2.1 The Bisection Method

- Intermediate Value Theorem

If $f \in C[a, b]$, and K is any number between $f(a)$ and $f(b)$, then there exists a number c in (a, b) for which $f(c)=K$.

- Assume $f\left(a_{1}\right) f\left(b_{1}\right)<0$.
- Step one: compute $p_{1}=\frac{a_{1}+b_{1}}{2}$. Test if $f\left(a_{1}\right) f\left(p_{1}\right)<0$. If $f\left(a_{1}\right) f\left(p_{1}\right)<0$, let $\mathrm{a}_{2}=\mathrm{a}_{1}, \mathrm{~b}_{2}=p_{1}$. Otherwise, let $\mathrm{a}_{2}=\mathrm{p}_{1}, \mathrm{~b}_{2}=b_{1}$.
- Step two: Compute $p_{2}=\frac{a_{2}+b_{2}}{2}$. Test if $f\left(a_{2}\right) f\left(p_{2}\right)<0$. If $f\left(a_{2}\right) f\left(p_{2}\right)<0$, let $\mathrm{a}_{3}=\mathrm{a}_{2}, \mathrm{~b}_{3}=p_{2}$. Otherwise, let $\mathrm{a}_{3}=\mathrm{p}_{2}, \mathrm{~b}_{3}=b_{2}$.
- Repeat above step. p_{n} is approximate root.

Facts to remember:

1. The sequence of intervals $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{\infty}$ contains the desired root.
2. Intervals containing the root: $\left(a_{1}, b_{1}\right) \supset\left(a_{2}, b_{2}\right) \supset$ $\left(a_{3}, b_{3}\right) \supset\left(a_{4}, b_{4}\right) \ldots$
3. After n steps, the interval $\left(a_{n}, b_{n}\right)$ has the length: $b_{n}-a_{n}=(1 / 2)^{n-1}(b-a)$
4. Let $p_{n}=\frac{b_{n}+a_{n}}{2}$ be the mid-point of $\left(a_{n}, b_{n}\right)$. The limit of sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ is the root.

Convergence

- Theorem 2.1

Suppose function $f(x)$ is continuous on $[a, b]$, and $f(a) \cdot f(b)<0$. The Bisection method generates a sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ approximating a zero p of $f(x)$ with

$$
\left|p_{n}-p\right| \leq(1 / 2)^{n}(b-a), \quad \text { when } n \geq 1
$$

- Convergence rate

The sequence $\left\{p_{n}\right\}_{n=1}^{\infty}$ converges to p with the rate of convergence $O\left((1 / 2)^{n}\right)$:

$$
p_{n}=p+O\left((1 / 2)^{n}\right)
$$

Example 2.1.1. Show that $f(x)=x^{3}+4 x^{2}-10=$ 0 has a root in $[1,2]$, and use the Bisection method to determine an approximation to the root that has relative error within 10^{-4}.

Remark: $\left|p_{n}-p\right| \leq(1 / 2)^{n}(b-a)$

$$
\text { or }\left|p_{n}-p\right| \leq(1 / 2) \quad\left(b_{n}-a_{n}\right)
$$

- Example 2.1.2. Determine the number of iteration to solve $f(x)=x^{3}+4 x^{2}-10=0$ with absolute error smaller than 10^{-3}. Use $a_{1}=1, b_{1}=2$.
Solution: Since $\left|p_{n}-p\right| \leq(1 / 2)^{n}\left(b_{1}-a_{1}\right) \leq 10^{-3}, \rightarrow$ $2^{-n}(2-1) \leq 10^{-3}$.
Solve for $n \rightarrow n \approx 9.96$.
So $n=10$ is needed.
- Exercise 2.1.13. Find an approximation to $\sqrt[3]{25}$

Correct within 10^{-4} using bisection method.
Solution: Consider to solve $f(x)=x^{3}-25=0$ by the Bisection method.
By trial and error, we can choose $a_{1}=2, b_{1}=3$. Because $f\left(a_{1}\right) \cdot f\left(b_{1}\right)<0$.

The Algorithm

INPUT a,b; tolerance TOL; maximum number of iterations NO.
OUTPUT solution p or message of failure.
STEP1 Set $\mathrm{i}=1$;
FA = f(a);
STEP2 While i \leq N0 do STEPs 3-6.
STEP3 Set $\mathbf{p}=\mathbf{a}+(\mathbf{b}-\mathbf{a}) / 2 ; \quad / /$ a good way of computing middle point $F P=f(p)$.
STEP4 IF FP = 0 or $(\mathbf{b}-\mathbf{a})<$ TOL then
OUTPUT (p);
STOP.
STEP5 Set $\mathrm{i}=\mathrm{i}+1$.
STEP6 If FP•FA > 0 then

$$
\text { Set } \mathbf{a}=\mathrm{p} ;
$$

$$
F A=F P .
$$

else

$$
\text { set } \mathbf{b}=\mathrm{p} \text {; }
$$

STEP7 OUTPUT("Method failed after N0 iterations"); STOP.

