3.1 Interpolation and Lagrange
Polynomial



Example. Daily Treasury Yield Curve Rates

Date 1Mo 3Mo 6Mo 1Y¥Yr 2Yr 3Yr 5Yr 7 Yr

10Yr 20Yr 30Yr
09/01/ 0.01 0.03 026 039 070 103 149 189 217 262 293
15

Suppose we want yield rate for a four-years maturity bond, what shall
we do?

Solution: Draw a smooth curve passing through these data points
(interpolation).
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Ref: http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield



* Interpolation problem: Find a smooth function
P(x) which interpolates (passes) the data

(e, y) o

* Remark: In this class, we always assume that the
data {yl _o represent measured or computed

values of a underlying function f(x), i.e., y; =
f(x;) Thus P(x) can be considered as an

approximation to f.



Polynomial Interpolation

Polynomials P,(x) = a,,x™ + -+ a,x* + a;x + q,
are commonly used for interpolation.

» Advantages for using polynomial: efficient, simple

mathematical operation such as differentiation and
integration.

Theorem 3.1 Weierstrass Approximation theorem
Suppose f € C[a, b]. Then Ve > 0, 3 a polynomial P(x):
|If(x) — P(x)| <€, Vx € |a,b].

Remark:

1. The bound is uniform, i.e. valid for all x in [a, b]. This means
polynomials are good at approximating general functions.

2. The way to find P(x) is unknown.



e Question: Can Taylor polynomial be used here?

e Taylor expansion is accurate in the neighborhood of one point.
We need to the (interpolating) polynomial to pass many points.

e Example. Taylor polynomial approximation of e* for x € [0,3]




Example. Taylor polynomial approximation of for

x € |0.5,5]. Taylor polynomials of different degrees
are expanded at x, = 1

2a0
=11
200 | @ PZ Taylor Palynomial expanded at 1
-3 Taylor Polynomial expanded at 1
150 P4 Taylor Polynomial expanded at 1
100 |
a0
o
A0k
-100




2nd-degree Lagrange Interpolating Polynomial

Go.aI: construct a polynomial of degree 2 passing 3 data
points (xg,¥o), (X1, ¥1), (X2, ¥2).

Step 1: construct a set of basis polynomials L, . (x), k =
0,1,2 satisfying

szk(xj) _ {1, whenj =k

0, whenj # k
These polynomials are:
(X —x1)(x — x2)
Lz,o(x) =

(xo — x1)(x0 — X2)
(x — x0)(x — x3)

(X1 — x0)(x1 — x3)°
(X — x0) (X — x1)

(X2 — x0) (X2 — X1)

L2,1(x) =

Ly, (x) =



Step 2: form the 2"9-degree Lagrange interpolating
polynomial P(x):

P(x) = yoLlyo(x) + y1Ly1(x) + y5L, 5 (x)



Exercise 3.1.2(a) Use nodes xy = 1,x1 =
1.25,x, = 1.6 to find 2" Lagrange interpolating
polynomial P(x) for f(x) = sin(mx) . And use
P(x) to approximate f(1.4).



n-degree Interpolating Polynomial through n 4+ 1 Points

Constructing a Lagrange interpolating polynomial P(x)
passing through the points (x,, f (xg)), (xl,f(xl)),
(22, f(x2)), s (o, f ()

1. Define Lagrange basis functions L, ,(x) =
n X—Xi _ X—X0 X—X|k-1 .
E0IER yp—x;  xp=x0 T X=Xk
= Tket1  I0n fork=0,1..n
e —— 1...n.
Remark: Ly, p (x) = 1; Lk (x;) = 0, Vi # k
2. P(x) = f(xO)Ln,O(x) paliii o f(xn)Ln,n(x)-

10
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e Theorem 3.2 If x, ..., x,, are n + 1distinct
numbers (called nodes) and f is a function whose
values are given at these numbers, then a unique
polynomial P(x) of degree at most n exists with
P(x;) = f(x;),foreachk = 0,1, ...n.

P(x) = f(xO)Ln,O(x) paliii o f(xn)Ln,n(x)-

X—Xi

Where L., . (x) =1L 4L, —.
n,k( ) L—O,L:thk_xi



Error Bound for the Lagrange Interpolating
Polynomial

Theorem 3.3 Suppose x,, ..., x,, are distinct
numbers in the interval [a, b] and f € C™*1[aq, b].
Then for each x in [a, b], a number é(x) (generally
unknown) between xy, ..., X, and hence in (a, b),
exists with f(x) = P(x) +
fO(E )
(n+1)!

Where P(x) is the Lagrange interpolating
polynomial.

(x —x9)(x —x1) ... (x — x;,).



Remark:

1. Applying the error term may be difficult.
&(x) is generally unknown.

2. (x —xp)(x —xq1) ... (x — x,) is oscillatory.

1 1 1 1 1 1 1
1] (VR 1 13 2 25 3 35 4

Graphof (x —0)(x — 1)(x — 2)(x — 3)(x — 4)
Remark: In general, |f(x) — p(x)]| is small when x is close to the center of
[XO, xn]-

3. The error formula is important as they are used for numerical
differentiation and integration.



Example 3. 2"9 Lagrange polynomial for f(x) =

Z on [2, 4] using nodes xg = 2,x; = 2.75,x, =

X
1 5 35 49

4is P(x) = —X° — - X+ . Determine the

error form for P(x), and maximum error when

polynomial is used to approximate f(x) for x €
2,4].



Exercise 3.1.6(a). Use appropriate Lagrange
polynomials of degree 2 to approximate f(0.43)
if f(0) =1, f(0.25) = 1.64872, f(0.5) =
2.71828, £(0.75) = 4.481609.



Example 4 Suppose a table is to be prepared for
f(x) =e*, x € [0,1]. Assume the number of
decimal places to be given per entry isd = 8
and that the difference between adjacent x-
values, the step size is h. What step size h will
ensure that linear interpolation gives an
absolute error of at most 107° for all x in [0,1].
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