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Abstract 
 

In this paper, we have presented a parallel algorithm 
for Gaussian Elimination.  Elimination in both a shared 
memory environment, using OpenMP, and in a distributed 
memory environment, using MPI.  Parallel LU and 
Gaussian algorithms for linear systems have been studied 
extensively and the point of this paper is to present the 
results of examining various load balancing schemes on 
both platforms. The results show an improvement in many 
cases over the default implementation. 
 
1. Introduction 
 

Given a system Ax = b, we can utilize several different 
methods to obtain a solution.  If a unique solution is 
known to exist, and the coefficient matrix is full, a direct 
method such as Gaussian Elimination is usually selected.  
There are several papers that emphasize various parallel 
approaches to solving a system with Gaussian Elimination 
[1,2,6,8].  In this paper, we are concerned with examining 
the effect of different load balancing schemes available 
with OpenMP in a shared memory environment and on a 
distributed platform where MPI was used as the message 
passing interface.  

Some work has been done on load balancing for 
Gaussian Elimination such as the article by Howe and 
Bratcher [7] which compares cyclic and block mapping 
schemes.  A good parallel algorithm for Gaussian 
Elimination is difficult, however, because of the inherent 
dependencies in the algorithm, plus the corresponding 
load balancing issues.   

Both versions of the algorithm were run on an IBM 
RS/6000 SP.  This machine has 4 distributed nodes, where 
each node consists of 4 processors contained within a 
shared memory environment [3].  With this machine, you 
have the ability to run programs exclusively within the 
shared environment, or within the distributed 
environment, or you can run programs that take advantage 

of both.  Other platforms were used for testing, but the SP 
results have been kept based on the fact that we could test 
all of our programs on the same architecture. 
 
2. OpenMP Parallel Version    
 

The first parallel program uses OpenMP to distribute 
the work among the processors in a shared memory 
environment. (see Figure 1)  The results show a 
substantial increase in performance over the sequential 
version.  Various load balancing schedules affect the 
performance of the resulting code and are specified at 
runtime with a schedule clause.  
 

do pivot = 1, (n-1) 
!$omp parallel do private(xmult) schedule(runtime) 

do i = (pivot+1), n 
xmult = a(i,pivot) / a(pivot,pivot) 
do j = (pivot+1), n 

a(i,j) = a(i,j) - (xmult * a(pivot,j)) 
end do 
b(i) = b(i) - (xmult * b(pivot)) 

end do 
!$omp end parallel do 

end do 
 

Figure 1. 
OpenMP parallel version of the forward 

elimination algorithm 
 

With a static scheme and a specified chunk size, each 
processor is statically allocated chunk iterations.  The 
allocation of iterations is done at the beginning of the 
loop, and each thread will only execute those iterations 
assigned to it.  Using static without a specified chunk size 
implies the system default chunk size of n/p.  Using a 
dynamic scheme, each thread is allocated a chunk of 
iterations at the beginning of the loop, but the exact set of 
iterations that are allocated to each thread is not known.     
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Table 1. 
CPU time (seconds) with n = 400 and p = 4 

 
Chunk default 1 2 4 8 16 32 64 128 

Static 0.74 1.46 1.81 1.77 1.15 0.82 0.77 0.66 0.57 
Dynamic 2.27 2.53 2.38 2.11 1.41 0.97 0.76 0.61 0.56 
Guided 0.78 0.80 0.78 0.81 0.74 0.69 0.68 0.68 0.59 

 
Table 2. 

CPU times (seconds) with n = 800 and p = 4 
 

Chunk default 1 2 4 8 16 32 64 128 
Static 8.35 20.89 21.66 21.41 17.50 11.48 10.27 9.47 10.27 
Dynamic 22.63 22.54 22.10 28.59 19.21 11.66 9.59 9.74 10.39 
Guided 9.33 9.53 9.28 9.47 9.49 9.10 8.95 9.84 11.10 

 
Table 3. 

CPU times (seconds) with n = 1200 and p = 4 
 

Chunk default 1 2 4 8 16 32 64 128 
Static 51.01 65.69 66.54 65.57 63.01 56.26 54.88 53.61 53.06 
Dynamic 85.38 85.54 85.46 82.27 69.88 51.45 42.54 42.09 43.65 
Guided 46.10 46.55 46.24 45.71 45.25 44.58 43.61 43.50 43.24 

 
Table 4.  

Load Balancing Speedup results using varying values of n  
 

 400 800 1200 
Static 3.95 4.59 2.84 
Dynamic 4.02 4.00 3.44 
Guided 3.81 4.28 3.35 

 
The guided scheme allocates a system dependent 

chunk of iterations between threads at the beginning of 
the loop.  It is similar to dynamic scheduling such that 
once a thread has completed its work it is allocated a new 
chunk of iterations.  The difference is that the new chunk 
size of iterations decreases exponentially as the iterations 
available decreases to a specified minimum chunk size.  
If no chunk size is specified, the minimum is 1 [4]. 

In our results, (see Tables 1, 2, 3 and 4) we have 
compared the time spent on the forward elimination 
phase of the problem.  The backward substitution phase 
runs extremely fast, and is a very minimal factor in the 
time it takes to run this program [7]. Thread 
communication time has not been extracted from the 
times listed.  When using a parallel do directive in 
OpenMP, a do loop must immediately follow the 
directive.  Because of this restriction, a timer would have 
to be inserted within the do loop and would effect 
performance.  

From the results, we can see that each load balancing 
scheme produces some speedup, depending on the 
amount of data we are working with.  For smaller values 

of n, all three schemes work very well.  (see Table 1)  As 
n increases from 400 to 800, and then to 1200, we can 
see that there is a point at which the amount of 
performance gain decreases for each distinct load 
balancing scheme.  (see Table 4)  With the dynamic 
scheme, the decrease in performance is much slower than 
it is with the others.   

Since the amount of work to be distributed is 
constantly changing throughout the algorithm, the 
dynamic scheme proves to work best because of its 
ability to distribute new iterations while other threads 
remain occupied.     
 
3. MPI Parallel Version 
 

The algorithm was also ported to a distributed 
environment where we use MPI to allocate the work 
across multiple processors. (see Figure 2) 
 
root = 0 
chunk = n**2/p  
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! main loop 
do pivot = 1, n-1 
 
 ! root maintains communication             

if (my_rank.eq.0) then 
 
! adjust the chunk size 

if (MOD(pivot, p).eq.0) then 
chunk = chunk - n 

endif 
 
! calculate chunk vectors 
rem = MOD((n**2-(n*pivot)),chunk) 
tmp = 0 
do i = 1, p 

tmp = tmp + chunk 
if (tmp.le.(n**2-(n*pivot))) then 

a_chnk_vec(i) = chunk 
b_chnk_vec(i) = chunk / n 

else 
a_chnk_vec(i) = rem 
b_chnk_vec(i) = rem / n 
rem = 0 

endif 
continue 

 
  ! calculate displacement vectors 

a_disp_vec(1) = (pivot*n) 
b_disp_vec(1) = pivot 
do i = 2, p 

a_disp_vec(i) = a_disp_vec(i-1)  
+ a_chnk_vec(i-1) 

b_disp_vec(i) = b_disp_vec(i-1)  
+ b_chnk_vec(i-1) 

continue 
 
  ! fetch the pivot equation 

do i = 1, n 
pivot_eqn(i) = a(n-(i-1),pivot) 

continue 
pivot_b = b(pivot) 

endif  ! my_rank.eq.0 
 
! distribute the pivot equation 
call MPI_BCAST(pivot_eqn, n,  

MPI_DOUBLE_PRECISION, 
                             root, MPI_COMM_WORLD, ierr) 
 
 
call MPI_BCAST(pivot_b, 1,  

MPI_DOUBLE_PRECISION, 
                             root, MPI_COMM_WORLD, ierr) 
 
! distribute the chunk vector 
call MPI_SCATTER(a_chnk_vec, 1, MPI_INTEGER, 

                                   chunk, 1, MPI_INTEGER, 
                                   root, MPI_COMM_WORLD, ierr) 
 
! distribute the data 
call MPI_SCATTERV(a, a_chnk_vec, a_disp_vec,  

   MPI_DOUBLE_PRECISION, 
                                     local_a, chunk,  

   MPI_DOUBLE_PRECISION, 
                                     root, MPI_COMM_WORLD,ierr) 
 
call MPI_SCATTERV(b, b_chnk_vec, b_disp_vec,  

   MPI_DOUBLE_PRECISION, 
                                     local_b, chunk/n,  

   MPI_DOUBLE_PRECISION, 
                                     root, MPI_COMM_WORLD,ierr) 
 
! forward elimination 
do j = 1, (chunk/n) 

xmult = local_a((n-(pivot-1)),j) / pivot_eqn(pivot) 
do i = (n-pivot), 1, -1 

local_a(i,j) = local_a(i,j)  
             - (xmult * pivot_eqn(n-(i-1))) 

continue 
local_b(j) = local_b(j) - (xmult * pivot_b) 

continue  
 
! restore the data to root 
call MPI_GATHERV(local_a, chunk,  

  MPI_DOUBLE_PRECISION, 
                                    a, a_chnk_vec, a_disp_vec,  

  MPI_DOUBLE_PRECISION, 
                                    root, MPI_COMM_WORLD, ierr) 
 
call MPI_GATHERV(local_b, chunk/n,  

  MPI_DOUBLE_PRECISION, 
                                     b, b_chnk_vec, b_disp_vec,  

  MPI_DOUBLE_PRECISION, 
                                    root, MPI_COMM_WORLD, ierr) 
 
continue ! end of main loop 
 

Figure 2. 
MPI parallel version of the forward elimination 

algorithm 
 

One of the major aspects of implementing the 
Gaussian Elimination algorithm on a distributed memory 
system is the communication time.  This has a significant 
effect on the resulting performance of the algorithm but, 
with appropriate modification, we achieved modest 
speedups. 

Using MPI, you almost have to rewrite your code in 
order to test different load balancing techniques. Through 
every iteration of the main outer loop, the amount of 
work changes.  Therefore, in order to help balance the 
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Table 5. 
MPI parallel results using 2 processors 

. 
n Communication 

Time 
Workload 

Time 
Total 
Time 

400 2.15 0.72 2.88 
800 18.28 5.76 24.03 
1200 70.98 19.68 90.66 

 
Table 6. 

MPI parallel results using 4 processors 
 

n Communication 
Time 

Workload 
Time 

Total 
Time 

400 3.46 0.37 3.83 
800 23.43 2.90 26.32 
1200 82.73 9.85 92.58 

 
Table 7. 

MPI parallel Speedup results using varying values of n and p processors 
  

N 2 4 
400 none none 
800 1.59 1.46 
1200 1.60 1.56 

 
load, the chunk size is re-calculated and the data re-
distributed among the available processors.  Instead of 
re-writing the algorithm to distribute the data in a 
different manner, we chose to test the program several 
times using a different number of processors and varying 
values of n.  The technique used for load balancing 
remains the same, but the chunk sizes to be distributed 
differ.   

The algorithm proceeds by looping through the 
matrix A and vector b, setting each equation as the pivot 
equation.  The pivot equation is then broadcast and the 
remaining pivot +1 to n equations are distributed among 
the processors.  Processor 0 handles the communication 
maintenance. Because the amount of data to be 
distributed changes as we progress through the matrix, a 
test is required to see if the chunk size needs to be 
adjusted.  This will ensure that the amount of work being 
divided among processors remains somewhat even.  The 
chunk size will decrease with every p iterations of the 
algorithm. 

The chunk vectors used in the scatter and gather 
functions contain p elements, where each ith element 
represents the chunk size of the data that is going to be 
passed to each i-1 processor.  The MPI_SCATTERV 
routine allows us to distribute varying amounts of data to 
each processor.  The displacement vectors that will be 
used with MPI_SCATTERV and MPI_GATHERV 
contain p elements, where each ith element represents the 

starting point (displacement) at which processor i-1 will 
begin to get its chunk size of data from p0.   

At the end of the communication maintenance, the 
data is distributed among the available processors.  First, 
the MPI_BCAST library routine was used to pass the 
pivot equation to each thread [12].  The MPI_SCATTER 
routine distributes the chunk vector that was calculated 
from matrix A.  The reason for scattering this data is 
because MPI_SCATTERV expects each thread to know 
the chunk size of data that they are going to receive.  
Without this information, extra work would have to be 
done to figure out how much data was received by each 
processor. 

The matrix A was distributed so that each processor 
will get approximately the same amount of work in order 
to maximize performance.  As we loop through the 
matrix, the amount of rows left to work with decreases.  
The SCATTERV routine allows you to specify the data 
you want to send to each processor, which reduces the 
amount of data transmitted for each row [12]. 

There was one disadvantage to using the SCATTERV 
library routine.  Since Fortran stores data in column-
major order the algorithm was modified to work with this 
new format.  Before performing the next step, the matrix 
was reverted back to row-major order to take advantage 
of the original backward substitution algorithm.   

Since the amount of time involved in performing the 
backward substitution phase of this algorithm is minimal 
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as compared to the forward elimination phase this section 
of the algorithm was run sequentially [8].  Also, the 
dependence involved in the outer loop of the backward 
substitution phase limits the amount of parallelization 
possible.   

In our results, (see Tables 5, 6 and 7)  comparisons 
are made based on time spent in the forward elimination 
phase of the problem.  With the MPI version, we were 
able to extract the time spent on communication and 
compare it to the time spent on calculations.   

The speedups in Table 7 show that as the amount of 
work increases, there is a point at which the distributed 
system begins to demonstrate performance.  The reason 
why no speedup was achieved with small n is because 
the amount of overhead involved in distributing the data 
was overwhelming as compared to the amount of work 
required.  A simple solution to this problem would be to 
run the application sequentially if the size of n is too 
small. 
 
4. Conclusions 
 

The major disadvantage to using the distributed 
memory architecture for this application, is that most of 
the distribution work is data related, not task related.  
The only way the nodes can access the data is by passing 
it back and forth.  In a shared memory model, this does 
not cause a problem because the data can be made 
available to all processors at all times.   

One thing to note from the results is the impact on 
performance that occurs as we change the size of n.  
When we increase the value of n, the MPI program 
displays an improvement in performance as opposed to 
the OpenMP program where performance increase seems 
to diminish.  It is possible that as n increases, we may 
find a point where the distributed environment will show 
a greater increase in performance than the shared 
platform.  
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