2.2 Fixed-Point Iteration

Definition 2.2. The number p is a fixed point for a given function $g(x)$ if $g(p)=p$.

Geometric interpretation of fixed point.
$>$ Consider the graph of function $g(x)$, and the graph of equation $y=x$.
$>$ If they intersect, what are the coordinates of the intersection point?

Key: Fixed point is the solution of eq. $x=g(x)$.

Example 2.2.1.

Determine the fixed points of the function

 $g(x)=x^{2}-2$.

Connection between Fixed-point Problem and RootFinding Problem

1. Given a root-finding problem, i.e., to solve $f(x)=0$. Suppose a root is p, so that $f(p)=0$.

There are many ways to define $g(x)$ with fixed-point at p.
For example, define $g(x)=x-f(x)$,

$$
\text { or define } g(x)=x+3 f(x)
$$

2. If $g(x)$ has a fixed-point at p, then
$f(x)$ defined by $f(x)=x-g(x)$ has a zero at p.

Sufficient Conditions for Existence and Uniqueness of a

Fix Point

Theorem 2.3. Existence and Uniqueness Theorem
i. If $g \in C[a, b]$ and $g(x) \in[a, b]$ for all $x \in[a, b]$, then g has at least one fixed-point in $[a, b]$
ii. If, in addition, $g^{\prime}(x)$ exists on (a, b) and a positive constant $k<1$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \quad \text { for all } x \in(a, b)
$$

then there is exactly one fixed-point in $[a, b]$.

Note:

1. $g \in C[a, b] \rightarrow g$ is continuous in $[a, b]$
2. $g(x) \in[a, b] \rightarrow$ range of g is in $[a, b]$

Example 2. Show $g(x)=\frac{x^{2}-1}{3}$ has a unique fixed point on [-1, 1].

Example 3. Show that Theorem 2.3 does not ensure a unique fixed point of $g(x)=3^{-x}$ on the interval $[0,1]$, even through a unique fixed point on this interval does exist.
Solution: $g^{\prime}(x)=-3^{-x} \ln (3)$.
$g^{\prime}(x)<0$ on $[0,1]$. So g is strictly decreasing on $[0,1]$.
$g(1)=\frac{1}{3} \leq g(x) \leq g(0)=1$, for $0 \leq x \leq 1$.
Condition (i) of Theorem 2.3 ensures there is at least one fixed point.
Since $\left|g^{\prime}(0.01)\right|=\left|-3^{-0.01} \ln (3)\right| \approx 1.0866$,
$\left|g^{\prime}(x)\right| \neq 1$ on $(0,1)$.
Since condition in (ii) of Theorem 2.3 is NOT satisfied, Theorem 2.3 can not determine uniqueness.

Graphs of 3^{-x} and $y=x$:

Fixed-Point Iteration Algorithm

- Choose an initial approximation p_{0}, generate sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ by $p_{n}=g\left(p_{n-1}\right)$.
- If the sequence converges to p, then
$p=\lim _{n \rightarrow \infty} p_{n}=\lim _{n \rightarrow \infty} g\left(p_{n-1}\right)=g\left(\lim _{n \rightarrow \infty} p_{n-1}\right)=g(p)$

Example.

Determine the fixed point of the function $g(x)=\cos (x)$ for $x \in[-0.1,1.8]$.
Soln: choose $p_{0}=0.3, p_{1}=\cos (0.3)=0.955336$,

$$
\begin{aligned}
& p_{2}=\cos (0.955336)=0.577334, \\
& p_{3}=\cos (0.577334)=0.837921,
\end{aligned}
$$

Remark: See also the Matlab code.

INPUT p0; tolerance TOL; maximum number of iteration NO.
OUTPUT solution \mathbf{p} or message of failure
STEP1 Set $\mathrm{i}=1$. // init. counter
STEP2 While i \leq N0 do Steps 3-6
STEP3 Set $\mathbf{p}=\mathbf{g}(\mathbf{p 0})$.
STEP4 If $|\mathbf{p}-\mathbf{p} \mathbf{0}|<T O L$ then OUTPUT(p); // successfully found the solution STOP.

STEP5 Set $\mathrm{i}=\mathrm{i}+1$.
STEP6 Set p0 = p. // update po
STEP7 OUTPUT("The method failed after NO iterations"); STOP.

Convergence

Fixed-Point Theorem 2.4

Let $g \in C[a, b]$ be such that $g(x) \in[a, b]$, for all $x \in[a, b]$. Suppose, in addition, that g^{\prime} exists on (a, b) and that a constant $0<k<1$ exists with

$$
\left|g^{\prime}(x)\right| \leq k, \quad \text { for all } x \in(a, b)
$$

Then, for any number p_{0} in $[a, b]$, the sequence defined by

$$
p_{n}=g\left(p_{n-1}\right)
$$

converges to the unique fixed point p in $[a, b]$.
Corollary 2.5
If g satisfies the above hypotheses, then bounds for the error involved using p_{n} to approximating p are given by

$$
\left|p_{n}-p\right| \leq k^{n} \max \left\{p_{0}-a, b-p_{0}\right\}
$$

Illustration Equation $x^{3}+4 x^{2}-10=0$ has a unique root in [1,2]. Use algebraic manipulation to obtain fixed-point iteration function g to solve this root-finding problem.

