8.3 - Chebyshev Polynomials

Chebyshev polynomials

Definition

Chebyshev polynomial of degree $n \geq=0$ is defined as

$$
\begin{gathered}
T_{n}(x)=\cos (n \arccos x), \quad x \in[-1,1], \text { or, in a more instructive form, } \\
T_{n}(x)=\cos n \theta, \quad x=\cos \theta, \quad \theta \in[0, \pi] .
\end{gathered}
$$

Recursive relation of Chebyshev polynomials

$$
\begin{array}{r}
T_{0}(x)=1, \quad T_{1}(x)=x, \\
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad n \geq 1 .
\end{array}
$$

Thus

$$
T_{2}(x)=2 x^{2}-1, T_{3}(x)=4 x^{3}-3 x, T_{4}(x)=8 x^{4}-8 x^{2}+1 \quad \cdots
$$

$T_{n}(x)$ is a polynomial of degree n with leading coefficient 2^{n-1} for $n \geq 1$.

Orthogonality

Chebyshev polynomials are orthogonal w.r.t. weight function $w(x)=\frac{1}{\sqrt{1-x^{2}}}$. Namely,

$$
\int_{-1}^{1} \frac{T_{n}(x) T_{m}(x)}{\sqrt{1-x^{2}}} d x=\left\{\begin{array}{ll}
0 & \text { if } m \neq n \tag{1}\\
\frac{\pi}{2} & \text { if } n=m
\end{array} \text { for each } n \geq 1\right.
$$

Theorem (Roots of Chebyshev polynomials)

The roots of $T_{n}(x)$ of degree $n \geq 1$ has n simple zeros in $[-1,1]$ at $\bar{x}_{k}=\cos \left(\frac{2 k-1}{2 n} \pi\right)$, for each $k=1,2 \cdots n$.
Moreover, $T_{n}(x)$ assumes its absolute extrema at $\bar{x}_{k}^{\prime}=\cos \left(\frac{k \pi}{n}\right)$, with $T_{n}\left(\bar{x}_{k}^{\prime}\right)=(-1)^{k}$, for each $k=0,1, \cdots n$.

For $k=0, \cdots n, T_{n}\left(\bar{x}_{k}^{\prime}\right)=\cos \left(n \cos ^{-1}(\cos (k \pi / n))\right)=\cos (k \pi)=(-1)^{k}$.

Definition

A monic polynomial is a polynomial with leading coefficient 1.
The monic Chebyshev polynomial $\tilde{T}_{n}(x)$ is defined by dividing $T_{n}(x)$ by $2^{n-1}, n \geq 1$. Hence,

$$
\tilde{T}_{0}(x)=1, \quad \tilde{T}_{n}(x)=\frac{1}{2^{n-1}} T_{n}(x), \quad \text { for each } n \geq 1
$$

They satisfy the following recurrence relations
$\tilde{T}_{2}(x)=x \tilde{T}_{1}(x)-\frac{1}{2} \tilde{T}_{0}(x)$
$\tilde{T}_{n+1}(x)=x \tilde{T}_{n}(x)-\frac{1}{4} \tilde{T}_{n-1}(x)$ for each $n \geq 2$
The location of the zeros and extrema of $\tilde{T}_{n}(x)$ coincides with those of $T_{n}(x)$, however the extrema values are $\tilde{T}_{n}\left(\bar{x}_{k}^{\prime}\right)=\frac{(-1)^{k}}{2^{n-1}} \quad$, at $\bar{x}_{k}^{\prime}=\cos \left(\frac{k \pi}{n}\right), \quad k=0, \cdots n$.

Definition

Let $\tilde{\prod}_{n}$ denote the set of all monic polynomials of degree n.

Theorem

(Min-Max Theorem) The monic Chebyshev polynomials $\tilde{T}_{n}(x)$, when $n \geq 1$, have the property that
$\frac{1}{2^{n-1}}=\max _{x \in[-1,1]}\left|\tilde{T}_{n}(x)\right| \leq \max _{x \in[-1,1]}\left|P_{n}(x)\right|$, for all $P_{n}(x) \in \tilde{\prod}_{n}$. Moreover, equality occurs only if $P_{n} \equiv \tilde{T}_{n}$.

Diagrams of monic Chebyshev polynomials

Optimal node placement in Lagrange interpolation

If $x_{0}, x_{1}, \cdots x_{n}$ are distinct points in the interval $[-1,1]$ and $f \in C^{n+1}[-1,1]$, and $P(x)$ the nth degree interpolating Lagrange polynomial, then $\forall x \in[-1,1], \exists \xi(x) \in(-1,1)$ so that

$$
f(x)-P(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{k=0}^{n}\left(x-x_{k}\right)
$$

We place the nodes in a way to minimize the maximum $\prod_{k=0}^{n}\left(x-x_{k}\right)$. Since $\prod_{k=0}^{n}\left(x-x_{k}\right)$ is a monic polynomial of degree $(n+1)$, the min-max is obtained when the nodes are chosen so that

$$
\prod_{k=0}^{n}\left(x-x_{k}\right)=\tilde{T}_{n+1}(x), \quad \text { i.e. } \quad x_{k}=\cos \left(\frac{2 k+1}{2(n+1)} \pi\right)
$$

for $k=0, \cdots, n$. Min-Max theorem implies that
$\frac{1}{2^{n}}=\max _{x \in[-1,1]}\left|\left(x-\bar{x}_{1}\right) \cdots\left(x-\bar{x}_{n+1}\right)\right| \leq \max _{x \in[-1,1]} \prod_{k=0}^{n}\left|\left(x-x_{k}\right)\right|$

Theorem

Suppose that $P(x)$ is the interpolating polynomial of degree at most n with nodes at the zeros of $T_{n+1}(x)$. Then
$\max _{x \in[-1,1]}|f(x)-P(x)| \leq \frac{1}{2^{n}(n+1)!} \max _{x \in[-1,1]}\left|f^{(n+1)}(x)\right|$, for each $f \in C^{n+1}[-1,1]$.

Extending to any interval: The transformation $\tilde{x}=\frac{1}{2}[(b-a) x+(a+b)]$ transforms the nodes x_{k} in $[-1,1]$ into the corresponding nodes \tilde{x}_{k} in $[a, b]$.

