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7.4 Relaxation Techniques for Solving Linear Systems 

Definition Suppose  ̃     is an approximation to the solution of the linear system defined by     . The residual vector for 

 ̃ with respect to this system is       ̃. 

 

Objective of accelerating convergence:  Let residual vector converge to 0 rapidly.  

 

In Gauss-Seidel method, we first associate with each calculation of an approximate component  
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Gauss-Seidel method is characterized by  

  
   

   
     

 
   
   

   
                                                                                          

Now consider the residual vector     
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Idea of Successive Over-Relaxation (SOR) (technique to accelerate convergence) 

Modify        to  

  
   

   
     

  
   
   

   
                                                                                    

so that norm of residual vector     
   

 converges to 0 rapidly. Here      

 

Under-relaxation method when        

Over-relaxation method when     

Use        and       ,  
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Matrix form of SOR 

Rewrite Eq. (5) as  
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Define            [         ],               

SOR can be written as                   

 

Example Use SOR with         to solve  

           
             
             

 

with                 

  

 

Theorem 7.24(Kahan) If      , for each            then            . This implies that the SOR method can 

converge only if        

 

Recall:  Theorem 7.19         

  

Theorem 7.25(Ostrowski-Reich) If   is a positive definite matrix and        then the SOR method converges for any 

choice of initial approximate vector     . 
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Theorem 7.26 If   is a positive definite and tridiagonal, then  (  )  [     ]
   , and the optimal choice of   for the SOR 

method is  
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With this choice of  , we have            

Example Find the optimal choice of   for the SOR method for the matrix  
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                  Compute eigenvalues of   . 
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7.5 Error Bounds and Iterative Refinement 

Motivation. Residual vector       ̃ can fail to provide accurate measurement on convergence 

Example      given by  
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has the unique solution          Determine the residual vector for approximation  ̃               

Solution        ̃  [
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Theorem 7.27 Suppose that  ̃ is an approximation to the solution of     ,   is a nonsingular matrix, and   is the residual 

vector for  ̃  Then for any natural norm,  

|    ̃ |  |   |  |     | 

and if     and      
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Condition Numbers 

Definition The condition number of the nonsingular matrix   relative to the norm       is  

                   

Remark: Condition number of identity matrix        relative to        

A matrix   is well-conditioned if      is close to 1, and is ill-conditioned if      is significantly greater than 1.  

Example Determine the condition number for   [
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Solution      [
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Significance of condition number Well-conditioned      implies a small residual error corresponds to accurate 

approximate solution.  

Estimate condition number   

Assume that t-digit arithmetic and Gaussian elimination are used to solve       the residual vector   for the approximation  ̃ 

has  

                   ̃   

Consider to solve      with t-digit arithmetic. Let  ̃ be approximation to      

 ̃               ̃            ̃     ̃ 

This implies    ̃   ̃  
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Therefore  
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Example Estimate condition number for system [
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arithmetic. The exact solution is            

Solution Use Gaussian elimination to solve with 5-digit rounding arithmetic gives 

    ̃                            

The corresponding residual vector                                       

Solving        by Gaussian elimination gives  ̃                                   
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How does the round-off errors affect a system like [
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Let the              be the perturbed system associated with      .  

Theorem 7.29.  Suppose   is nonsingular and |    |  
 

       
. The solution  ̃  to              approximates the 

solution   of      with the error estimate 
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