% NONLINEAR SHOOTING ALGORITHM 11.2 % % To approximate the solution of the nonlinear boundary-value problem % % Y'' = 1/8(32+2x^3-Y Y'), A<=X<=B, Y(A) = ALPHA, Y(B) = BETA: % % % INPUT: Endpoints A,B; boundary conditions ALPHA, BETA; number of % subintervals N; tolerance TOL; maximum number of iterations M. % % OUTPUT: Approximations W(1,I) TO Y(X(I)); W(2,I) TO Y'(X(I)) % for each I=0,1,...,N or a message that the maximum % number of iterations was exceeded. syms('OK', 'A', 'B', 'ALPHA', 'BETA', 'TK', 'AA', 'N'); syms('TOL', 'NN', 'FLAG', 'NAME', 'OUP', 'H', 'K', 'W1'); syms('W2', 'U1', 'U2', 'I', 'X', 'T', 'K11', 'K12', 'K21'); syms('K22', 'K31', 'K32', 'K41', 'K42', 'J', 's', 'x', 'y', 'z'); TRUE = 1; FALSE = 0; fprintf(1,'This is the Nonlinear Shooting Method.\n'); F = inline('(32+2*x^3-y*z)/8','x','y','z'); FY = inline('-z/8','x','y','z'); FYP = inline('-y/8','x','y','z'); % left and right endpoints A = 1.0; B = 3.0; % Y(a), Y(b) ALPHA = 17; BETA = 43/7; TK = (BETA-ALPHA)/(B-A); %the number of subintervals. N = 50; OK = FALSE; % tolerance TOL = 1.0e-11; %maximum number of iterations. NN = 200; OUP = 1; fprintf(OUP, 'NONLINEAR SHOOTING METHOD\n\n'); fprintf(OUP, ' I X(I) W1(I) W2(I)\n'); % STEP 1 W1 = zeros(1,N+1); W2 = zeros(1,N+1); H = (B-A)/N; K = 1; % TK already computed OK = FALSE; % STEP 2 while K <= NN & OK == FALSE % STEP 3 W1(1) = ALPHA; W2(1) = TK; U1 = 0 ; U2 = 1; % STEP 4 % Rung-Kutta method for systems is used in STEPS 5 and 6 for I = 1 : N % STEP 5 X = A+(I-1)*H; T = X+0.5*H; % STEP 6 K11 = H*W2(I); K12 = H*F(X,W1(I),W2(I)); K21 = H*(W2(I)+0.5*K12); K22 = H*F(T,W1(I)+0.5*K11,W2(I)+0.5*K12); K31 = H*(W2(I)+0.5*K22); K32 = H*F(T,W1(I)+0.5*K21,W2(I)+0.5*K22); K41 = H*(W2(I)+K32); K42 = H*F(X+H,W1(I)+K31,W2(I)+K32); W1(I+1) = W1(I)+(K11+2*(K21+K31)+K41)/6; W2(I+1) = W2(I)+(K12+2*(K22+K32)+K42)/6; K11 = H*U2; K12 = H*(FY(X,W1(I),W2(I))*U1+FYP(X,W1(I),W2(I))*U2); K21 = H*(U2+0.5*K12); K22 = H*(FY(T,W1(I),W2(I))*(U1+0.5*K11)+FYP(T,W1(I),W2(I))*(U2+0.5*K21)); K31 = H*(U2+0.5*K22); K32 = H*(FY(T,W1(I),W2(I))*(U1+0.5*K21)+FYP(T,W1(I),W2(I))*(U2+0.5*K22)); K41 = H*(U2+K32); K42 = H*(FY(X+H,W1(I),W2(I))*(U1+K31)+FYP(X+H,W1(I),W2(I))*(U2+K32)); U1 = U1+(K11+2*(K21+K31)+K41)/6; U2 = U2+(K12+2*(K22+K32)+K42)/6; end; % STEP 7 % test for accuracy if abs(W1(N+1)-BETA) < TOL % STEP 8 I = 0; fprintf(OUP, '%3d %13.8f %13.8f %13.8f\n', I, A, ALPHA, TK); for I = 1 : N J = I+1; X = A+I*H; fprintf(OUP, '%3d %13.8f %13.8f %13.8f\n', I, X, W1(J), W2(J)); end; fprintf(OUP, 'Convergence in %d iterations\n', K); fprintf(OUP, ' t = %14.7e\n', TK); % STEP 9 OK = TRUE; else % STEP 10 % Newton's method applied to improve TK TK = TK-(W1(N+1)-BETA)/U1; K = K+1; end; end; % STEP 11 % method failed if OK == FALSE fprintf(OUP, 'Method failed after %d iterations\n', NN); end; if OUP ~= 1 fclose(OUP); fprintf(1,'Output file %s created successfully \n',NAME); end;