8.2 - Orthogonal Polynomials and Least Squares Approximation

Least Squares Approximation of Functions

Motivation

Suppose $f \in C[a, b]$, find a polynomial $P_{n}(x)$ of degree at most n to approximate f such that $\int_{a}^{b}\left(f(x)-P_{n}(x)\right)^{2} d x$ is a minimum.

Let polynomial $P_{n}(x)$ be $P_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ which minimizes the error

$$
E \equiv E\left(a_{0}, a_{1}, \ldots, a_{n}\right)=\int_{a}^{b}\left(f(x)-\sum_{k=0}^{n} a_{k} x^{k}\right)^{2} d x
$$

The problem is to find a_{0}, \cdots, a_{n} that will minimize E. The necessary condition for a_{0}, \cdots, a_{n} to minimize E is $\frac{\partial E}{\partial a_{j}}=0$, which gives the normal equations

$$
\sum_{k=0}^{n} a_{k} \int_{a}^{b} x^{j+k} d x=\int_{a}^{b} x^{j} f(x) d x \quad \text { for } j=0,1, \cdots, n
$$

Example Find the least squares approximating polynomial of degree 2 for $f(x)=\sin \pi x$ on $[0,1]$.
Solution Let $P_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}$.

$$
\begin{align*}
& \left\{\begin{array}{l}
a_{0} \int_{0}^{1} 1 d x+a_{1} \int_{0}^{1} x d x+a_{2} \int_{0}^{1} x^{2} d x=\int_{0}^{1} \sin \pi x d x \\
a_{0} \int_{0}^{1} x d x+a_{1} \int_{0}^{1} x^{2} d x+a_{2} \int_{0}^{1} x^{3} d x=\int_{0}^{1} x \sin \pi x d x \\
a_{0} \int_{0}^{1} x^{2} d x+a_{1} \int_{0}^{1} x^{3} d x+a_{2} \int_{0}^{1} x^{4} d x=\int_{0}^{1} x^{2} \sin \pi x d x
\end{array}\right. \\
& \left\{\begin{array}{l}
a_{0}+\frac{1}{2} a_{1}+\frac{1}{3} a_{2}=2 / \pi \\
\frac{1}{2} a_{0}+\frac{1}{3} a_{1}+\frac{1}{4} a_{2}=1 / \pi \\
\frac{1}{3} a_{0}+\frac{1}{4} a_{1}+\frac{1}{5} a_{2}=\frac{\pi^{2}-4}{\pi^{3}}
\end{array}\right. \tag{1}
\end{align*}
$$

$$
a_{0}=-0.050465, a_{1}=4.12251, a_{2}=-4.12251
$$

Remark: System of linear equations with coefficient matrix being Hilbert matrix H whose entry $H_{j k}$ is defined by $H_{j k}=\int_{a}^{b} x^{j+k} d x$ is difficult to solve due to round-off errors.

Linearly Independent Functions

Definition

The set of functions $\left\{\phi_{0}, \cdots, \phi_{n}\right\}$ is said to linearly independent on $[a, b]$ if, whenever $c_{0} \phi_{0}(x)+c_{1} \phi_{1}(x)+\cdots+c_{n} \phi_{n}(x)=0, \quad$ for all $x \in[a, b]$ we have $c_{0}=c_{1}=\cdots=c_{n}=0$. Otherwise the set of functions is said to be linearly dependent.

Theorem

Suppose that, for each $j=0,1, \cdots, n, \phi_{j}(x)$ is a polynomial of degree j. Then $\left\{\phi_{0}, \cdots, \phi_{n}\right\}$ is linearly independent on any interval $[a, b]$.

Theorem

Suppose that $\left\{\phi_{0}(x), \cdots, \phi_{n}(x)\right\}$ is a collection of linearly independent polynomials in \prod_{n}. Then any polynomial in \prod_{n} can be written uniquely as a linear combination of $\phi_{0}(x), \cdots, \phi_{n}(x)$.

Orthogonal Functions

Definition

$\left\{\phi_{0}, \cdots, \phi_{n}\right\}$ is said to be an orthogonal set of functions for the interval $[a, b]$ with respect to the weight function w if

$$
\int_{a}^{b} w(x) \phi_{j}(x) \phi_{k}(x) d x= \begin{cases}0, & \text { when } j \neq k \\ \alpha_{k}>0, & \text { when } j=k\end{cases}
$$

If also $\alpha_{k}=1$ for each $k=0, \ldots, n$, the set is orthonormal.

Legendre Polynomials

The set of Legendre polynomials $\left\{P_{n}(x)\right\}$ is orthogonal on $[-1,1]$ w.r.t. the weight function $w(x)=1$.

$$
\begin{array}{ll}
P_{0}(x)=1, & \alpha_{0}=2 \\
P_{1}(x)=x, & \alpha_{1}=2 / 3 \\
P_{2}(x)=x^{2}-\frac{1}{3}, & \alpha_{2}=8 / 45 \\
P_{3}(x)=x^{3}-\frac{3}{5} x, & \alpha_{3}=8 / 175 \\
P_{4}(x)=x^{4}-\frac{6}{7} x^{2}+\frac{3}{35}, & \alpha_{4}=128 / 11025
\end{array}
$$

Orthogonal Trigonometric Polynomials

The set of $\left\{\phi_{0}, \cdots, \phi_{2 n-1}\right\}$ is orthogonal on $[-\pi, \pi]$ w.r.t. the weight function $w(x)=1$.

$$
\begin{aligned}
\phi_{0}(x) & =1 / 2, \\
\phi_{k}(x) & =\cos (k x), \text { for each } k=1,2, \cdots, n, \\
\phi_{n+k}(x) & =\sin (k x), \text { for each } k=1,2, \cdots, n-1 .
\end{aligned}
$$

Approximation by Orthogonal Functions

Let $\left\{\phi_{0}, \cdots, \phi_{n}\right\}$ be an orthogonal set of functions for the interval $[a, b]$ with respect to the weight function w.
Given $f \in C[a, b]$, we seek an approximation

$$
P(x)=\sum_{i=0}^{n} a_{k} \phi_{k}
$$

to minimize the error

$$
E \equiv E\left(a_{0}, a_{1}, \ldots, a_{n}\right)=\int_{a}^{b} w\left(f(x)-\sum_{k=0}^{n} a_{k} \phi_{k}\right)^{2} d x
$$

Computing $\frac{\partial E}{\partial a_{j}}=0$ gives the normal equations

$$
\begin{equation*}
0=2 \int_{a}^{b} w(x)\left(f(x)-\sum_{k=0}^{n} a_{k} \phi_{k}\right) \phi_{j} d x \quad \text { for } j=0,1, \cdots, n \tag{2}
\end{equation*}
$$

Simplying Eq. (2) gives:

$$
\int_{a}^{b} w(x) \phi_{j}(x) f(x) d x=a_{j} \int_{a}^{b} w(x)\left[\phi_{j}(x)\right]^{2} d x, \quad \text { for } j=0,1, \cdots, n
$$

Theorem

If $\left\{\phi_{0}, \ldots, \phi_{n}\right\}$ is orthogonal on $[a, b]$, then the least squares approximation to f on $[a, b]$ is $P(x)=\sum_{k=0}^{n} a_{k} \phi_{k}(x)$ where
$a_{k}=\frac{\int_{a}^{b} w(x) \phi_{k}(x) f(x) d x}{\int_{a}^{b} w(x)\left[\phi_{k}(x)\right]^{2} d x}=\frac{1}{\alpha_{k}} \int_{a}^{b} w(x) \phi_{k}(x) f(x) d x$, for $k=0,1, \cdots, n$.
And

$$
\alpha_{k}=\int_{a}^{b} w(x)\left[\phi_{k}(x)\right]^{2} d x
$$

