3.1 Interpolation and Lagrange Polynomial

Example. Daily Treasury Yield Curve Rates

Date	1 Mo	3 Mo	6 Mo	1 Yr	2 Yr	3 Yr	5 Yr	7 Yr	10 Yr	20 Yr	30 Yr
09/01/	0.01	0.03	0.26	0.39	0.70	1.0	1.49	1.89	1	262	293

Suppose we want yield rate for a four-years maturity bond, what shall we do?
Solution: Draw a smooth curve passing through these data points (interpolation).

- Interpolation problem: Find a smooth function $P(x)$ which interpolates (passes) the data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=0}^{N}$.
- Remark: In this class, we always assume that the data $\left\{y_{i}\right\}_{i=0}^{N}$ represent measured or computed values of a underlying function $f(x)$, i.e., $y_{i}=$ $f\left(x_{i}\right)$ Thus $P(x)$ can be considered as an approximation to f.

Polynomial Interpolation

Polynomials $P_{n}(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ are commonly used for interpolation.
> Advantages for using polynomial: efficient, simple mathematical operation such as differentiation and integration.

Theorem 3.1 Weierstrass Approximation theorem

Suppose $f \in C[a, b]$. Then $\forall \epsilon>0, \exists$ a polynomial $P(x)$: $|f(x)-P(x)|<\epsilon, \forall x \in[a, b]$.
Remark:

1. The bound is uniform, i.e. valid for all x in $[a, b]$. This means polynomials are good at approximating general functions.
2. The way to find $P(x)$ is unknown.

- Question: Can Taylor polynomial be used here?
- Taylor expansion is accurate in the neighborhood of one point. We need to the (interpolating) polynomial to pass many points.
- Example. Taylor polynomial approximation of e^{x} for $x \in[0,3]$

- Example. Taylor polynomial approximation of $\frac{1}{x}$ for $x \in[0.5,5]$. Taylor polynomials of different degrees are expanded at $x_{0}=1$

2nd-degree Lagrange Interpolating Polynomial

Goal: construct a polynomial of degree 2 passing 3 data points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$.
Step 1: construct a set of basis polynomials $L_{2, k}(x), k=$ 0,1,2 satisfying
$L_{2, k}\left(x_{j}\right)= \begin{cases}1, & \text { when } j=k \\ 0, & \text { when } j \neq k\end{cases}$
These polynomials are:

$$
\begin{aligned}
L_{2,0}(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}, \\
L_{2,1}(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} \\
L_{2,2}(x) & =\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
\end{aligned}
$$

Step 2: form the $2^{\text {nd }}$-degree Lagrange interpolating polynomial $P(x)$:

$$
P(x)=y_{0} L_{2,0}(x)+y_{1} L_{2,1}(x)+y_{2} L_{2,2}(x)
$$

Exercise 3.1.2(a) Use nodes $x_{0}=1, x_{1}=$
$1.25, x_{2}=1.6$ to find $2^{\text {nd }}$ Lagrange interpolating polynomial $P(x)$ for $f(x)=\sin (\pi x)$. And use $P(x)$ to approximate $f(1.4)$.

n-degree Interpolating Polynomial through $\boldsymbol{n}+1$ Points

Constructing a Lagrange interpolating polynomial $P(x)$ passing through the points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right)$, $\left(x_{2}, f\left(x_{2}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$.

1. Define Lagrange basis functions $L_{n, k}(x)=$
$\prod_{i=0, i \neq k}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}=\frac{x-x_{0}}{x_{k}-x_{0}} \ldots \frac{x-x_{k-1}}{x_{k}-x_{k-1}}$.
$\frac{x-x_{k+1}}{x_{k}-x_{k+1}} \ldots \frac{x-x_{n}}{x_{k}-x_{n}} \quad$ for $k=0,1 \ldots n$.
$\overline{x_{k}}-x_{k+1} \quad \overline{x_{k}}-x_{n}$
Remark: $L_{n, k}\left(x_{k}\right)=1 ; L_{n, k}\left(x_{i}\right)=0, \forall i \neq k$
2. $P(x)=f\left(x_{0}\right) L_{n, 0}(x)+\cdots+f\left(x_{n}\right) L_{n, n}(x)$.

- $L_{6,3}(x)$ for points $x_{i}=i, i=0, \ldots, 6$.
- Theorem 3.2 If x_{0}, \ldots, x_{n} are $n+1$ distinct numbers (called nodes) and f is a function whose values are given at these numbers, then a unique polynomial $P(x)$ of degree at most \boldsymbol{n} exists with $P\left(x_{k}\right)=f\left(x_{k}\right)$, for each $k=0,1, \ldots n$.
$P(x)=f\left(x_{0}\right) L_{n, 0}(x)+\cdots+f\left(x_{n}\right) L_{n, n}(x)$.
Where $L_{n, k}(x)=\prod_{i=0, i \neq k}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}$.

Error Bound for the Lagrange Interpolating Polynomial

Theorem 3.3 Suppose x_{0}, \ldots, x_{n} are distinct numbers in the interval $[a, b]$ and $f \in C^{n+1}[a, b]$. Then for each x in $[a, b]$, a number $\xi(x)$ (generally unknown) between x_{0}, \ldots, x_{n}, and hence in (a, b), exists with $f(x)=P(x)+$

$$
\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right) .
$$

Where $P(x)$ is the Lagrange interpolating polynomial.

- Remark:

1. Applying the error term may be difficult. $\xi(x)$ is generally unknown.
2. $\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)$ is oscillatory.

Graph of $(x-0)(x-1)(x-2)(x-3)(x-4)$
Remark: In general, $|f(x)-p(x)|$ is small when x is close to the center of $\left[x_{0}, x_{n}\right]$.
3. The error formula is important as they are used for numerical differentiation and integration.

Example 3. $2^{\text {nd }}$ Lagrange polynomial for $f(x)=$ $\frac{1}{x}$ on [2,4] using nodes $x_{0}=2, x_{1}=2.75, x_{2}=$ 4 is $P(x)=\frac{1}{22} x^{2}-\frac{35}{88} x+\frac{49}{44}$. Determine the error form for $P(x)$, and maximum error when polynomial is used to approximate $f(x)$ for $x \in$ [2,4].

Exercise 3.1.6(a). Use appropriate Lagrange polynomials of degree 2 to approximate $f(0.43)$ if $f(0)=1, f(0.25)=1.64872, f(0.5)=$ $2.71828, f(0.75)=4.48169$.

Example 4 Suppose a table is to be prepared for $f(x)=e^{x}, x \in[0,1]$. Assume the number of decimal places to be given per entry is $d \geq 8$ and that the difference between adjacent x values, the step size is h. What step size h will ensure that linear interpolation gives an absolute error of at most 10^{-6} for all x in $[0,1]$.

