$$

This implies $\boldsymbol{x} \approx \widetilde{\boldsymbol{x}}+\widetilde{\boldsymbol{y}}$.

$$
\left\|\widetilde{\boldsymbol{y}}||\approx|| A^{-1} \boldsymbol{r}\right\| \leq\left|\left|A^{-1}\right|\right| \cdot| | \boldsymbol{r} \| \approx| | A^{-1}| |\left(10^{-t}| | A| | \cdot| | \widetilde{\boldsymbol{x}}| |\right)=10^{-t}| | \widetilde{\boldsymbol{x}}| | K(A)
$$

Therefore

$$
K(A) \approx \frac{|\mid \widetilde{y} \|}{|\mid \widetilde{\boldsymbol{x}} \|} 10^{t} .
$$

Example Estimate condition number for system $\left[\begin{array}{ccc}3.3330 & 15920 & -10.333 \\ 2.2220 & 16.710 & 9.6120 \\ 1.5611 & 5.1791 & 1.6852\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}15913 \\ 28.544 \\ 8.4254\end{array}\right]$ solved by 5 -digit rounding arithmetic. The exact solution is $\boldsymbol{x}=(1,1,1)^{t}$

Solution Use Gaussian elimination to solve with 5 -digit rounding arithmetic gives

$$
\widetilde{\boldsymbol{x}}=(1.2001,0.99991,0.92538)^{t}
$$

The corresponding residual vector $\boldsymbol{r}=(-0.00518,0.27412914,-0.186160367)^{t}$
Solving $A \boldsymbol{y}=\boldsymbol{r}$ by Gaussian elimination gives $\widetilde{\boldsymbol{y}}=\left(-0.20008,8.9987 \times 10^{-5}, 0.074607\right)^{t}$

$$
K(A) \approx \frac{\left|\mid \widetilde{y} \|_{\infty}\right.}{\left|\mid \widetilde{x} \|_{\infty}\right.} 10^{t}=\frac{0.20008}{1.2001} 10^{5}=16672
$$

How does the round-off errors affect a system like $\left[\begin{array}{cc}1 & 2 \\ 1.0001 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}3 \\ 3.0001\end{array}\right]$?

Let the $(A+\delta A) \boldsymbol{x}=\boldsymbol{b}+\delta \boldsymbol{b}$ be the perturbed system associated with $A \boldsymbol{x}=\boldsymbol{b}$.
Theorem 7.29. Suppose A is nonsingular and $\left|\mid \delta A \|<\frac{1}{\left\|A^{-1}\right\|}\right.$. The solution $\widetilde{\boldsymbol{x}}$ to $(A+\delta A) \boldsymbol{x}=\boldsymbol{b}+\delta \boldsymbol{b}$ approximates the solution \boldsymbol{x} of $A \boldsymbol{x}=\boldsymbol{b}$ with the error estimate $\frac{\|x-\tilde{x}\|}{\|x\|} \leq \frac{K(A)| | A| |}{\|A A|-K(A)| \mid \delta A\|}\left(\frac{\|\delta b\|}{\|b \mid\|}+\frac{\|\delta A\|}{\|A\| \|}\right)$.

