2.1 The Bisection Method

• Intermediate Value Theorem

If $f \in C[a, b]$, and K is any number between f(a) and f(b), then there exists a number c in (a, b) for which f(c) = K.

- Assume $f(a_1)f(b_1) < 0$.
- Step one: compute $p_1 = \frac{a_1 + b_1}{2}$. Test if $f(a_1)f(p_1) < 0$. If $f(a_1)f(p_1) < 0$, let $a_2 = a_1$, $b_2 = p_1$. Otherwise, let $a_2 = p_1$, $b_2 = b_1$.
- Step two: Compute $p_2 = \frac{a_2+b_2}{2}$. Test if $f(a_2)f(p_2) < 0$. If $f(a_2)f(p_2) < 0$, let $a_3 = a_2, b_3 = p_2$. Otherwise, let $a_3 = p_2, b_3 = b_2$.
- Repeat above step. p_n is approximate root.

Facts to remember:

- 1. The sequence of intervals $\{(a_i, b_i)\}_{i=1}^{\infty}$ contains the desired root.
- 2. Intervals containing the root: $(a_1, b_1) \supset (a_2, b_2) \supset (a_3, b_3) \supset (a_4, b_4) \dots$
- 3. After *n* steps, the interval (a_n, b_n) has the length: $b_n - a_n = (1/2)^{n-1}(b-a)$
- 4. Let $p_n = \frac{b_n + a_n}{2}$ be the mid-point of (a_n, b_n) . The limit of sequence $\{p_n\}_{n=1}^{\infty}$ is the root.

Convergence

• Theorem 2.1

Suppose function f(x) is continuous on [a, b], and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f(x) with

$$|p_n - p| \le (1/2)^n (b - a), \quad \text{when } n \ge 1$$

• Convergence rate

The sequence $\{p_n\}_{n=1}^{\infty}$ converges to p with the rate of convergence $O((1/2)^n)$:

$$p_n = p + O\left(\left(\frac{1}{2}\right)^n\right)$$

Example 2.1.1. Show that $f(x) = x^3 + 4x^2 - 10 = 0$ has a root in [1, 2], and use the Bisection method to determine an approximation to the root that has relative error within 10^{-4} .

Remark:
$$|p_n - p| \le (1/2)^n (b - a)$$

or $|p_n - p| \le (1/2) (b_n - a_n)$

- Example 2.1.2. Determine the number of iteration to solve f(x) = x³ + 4x² 10 = 0 with absolute error smaller than 10⁻³. Use a₁ = 1, b₁ = 2.
 Solution: Since |p_n p| ≤ (1/2)ⁿ(b₁ a₁) ≤ 10⁻³, → 2⁻ⁿ(2 1) ≤ 10⁻³.
 Solve for n → n ≈ 9.96.
 So n = 10 is needed.
- Exercise 2.1.13. Find an approximation to $\sqrt[3]{25}$ Correct within 10^{-4} using bisection method.

Solution: Consider to solve $f(x) = x^3 - 25 = 0$ by the Bisection method.

By trial and error, we can choose $a_1 = 2, b_1 = 3$. Because $f(a_1) \cdot f(b_1) < 0$.

The Algorithm

- INPUT **a,b**; tolerance **TOL**; maximum number of iterations **N0**.
- OUTPUT solution p or message of failure.
- STEP1 Set i = 1;

FA = f(a);

- STEP2 While $i \leq N0$ do STEPs 3-6.
 - STEP3 Set $\mathbf{p} = \mathbf{a} + (\mathbf{b}-\mathbf{a})/2$; // a good way of computing middle point FP = f(\mathbf{p}).
 - STEP4 IF FP = 0 or $(\mathbf{b}-\mathbf{a}) < \text{TOL then}$

```
OUTPUT (p);
```

STOP.

- STEP5 Set i = i + 1.
- STEP6 If FP·FA > 0 then

$$FA = FP$$

else

STEP7 OUTPUT("Method failed after N0 iterations");

STOP.