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Abstract

Adaptive mesh refinement (AMR) is a type of multiscale algorithm that achieves high

resolution in localized regions of dynamic, multidimensional numerical simulations. One of

the key issues related to AMR is dynamic load balancing (DLB), which allows large-scale

adaptive applications to run efficiently on parallel systems. In this paper, we present an

efficient DLB scheme for structured AMR (SAMR) applications. This scheme interleaves a

grid-splitting technique with direct grid movements (e.g., direct movement from an overloaded

processor to an underloaded processor), for which the objective is to efficiently redistribute

workload among all the processors so as to reduce the parallel execution time. The potential

benefits of our DLB scheme are examined by incorporating our techniques into a SAMR

cosmology application, the ENZO code. Experiments show that by using our scheme, the

parallel execution time can be reduced by up to 57% and the quality of load balancing can be

improved by a factor of six, as compared to the original DLB scheme used in ENZO.

r 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Adaptive mesh refinement (AMR) is a type of multiscale algorithm that achieves
high resolution in localized regions of dynamic, multidimensional numerical
simulations. It shows incredible potential as a means of expanding the tractability
of a variety of numerical experiments and has been successfully applied to model
multiscale phenomena in a range of disciplines, such as computational fluid
dynamics, computational astrophysics, meteorological simulations, structural
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dynamics, etc. The adaptive structure of AMR applications, however, results in load
imbalance among processors on parallel systems. Dynamic load balancing (DLB) is
an essential technique to solve this problem. In this paper, we present a novel DLB
scheme that integrates a grid-splitting technique with direct grid movements. We
illustrate the advantages of this scheme with a real cosmological application that uses
structured AMR (SAMR) algorithm developed by Berger and Colella [1] in the
1980s.

Dynamic load balancing has been intensively studied for more than 10 years and a
large number of schemes have been presented to date [2,5–8,10,12,14,16–18]. Each of
these schemes can be classified as either Scratch-and-Remap or Diffusion-based

schemes [13]. In Scratch-and-Remap schemes, the workload is repartitioned from
scratch and then remapped to the original partition. Diffusion-based schemes employ
the neighboring information to redistribute the load between adjacent processors
such that global balance is achieved by successive migration of workload from
overloaded processors to underloaded processors.

With any DLB scheme, the major issues to be addressed are the identification of
overloaded versus underloaded processors, the amount of data to be redistributed
from the overloaded processors to the underloaded processors, and the overhead
that the DLB scheme imposes on the application. In investigating DLB schemes, we
first analyze the requirements imposed by the applications. In particular, we
complete a detailed analysis of the ENZO application, a parallel implementation of
SAMR in astrophysics and cosmology [3], and identify the unique characteristics
that impose challenges on DLB schemes. The results of the detailed analysis of
ENZO provide four unique adaptive characteristics relating to DLB requirements:
(1) coarse granularity, (2) high magnitude of imbalance, (3) different patterns of
imbalance, and (4) high frequency of adaptations. In addition, ENZO employs an
implementation that maintains some global information.

The fourth characteristic, the high frequency of adaptations, and the use of
complex data structures result in Scratch–Remap schemes being intolerable because
of the demand to completely modify the data structures without considering the
previous load distribution. In contrast, Diffusion-based schemes are local schemes
that do not utilize the global information provided by ENZO. In [13], it was
determined that Scratch-and-Remap schemes are advantageous for problems in
which high magnitude of imbalance occurs in localized regions, while Diffusion-
based schemes generally provide better results for the problems in which imbalance
occurs globally throughout the computational domain. The third characteristic,
different patterns of imbalance, implies that an appropriate DLB scheme should
provide good balancing for both situations. Further, the first characteristic, coarse
granularity, is a challenge for a DLB scheme because it limits the quality of load
balancing. Lastly, ENZO employs a global method to manage the dynamic grid
hierarchy, that is, each processor stores a small amount of grid information about
other processors. This information can be used by a DLB to aid in redistribution.

Utilizing the information obtained from the detailed analysis of ENZO, we
develop a DLB scheme that integrates a grid-splitting option with direct data
movement. In this scheme, each load-balancing step consists of one or more
iterations of two phases: moving-grid phase and splitting-grid phase. The moving-grid
phase utilizes the global information to send grids directly from overloaded
processors to underloaded processors. The use of direct communication to move the
grids eliminates the variability in time to reach the equal balance and avoids chances
of thrashing [15]. The splitting-grid phase splits a grid into two smaller grids along
the longest dimension, thereby addressing the first characteristic, coarse granularity.
These two phases are interleaved and executed in parallel. For each load-balancing
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step, the moving-grid phase is invoked first; then splitting-grid phase may be invoked
if there are no more direct movements. If significant imbalance still exists, another
round of two phases may be invoked. Further, in order to minimize communica-
tional cost of each load balancing step, nonblocking communication is employed in
this scheme and several computation functions are overlapped with these
nonblocking calls.

The efficiency of our DLB scheme on SAMR applications is measured by both the
execution time and the quality of load balancing. In this paper, three metrics are
proposed to measure the quality of load balancing. Our experiments show that
integrating our DLB scheme into ENZO results in significant performance
improvement for all metrics. For example, the execution time of the AMR64

dataset, a 32� 32� 32 initial grid, on 32 processors is reduced by 57%; and the
quality of load balancing is improved by a factor of six.

The remainder of this paper is organized as follows. Section 2 introduces SAMR
algorithm and its parallel implementation, ENZO. Section 3 analyzes the adaptive
characteristics of SAMR applications. Section 4 describes our dynamic load-
balancing scheme. Section 5 presents three load-balancing metrics followed by the
experimental results exploring the impact of our DLB scheme on real SAMR
applications. Section 6 gives a detailed sensitivity analysis of the parameter used in
this proposed DLB scheme. Section 7 describes related work and compares our
scheme with some widely used schemes. Finally, Section 8 summarizes the paper.

2. Overview of SAMR

This section gives an overview of the SAMR method, developed by Berger et al.,
and the ENZO code, a parallel implementation of this method for astrophysical and
cosmological applications. Additional details about ENZO and the SAMR method
can be found in [1,3,4,9].

2.1. Layout of grid hierarchy

SAMR represents the grid hierarchy as a tree of grids at any instant in time. The
number of levels, the number of grids, and the locations of the grids change with
each adaptation. Initially, a uniform mesh covers the entire computational domain.
During the computation, finer grids are added in regions that require higher
resolution. This process repeats recursively with each adaptation resulting in a tree of
grids like that shown in Fig. 1. The top graph in this figure shows the overall
structure after several adaptations. The remainder of the figure shows the grid
hierarchy for the overall structure with the dotted regions corresponding to those
that require further refinement. In this grid hierarchy, there are four levels of grids
from level 0 to level 3. Throughout execution of a SAMR application, the grid
hierarchy changes with each adaptation.

For simplification, SAMR imposes some restrictions on the new subgrids. A
subgrid must be uniform, rectangular, aligned with its parent grid, and completely
contained within its parent. All parent cells are either completely refined or
completely unrefined. Lastly, the refinement factor must be an integer [3].

2.2. Integration execution order

The SAMR integration algorithm goes through the various adaptation levels
advancing each level by an appropriate time step, then recursively advancing to the
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next finer level at a smaller time step until it reaches the same physical time as that of
the current level. Fig. 2 illustrates the execution sequence for an application with
four levels and a refinement factor of 2. First, we start with the grids on level 0 with
time step dt: Then the execution continues with the subgrids on level 1, with time step
dt=2:Next, the integration continues with the subgrids on level 2, with time step dt=4;
followed by the iteration of the subgrids on level 3 with time step dt=8: When the
physical time at the finest level reaches that at level 0, the grids at level 0 proceed to
the next iteration. The figure illustrates the order in which the subgrids are evolved
with the integration algorithm.

Fig. 1. SAMR grid hierarchy.

Fig. 2. Integrated execution order (refinement factor ¼ 2).
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2.3. ENZO: a parallel implementation of SAMR

Although the SAMR strategy shows incredible potential as a means for simulating
multiscale phenomena and has been available for over two decades, it is still not
widely used due to the difficulty with implementation. The algorithm is complicated
because of the dynamic nature of memory usage, the interactions between different
subgrids and the algorithm itself. ENZO [3] is one of the successful parallel
implementations of SAMR, which is primarily intended for use in astrophysics and
cosmology. It entails solving the coupled equations of gas dynamics, collisionless
dark matter dynamics, self-gravity, and cosmic expansion in three dimensions and at
high spatial resolution. The code is written in C++ with Fortran routines for
computationally intensive sections and MPI functions for message passing among
processors. ENZO was developed as a community code and is currently in use at
over six sites.

The ENZO implementation manages the grid hierarchy globally; that is, each
processor stores the grid information of all other processors. In order to save space
and reduce communication time, the notation of ‘‘real’’ grid and ‘‘fake’’ grid is used
for sharing grid information among processors. Each subgrid in the grid hierarchy
resides on one processor and this processor holds the ‘‘real’’ subgrid. All other
processors have replicates of this ‘‘real’’ subgrid, called ‘‘fake’’ grids. Usually, the
‘‘fake’’ grid contains the information such as dimensional size of the ‘‘real’’ grid and
the processor where the ‘‘real’’ grid resides. The data associated with a ‘‘fake’’ grid is
small (usually a few hundred bytes), while the amount of data associated with a
‘‘real’’ grid is large (ranging from several hundred kilobytes to dozens of megabytes).

The current implementation of ENZO uses a simple DLB scheme that utilizes the
previous load information and the global information, but does not address the large
grid sizes (characteristic one). For this original DLB scheme, if the load-balance
ratio (defined as MaxLoad/MinLoad) is larger than a hard-coded threshold, the load
balancing process will be invoked. Here, threshold is used to determine whether a
load-balancing process should be invoked after each refinement, and the default is
set to 1.50. MaxProc, which has the maximal load, attempts to transfer its portion of
grids to MinProc, which has the minimal load, under the condition that MaxProc

can find a suitable sized grid for transferring. Here, the suitable size means the size is
no more than half of the load difference between MaxProc and MinProc. Fig. 3 gives
the pseudocode of this scheme.

An example of grid movements that occurs with this DLB method is shown in
Fig. 4. In this example, there are four processors: processor 0 is overloaded with two

Fig. 3. Pseudo-code of the original DLB scheme.
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large-sized grids (0 and 1), processor 2 is idle, and processors 1 and 3 are
underloaded. The dash line shows the required load for which all the processors
would have an equal load. After one step of movement with the original DLB, grid 0
is moved to processor 2 as shown in Fig. 4. At this point, the original DLB stops
because no other grids can be moved. However, as the figure illustrates, the load is
not balanced among the processors. Hence, the original DLB suffers from the
problem of the coarse granularity of the grids. This issue is addressed with our DLB
scheme, described in Section 4.

3. Adaptive characteristics of SAMR applications

This section provides some experimental results to illustrate the adaptive
characteristics of SAMR applications running with ENZO implementation on the
250MHz R10000 SGI Origin2000 machine at the National Center for Super-
computing Applications (NCSA). Three real datasets (AMR64, AMR128, and
ShockPool3D) are used in this experiment. Both AMR128 and AMR64 are designed
to simulate the formation of a cluster of galaxies; AMR128 is basically a larger
version of AMR64. Both datasets use a hyperbolic (fluid) equation and an elliptic
(Poisson’s) equation as well as a set of ordinary differential equations for the particle
trajectories. They create many grids randomly distributed across the computational
domain. ShockPool3D is designed to simulate the movement of a shock wave (i.e., a
plane) that is slightly tilted with respect to the edges of the computational domain.
This dataset creates an increasing number of grids along the moving shock wave
plane. It solves a purely hyperbolic equation. The sizes of these datasets are given in
Table 1.

The adaptive characteristics of SAMR applications are analyzed from four
aspects: granularity, magnitude of imbalance, patterns of imbalance, and frequency
of refinements. All the figures shown in this section are obtained by executing ENZO
without any DLB. This is done to demonstrate the characterization independent of
any DLB.

Coarse granularity: Here, the granularity denotes the size of basic entity for data
movement. For SAMR applications, the basic entity for data movement is a grid.
Each grid consists of a computational interior and a ghost zone as shown in Fig. 5.
The computational interior is the region of interest that has been refined from the
immediately coarser level; the ghost zone is the part added to exterior of
computational interior in order to obtain boundary information. For the
computational interior, there is a requirement for the minimum number of cells,
which is equal to the refinement ratio to the power of the number of dimensions. For
example, for a 3D problem, if the refinement ratio is 2, then the computational
interior will have at least 23 ¼ 8 cells. The default size for the ghost zones is set to 3,
resulting in each grid having at least ð3þ 2þ 3Þ3 ¼ 512 cells. The grids are often

Fig. 4. An example of load movements using the original DLB scheme.
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much larger than this minimum size. Usually, the amount of data associated with
grids varies ranging from 100 KB to 10 MB: Thus the granularity of a typical SAMR
application is very coarse, thereby making it very hard to achieve a good load
balance by solely moving these basic entities. Coarse granularity is a challenge for a
DLB scheme because it limits the quality of load balancing, thus a desired DLB
scheme should address this issue.

High magnitude of imbalance: Fig. 6 shows the load imbalance ratio, defined as
maxðloadÞ=averageðloadÞ; for AMR64 and ShockPool3D, respectively. Here, load is
defined as the total amount of grids in bytes on a processor and the ratio is an
average over all the adaptations. The ideal case corresponds to the ratio equal to 1.0.
The figure indicates that the load imbalance deteriorates as the number of processors
increases. For AMR64, when the number of processors increases from 4 to 64, the
load imbalance ratio increases from 2.02 to 25.64. For AMR128, the results are
similar to those of AMR64. For ShockPool3D, this ratio increases from 2.19 to 2.96
as the number of processors increases from 8 to 64. For both cases, the ratio is

Table 1

Three experimental datasets

Dataset Initial problem size Final problem size Number of adaptations

AMR64 32� 32� 32 4096� 4096� 4096 2500

AMR128 64� 64� 64 8192� 8192� 8192 5000

ShockPool3D 50� 50� 50 6000� 6000� 6000 600

Fig. 5. Components of grids.

Fig. 6. Load imbalance ratio defined as maxðloadÞ
averageðloadÞ

� �
:
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always larger than 2.0, which means a very high magnitude of imbalance exists for
both datasets. Therefore, a DLB scheme is an essential technique for efficient
execution of SAMR applications on parallel systems.

Different patterns of imbalance: Fig. 7 illustrates the different patterns of load
imbalance between AMR64 and ShockPool3D. The x-axis represents the processor
number, and the y-axis represents the average percentage of refinement per
processor. Processors that have large percentage of refinement will become
overloaded. Thus, the figure also represents the imbalance pattern, whereby
processors that have large percentage of refinement correspond to the regions that
are overloaded. For AMR64, there are only a few processors whose loads are
increased dramatically and most processors have little or no change. For example,
running AMR64 on 64 processors, there are only 8 processors (processor number 22,
23, 26, 27, 38, 39, 42, 43) with significant percentages of refinements. As mentioned
above, the dataset AMR128 is essentially a larger version of AMR64, so high
imbalance occurs locally for both AMR64 and AMR128.

For ShockPool3D, the percentage of refinement per processor has some regular
behavior: all the processors can be grouped into four subgroups and each subgroup
has similar characteristics with the percentage of refinement ranging from zero to
86%. Therefore, the imbalance occurs throughout the whole computational domain
for ShockPool3D. The figure indicates that for SAMR applications, different
datasets exhibit different imbalance distributions. The underlying DLB scheme
should provide high quality of load balancing for all cases.

High frequency of refinements: After each time step of every level, the adaptation
process is invoked based on one or more refinement criteria defined at the beginning
of the simulation. The local regions satisfying the criteria will be refined. The number
of adaptations varies for different datasets. For ShockPool3D, there are about 600
adaptations throughout the evolution. For some SAMR applications, more frequent
adaptation is sometimes needed to get the required level of detail. For example, for
the dataset AMR64 with initial problem size 32� 32� 32 running on 32 processors,
there are more than 2500 adaptations with the execution time of about 8500 s; which
means the adaptation process is invoked every 3:4 s on average. For the larger
dataset AMR128, there are more than 5000 adaptations. High frequency of
adaptation requires the underlying DLB method to execute very fast.

4. Our DLB scheme

After taking into consideration the adaptive characteristics of the SAMR
application, we developed a novel DLB scheme which interleaves a grid-splitting
option with direct data movement. In this scheme, each load-balancing step consists

Fig. 7. Percentage of refinement per processor.
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of one or more iterations of two phases: moving-grid phase and splitting-grid phase.
The moving-grid phase redistributes grids directly from overloaded processors to
underloaded processors by the guidance of the global information; and the splitting-
grid phase splits a grid into two smaller grids along the longest dimension. For each
load-balancing step, the moving-grid phase is invoked first; then splitting-grid phase
may be invoked if no more direct movement can occur. If significant imbalance still
exists, another round of two phases may be invoked. Fig. 8 gives the pseudocode of
our scheme, and the details are given below.

Moving-grid phase: After each adaptation, our DLB scheme is triggered by
checking whether MaxLoad=AvgLoad > threshold : The MaxProc moves its grid
directly to MinProc under the condition that the redistribution of this grid will make
the workload of MinProc reach AvgLoad. Here, AvgLoad denotes the required load
for which all the processors would have an equal load. Thus, if there is a suitable
sized grid, one direct grid movement is enough to balance an underloaded processor
by utilizing the global information. This phase continues until either the load-
balancing ratio is satisfied or no grid residing on the MaxProc is suitable to be
moved.

Note that this phase differs from the original DLB scheme (Fig. 3) from several
aspects. First, from Fig. 4, it is observed that the original DLB scheme may cause the
previous underloaded processor (processor 2) to be overloaded by solely moving a
grid from an overloaded processor to an underloaded processor. Our DLB algorithm
overcomes this problem by making sure that any grid movement will make an
underloaded processor reach, but not exceed, the average load.

Fig. 8. Pseudo-code of our DLB scheme.
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Second, in this phase, a different metric ðMaxLoad=AvgLoad > thresholdÞ is used
to identify when to invoke load-balancing process in contrast to the metric
ðMaxLoad=MinLoad > thresholdÞ for the original scheme. The new metric results in
fewer invocation of load-balancing steps, thereby low overhead. For example,
consider two cases with the same average load of 10.0 for a six-processor system: the
load distribution is ð20; 8; 8; 8; 8; 8Þ and ð12; 12; 12; 12; 12; 0Þ; respectively. The
distribution of the second case is preferred over the first case because the maximum
run-time is less. If the threshold is set to 1.50, this moving-grid phase will be invoked
for the first case because MaxLoad

AvgLoad
¼ 2:0 is larger than the threshold, while it will not be

invoked for the second case ðMaxLoad
AvgLoad

¼ 1:20o1:50Þ: However, the original DLB
scheme will invoke grid movements for both cases because the metric ðMaxLoad

MinLoad
Þ is

larger than the threshold for both cases, e.g. MaxLoad
MinLoad

¼ 2:5 for the first case and
MaxLoad
MinLoad

¼ N for the second case. Hence, the new metric MaxLoad
AvgLoad

> threshold is more
accurate and results in fewer load-balancing steps.

Splitting-grid phase: If no more direct grid movements can be employed and
imbalance still exists, the splitting-grid phase will be invoked. First, the MaxProc

finds the largest grid it owns (denoted as MaxGrid). If the size of MaxGrid is no more
than ðAvgLoad � MinLoadÞ which is the amount of load needed by MinProc, the
grid will be moved directly to MinProc from MaxProc; otherwise, MaxProc splits
this grid along the longest dimension into two smaller grids. One of the two split
grids, whose size is about ðAvgLoad � MinLoadÞ; will be redistributed to MinProc.
After such a splitting step, MinProc reaches the average load. Note that splitting
does not mean splitting into equal pieces. Instead, the splitting is done exactly to fill
the ‘‘hole’’ on the MinProc.

After such a splitting phase, if the imbalance still exists, another attempt of
interleaving moving-grid phase and splitting-grid phase will continue. Eventually,
either the load is balanced, which is our goal, or there are not enough grids to be
redistributed among all the processors.

To illustrate the use of our DLB scheme, versus the original DLB scheme, we use
the same example given in Fig. 4. In this example, the grid movements of our DLB
scheme is shown in Fig. 9. The two grids on overloaded processor 0 are larger than
ðthreshold � AvgLoad � MinLoadÞ; so no work can be done in the moving-grid
phase and splitting-grid phase begins. First, grid 0 is split into two smaller grids and
one of them is transferred to processor 2. This is the first attempt of load balancing.
The second attempt of load balancing begins with the direct grid movement of grid 0
from processor 0 to processor 1, followed by the grid splitting of grid 1 from
processor 0 to processor 3. After two attempts of load balancing, the workload is
equally redistributed to all the processors. As we can observe, compared with the

Fig. 9. An example of load movements using our DLB scheme.
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grid movements of the original DLB scheme shown in Fig. 4, our DLB scheme
invokes the grid-splitting phase for the case when the direct movement of grids is not
enough to handle load imbalance. Our DLB scheme interleaves the grid-splitting
technique with direct grid movements, thereby improving the load balance.

The use of global load information to move and split the grids eliminates the
variability in time to reach the equal balance and avoids chances of thrashing [15]. In
other words, the situation that multiple overloaded processors send their workload
to an underloaded processor and make it overloaded will not occur by using the
proposed DLB. Note that both the moving-grid phase and splitting-grid phase
execute in parallel. For example, suppose there are eight processors as shown in
Fig. 10. If the MaxProc and MinProc are processors 0 and 5, respectively, all the
processors know which grid will be moved/split from processor 0 to processor 5 by
the guidance of the global information. Then processor 0 moves/splits its grid (i.e.
the ‘‘real’’ grid) to processor 5. In parallel, other processors first update their view of
load distribution of this grid movement from processor 0 to processor 5, then
continue load-balancing process. If the new MaxProc and MinProc are processor 1
and 2 respectively, then processor 1 will move/split its grid (i.e. ‘‘real’’ grid) to
processor 2, and this process will be overlapped with the movement from processor 0
to processor 5. The remaining processors (3, 4, 6 and 7) continue with first updating
their view of load distribution of the grid movement from processor 1 to processor 2
followed by calculating the next MaxProc and MinProc. Because the new MaxProc

and MinProc are processor 0 and 3, respectively, so processor 3 has to wait for
processor 0 which is still in the process of transferring its workload to processor 5.

In order to minimize the overhead of the scheme, nonblocking communication is
explored in this scheme. In the mode of nonblocking communication, a nonblocking
post-send initiates a send operation and returns before the message is copied out of
the send buffer. A separate complete-send call is needed to complete the
communication. The nonblocking receive is proceeded similarly. In this manner,
the transfer of data may proceed concurrently with computations done at both the
sender and the receiver sides. In the splitting-grid phase, nonblocking calls are
explored and being overlapped with several computation functions.

Fig. 10. An illustration of the parallelism in our DLB scheme.
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5. Experimental results

The potential benefits of our DLB scheme were examined by executing real SAMR
applications running ENZO on parallel systems. All the experiments were executed
on the 250 MHz R10000 SGI Origin2000 machines at NCSA. The code was
instrumented with performance counters and timers, which do not require any I/O at
run-time. The threshold is set to 1.20.

5.1. Comparison metrics

The effectiveness of our DLB scheme is measured by both the execution time and
the quality of load balancing. In this paper, three metrics are proposed to measure
the quality of load balancing. Note that each metric below is arithmetic average over
all the adaptations.

Imbalance ratio is defined as

imbalance ratio ¼

PN
j¼1

MaxLoadðjÞ
AvgLoadðjÞ

N
; ð1Þ

where N is number of adaptations, MaxLoadðjÞ denotes the maximal amount of load
of a processor for the jth adaptation, and AvgLoadðjÞ denotes the average load of all
the processors for the jth adaptation. It is clear that imbalance ratio is greater or
equal to 1.0. The closer it is to 1.0 the better; the value of 1.0 implies equal load
distribution among all processors.

Standard deviation of imbalance ratio is defined as

avg std ¼

PN
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPP

i¼1
ð
MaxLoadðjÞ

LiðjÞ
�

MaxLoadðjÞ
AvgLoadðjÞ Þ

2

P�1

r

N
; ð2Þ

where P is number of processors and LiðjÞ denotes the workload of ith processor for
the jth adaptation. By definition, the capacity to keep avg std low during the
execution is one of the main quality metrics for an efficient DLB. The capacity to
have avg std be a small fraction of imbalance ratio indicates that imbalance ratio can
truly represent the imbalance over all the adaptations.

Percentage of idle processors is defined as

idle procs ¼

PN
j¼1 idleðjÞ

N
; ð3Þ

where idleðjÞ is the percentage of idle processors for the jth adaptation. Here, an idle
processor is the processor whose amount of load is zero. As mentioned above, due to
the coarse granularity and the minimal size requirement of SAMR applications, it is
possible that there may be some idle processors for each iteration. Obviously, the
smaller this metric, the better the load is balanced among the processors.

5.2. Execution time

Fig. 11 compares the total execution times with varying numbers of processors by
comparing our DLB scheme with the original DLB scheme for the datasets AMR64,
AMR128, and ShockPool3D. Table 2 summarizes the relative improvements by
using our DLB scheme. It is observed that our DLB scheme greatly reduces the
execution time, especially when the number of processors is more than 16. The
relative improvements of execution time are as follows: between 12.60% and 57.54%
for AMR64, between �4:84% and 20.17% for AMR128, and between 8.07% and
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42.13% for ShockPool3D. We may notice that there are two exceptions for which
our DLB results in larger execution times. When executing AMR128 on 8 or 16
processors, our DLB scheme has worse performance compared to the original DLB
scheme achieves. The reason is that our DLB scheme tries to improve the load
balance by using the grid-splitting technique, which entails some communication and
computation overheads. When more smaller grids are introduced across processors,
more communication is needed to transfer data among processors and more
computational load is added because each grid requires a ‘‘ghost zone’’ to store
boundary information. Hence, for these cases when the number of processors is
small and the original DLB scheme provides relatively good load balancing, the
overheads introduced by our scheme may be larger than the gain. However, when the
original DLB scheme is inefficient, especially when the number of processors is larger
than 16, our DLB scheme is able to redistribute load more evenly among all the
processors, thereby utilizing the computing resource more efficiently so as to
improve the overall performance.

5.3. Quality of load balancing

The first load-balancing metric imbalance ratio is given in Fig. 12. The solid lines
represent the results by using our proposed DLB scheme (denoted as parallel DLB),
and the dash lines represent the results by using the original DLB scheme. The
imbalance ratio increases as the number of processors increases by using either of
two methods. This is reasonable because it is more likely that there are not enough

Fig. 11. Total execution time for AMR64, AMR128, and ShockPool3D.

Table 2

Relative improvement for three datasets

Relative improvement 8 Procs. 16 Procs. 32 Procs. 48 Procs. 64 Procs.

ð%Þ ð%Þ ð%Þ ð%Þ ð%Þ

AMR64 12.60 34.15 57.54 54.19 53.69

AMR128 �4.84 �2.26 20.17 9.14 7.53

ShockPool3D 8.07 14.18 23.73 24.15 42.13
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grids to be redistributed among processors if there are more processors. Our
proposed DLB, however, is able to significantly reduce the imbalance ratio by
interleaving direct grid movement with grid splitting for all cases. Further, the
amount of improvement gets larger as the number of processors increases. In
general, the imbalance ratio by using our DLB scheme is always less than 1.80, which
is significant. As compared to the original DLB scheme, the relative improvement of
imbalance ratio is in the range of 33%–615% by using our DLB scheme. The result
of the second load-balancing metric, avg std (not shown), indicates that the standard
deviation of imbalance ratio is quite low (less than 0.035), which means that
imbalance ratio can truly represent the load imbalance among all processors.

The third metric percentage of idle processors is shown in Fig. 13. The solid lines
and the dash lines represent results by using our DLB (denoted as parallel DLB) and
the original DLB scheme respectively. The results indicate that the metric increases
as the number of processors increases for both schemes. This is due to the fact that it
is more likely there are not enough grids for movement when there are more
processors. However, the percentage of idle processors is much lower by using our
DLB scheme; the metric ranges from zero to approximately 25% for our DLB
scheme, as compared to 5.9%–81.2% for the original DLB scheme. Larger
percentage of idle processors means more computing resources are wasted.

Fig. 13. Average percentage of idle processors.

Fig. 12. Imbalance ratio for three datasets.
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6. Sensitivity analysis

A parameter called threshold is used in our DLB scheme (see Fig. 8), which
determines whether a load-balancing process should be invoked after each
refinement. Intuitively, the ideal value should be 1.0, which means all the processors
are evenly and equally balanced. However, the closer this threshold is to 1.0, the
more load-balancing actions are entailed, so the more overhead may be introduced.
Furthermore, for SAMR applications, the basic entity is a ‘‘grid’’ which has a
minimal size requirement. Thus the ideal situation in which the load is perfectly
balanced may not be obtained. The threshold is used to adjust the quality of load
balancing, whose value influences the efficiency of the overall DLB scheme. What is
the optimal value for this threshold is the topic of this section. We give the
experimental results to compare the performance and the quality of load balancing
by varying threshold from a small value of 1.10 to a large value of 2.00 and identify
the optimal value for the parameter.

Figs. 14 and 15 illustrate the relative performances by normalizing the execution
times to the minimal time for each threshold value. The figures indicate that the
smaller value for this threshold may result in worse performance because more
overheads are introduced. For example, for AMR64 running on 32, 48, and 64
processors, the relative execution times by setting this parameter to 1.10 are usually
two times above the minimal execution times. Secondly, a larger value for this

Fig. 14. Relative execution time for AMR64 (various threshold).

Fig. 15. Relative execution time for ShockPool3D (various threshold).
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threshold may also result in a worse performance due to the poorer quality of load
balancing. For example, for ShockPool3D, by setting this parameter to 2.00, the
relative execution times are 20–45% above the minimal execution times. Both figures
indicate that setting threshold to 1.25 results in the best performance in terms of
execution time because the relative execution times are always no more than 5%
above the minimal execution times.

Figs. 16 and 17 illustrate the quality of load balancing with varying values of
threshold for AMR64 and ShockPool3D. Here, the quality of load balancing is
measured by the imbalance ratio: From both figures, it is clear that the smaller is the
threshold, the smaller is the imbalance ratio; thereby resulting in a higher quality of
load balancing. A smaller value of threshold indicates that more load-balancing
actions may be entailed to balance the workload among the processors. Further, we
can observe that imbalance ratio gets larger as the number of processors increases.
When the number of processors is increased, there may not be enough grids to be
distributed among the processors, which results in lower quality of load balancing. It
seems that the best case is to set threshold to a smaller value, such as 1.10. However,
this small value means more load-balancing attempts are invoked, which would
introduce more overhead and the overall performance may be deteriorated as shown
in Figs. 14 and 15. For both datasets, our results of idle procs (not shown) indicate

Fig. 16. Quality of load balancing for AMR64 (various threshold).

Fig. 17. Quality of load balancing for ShockPool3D (various threshold).
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that there is no significant difference of its values with the varying values of
threshold.

By combining the results in Figs. 14–17, we determine that setting threshold to be
around 1.25 would result in the best performance in terms of execution time, as well
as the acceptable quality of load balancing.

7. Related work

Our DLB scheme is not a Scratch–Remap scheme because it takes into
consideration the previous load distribution during the current redistribution
process. As compared to Diffusion-based scheme, our DLB scheme differs from it in
two manners. First, our DLB scheme addresses the issue of coarse granularity of
SAMR applications. It splits large-sized grids located on overloaded processors if
just the movement of grids is not enough to handle load imbalance. Second, our
DLB scheme employs the direct data movement between overloaded and under-
loaded processors by the guidance of global load information.

Grid splitting is a well-known technique and has been applied in several
research works. Rantakokko uses this technique in his static load-balancing
scheme [11] which is based on recursive spectral bisection. The main purpose of
using grid splitting is to reuse a solver for a rectangular domain. In our scheme,
the grid-splitting technique is combined with direct grid movements to provide
an efficient dynamic load balancing scheme. Here, grid splitting is used to
reduce the granularity of data moved from overloaded to underloaded
processors, thereby resulting in equalizing load throughout execution of the SAMR
application.

8. Summary

In this paper, we presented a novel dynamic load-balancing scheme for
SAMR applications. Each load-balancing step of this scheme consists of two
phases: moving-grid phase and splitting-grid phase. The potential benefits of our
scheme were examined by incorporating our DLB scheme into a real SAMR
application, ENZO. The experiments show that our scheme can significantly
improve the quality of load balancing and reduce the total execution time, as
compared to the original DLB scheme. By using our DLB scheme, the total
execution time of SAMR applications was reduced up to 57%, and the quality of
load balancing was improved significantly especially when the number of processors
is larger than 16.

While the focus of this paper is on SAMR, some techniques can be easily extended
to other applications, such as using grid splitting to address coarse granularity of
basic entity, utilizing some global load information for data redistribution,
interleaving direct data movements with splitting technique, and the imbalance
detection by using maxðloadÞ=averageðloadÞ to measure load imbalance. Further, we
believe the techniques are not limited to SAMR applications and should have
broader applicability, such as unstructured AMR. For example, it could be extended
to any application with the following characteristics: (1) it has coarse granularity and
(2) each processor has a global view of load distribution, that is, each processor
should be aware of the load distribution of other processors.
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