

Parallel Gaussian Elimination Using OpenMP and MPI

S.F.McGinn and R.E.Shaw
Department of Applied Statistics and Computer Science

University of New Brunswick
Saint John, N.B. Canada E2L 4L5

shawn@unb.ca and reshaw@unbsj.ca

Abstract

In this paper, we have presented a parallel algorithm
for Gaussian Elimination. Elimination in both a shared
memory environment, using OpenMP, and in a distributed
memory environment, using MPI. Parallel LU and
Gaussian algorithms for linear systems have been studied
extensively and the point of this paper is to present the
results of examining various load balancing schemes on
both platforms. The results show an improvement in many
cases over the default implementation.

1. Introduction

Given a system Ax = b, we can utilize several different
methods to obtain a solution. If a unique solution is
known to exist, and the coefficient matrix is full, a direct
method such as Gaussian Elimination is usually selected.
There are several papers that emphasize various parallel
approaches to solving a system with Gaussian Elimination
[1,2,6,8]. In this paper, we are concerned with examining
the effect of different load balancing schemes available
with OpenMP in a shared memory environment and on a
distributed platform where MPI was used as the message
passing interface.

Some work has been done on load balancing for
Gaussian Elimination such as the article by Howe and
Bratcher [7] which compares cyclic and block mapping
schemes. A good parallel algorithm for Gaussian
Elimination is difficult, however, because of the inherent
dependencies in the algorithm, plus the corresponding
load balancing issues.

Both versions of the algorithm were run on an IBM
RS/6000 SP. This machine has 4 distributed nodes, where
each node consists of 4 processors contained within a
shared memory environment [3]. With this machine, you
have the ability to run programs exclusively within the
shared environment, or within the distributed
environment, or you can run programs that take advantage

of both. Other platforms were used for testing, but the SP
results have been kept based on the fact that we could test
all of our programs on the same architecture.

2. OpenMP Parallel Version

The first parallel program uses OpenMP to distribute
the work among the processors in a shared memory
environment. (see Figure 1) The results show a
substantial increase in performance over the sequential
version. Various load balancing schedules affect the
performance of the resulting code and are specified at
runtime with a schedule clause.

do pivot = 1, (n-1)
!$omp parallel do private(xmult) schedule(runtime)

do i = (pivot+1), n
xmult = a(i,pivot) / a(pivot,pivot)
do j = (pivot+1), n

a(i,j) = a(i,j) - (xmult * a(pivot,j))
end do
b(i) = b(i) - (xmult * b(pivot))

end do
!$omp end parallel do

end do

Figure 1.
OpenMP parallel version of the forward

elimination algorithm

With a static scheme and a specified chunk size, each
processor is statically allocated chunk iterations. The
allocation of iterations is done at the beginning of the
loop, and each thread will only execute those iterations
assigned to it. Using static without a specified chunk size
implies the system default chunk size of n/p. Using a
dynamic scheme, each thread is allocated a chunk of
iterations at the beginning of the loop, but the exact set of
iterations that are allocated to each thread is not known.

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

Table 1.
CPU time (seconds) with n = 400 and p = 4

Chunk default 1 2 4 8 16 32 64 128

Static 0.74 1.46 1.81 1.77 1.15 0.82 0.77 0.66 0.57
Dynamic 2.27 2.53 2.38 2.11 1.41 0.97 0.76 0.61 0.56
Guided 0.78 0.80 0.78 0.81 0.74 0.69 0.68 0.68 0.59

Table 2.

CPU times (seconds) with n = 800 and p = 4

Chunk default 1 2 4 8 16 32 64 128
Static 8.35 20.89 21.66 21.41 17.50 11.48 10.27 9.47 10.27
Dynamic 22.63 22.54 22.10 28.59 19.21 11.66 9.59 9.74 10.39
Guided 9.33 9.53 9.28 9.47 9.49 9.10 8.95 9.84 11.10

Table 3.

CPU times (seconds) with n = 1200 and p = 4

Chunk default 1 2 4 8 16 32 64 128
Static 51.01 65.69 66.54 65.57 63.01 56.26 54.88 53.61 53.06
Dynamic 85.38 85.54 85.46 82.27 69.88 51.45 42.54 42.09 43.65
Guided 46.10 46.55 46.24 45.71 45.25 44.58 43.61 43.50 43.24

Table 4.

Load Balancing Speedup results using varying values of n

 400 800 1200
Static 3.95 4.59 2.84
Dynamic 4.02 4.00 3.44
Guided 3.81 4.28 3.35

The guided scheme allocates a system dependent

chunk of iterations between threads at the beginning of
the loop. It is similar to dynamic scheduling such that
once a thread has completed its work it is allocated a new
chunk of iterations. The difference is that the new chunk
size of iterations decreases exponentially as the iterations
available decreases to a specified minimum chunk size.
If no chunk size is specified, the minimum is 1 [4].

In our results, (see Tables 1, 2, 3 and 4) we have
compared the time spent on the forward elimination
phase of the problem. The backward substitution phase
runs extremely fast, and is a very minimal factor in the
time it takes to run this program [7]. Thread
communication time has not been extracted from the
times listed. When using a parallel do directive in
OpenMP, a do loop must immediately follow the
directive. Because of this restriction, a timer would have
to be inserted within the do loop and would effect
performance.

From the results, we can see that each load balancing
scheme produces some speedup, depending on the
amount of data we are working with. For smaller values

of n, all three schemes work very well. (see Table 1) As
n increases from 400 to 800, and then to 1200, we can
see that there is a point at which the amount of
performance gain decreases for each distinct load
balancing scheme. (see Table 4) With the dynamic
scheme, the decrease in performance is much slower than
it is with the others.

Since the amount of work to be distributed is
constantly changing throughout the algorithm, the
dynamic scheme proves to work best because of its
ability to distribute new iterations while other threads
remain occupied.

3. MPI Parallel Version

The algorithm was also ported to a distributed
environment where we use MPI to allocate the work
across multiple processors. (see Figure 2)

root = 0
chunk = n**2/p

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

! main loop
do pivot = 1, n-1

 ! root maintains communication

if (my_rank.eq.0) then

! adjust the chunk size

if (MOD(pivot, p).eq.0) then
chunk = chunk - n

endif

! calculate chunk vectors
rem = MOD((n**2-(n*pivot)),chunk)
tmp = 0
do i = 1, p

tmp = tmp + chunk
if (tmp.le.(n**2-(n*pivot))) then

a_chnk_vec(i) = chunk
b_chnk_vec(i) = chunk / n

else
a_chnk_vec(i) = rem
b_chnk_vec(i) = rem / n
rem = 0

endif
continue

 ! calculate displacement vectors

a_disp_vec(1) = (pivot*n)
b_disp_vec(1) = pivot
do i = 2, p

a_disp_vec(i) = a_disp_vec(i-1)
+ a_chnk_vec(i-1)

b_disp_vec(i) = b_disp_vec(i-1)
+ b_chnk_vec(i-1)

continue

 ! fetch the pivot equation

do i = 1, n
pivot_eqn(i) = a(n-(i-1),pivot)

continue
pivot_b = b(pivot)

endif ! my_rank.eq.0

! distribute the pivot equation
call MPI_BCAST(pivot_eqn, n,

MPI_DOUBLE_PRECISION,
 root, MPI_COMM_WORLD, ierr)

call MPI_BCAST(pivot_b, 1,

MPI_DOUBLE_PRECISION,
 root, MPI_COMM_WORLD, ierr)

! distribute the chunk vector
call MPI_SCATTER(a_chnk_vec, 1, MPI_INTEGER,

 chunk, 1, MPI_INTEGER,
 root, MPI_COMM_WORLD, ierr)

! distribute the data
call MPI_SCATTERV(a, a_chnk_vec, a_disp_vec,

 MPI_DOUBLE_PRECISION,
 local_a, chunk,

 MPI_DOUBLE_PRECISION,
 root, MPI_COMM_WORLD,ierr)

call MPI_SCATTERV(b, b_chnk_vec, b_disp_vec,

 MPI_DOUBLE_PRECISION,
 local_b, chunk/n,

 MPI_DOUBLE_PRECISION,
 root, MPI_COMM_WORLD,ierr)

! forward elimination
do j = 1, (chunk/n)

xmult = local_a((n-(pivot-1)),j) / pivot_eqn(pivot)
do i = (n-pivot), 1, -1

local_a(i,j) = local_a(i,j)
 - (xmult * pivot_eqn(n-(i-1)))

continue
local_b(j) = local_b(j) - (xmult * pivot_b)

continue

! restore the data to root
call MPI_GATHERV(local_a, chunk,

 MPI_DOUBLE_PRECISION,
 a, a_chnk_vec, a_disp_vec,

 MPI_DOUBLE_PRECISION,
 root, MPI_COMM_WORLD, ierr)

call MPI_GATHERV(local_b, chunk/n,

 MPI_DOUBLE_PRECISION,
 b, b_chnk_vec, b_disp_vec,

 MPI_DOUBLE_PRECISION,
 root, MPI_COMM_WORLD, ierr)

continue ! end of main loop

Figure 2.
MPI parallel version of the forward elimination

algorithm

One of the major aspects of implementing the
Gaussian Elimination algorithm on a distributed memory
system is the communication time. This has a significant
effect on the resulting performance of the algorithm but,
with appropriate modification, we achieved modest
speedups.

Using MPI, you almost have to rewrite your code in
order to test different load balancing techniques. Through
every iteration of the main outer loop, the amount of
work changes. Therefore, in order to help balance the

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

Table 5.
MPI parallel results using 2 processors

.
n Communication

Time
Workload

Time
Total
Time

400 2.15 0.72 2.88
800 18.28 5.76 24.03
1200 70.98 19.68 90.66

Table 6.

MPI parallel results using 4 processors

n Communication
Time

Workload
Time

Total
Time

400 3.46 0.37 3.83
800 23.43 2.90 26.32
1200 82.73 9.85 92.58

Table 7.

MPI parallel Speedup results using varying values of n and p processors

N 2 4
400 none none
800 1.59 1.46
1200 1.60 1.56

load, the chunk size is re-calculated and the data re-
distributed among the available processors. Instead of
re-writing the algorithm to distribute the data in a
different manner, we chose to test the program several
times using a different number of processors and varying
values of n. The technique used for load balancing
remains the same, but the chunk sizes to be distributed
differ.

The algorithm proceeds by looping through the
matrix A and vector b, setting each equation as the pivot
equation. The pivot equation is then broadcast and the
remaining pivot +1 to n equations are distributed among
the processors. Processor 0 handles the communication
maintenance. Because the amount of data to be
distributed changes as we progress through the matrix, a
test is required to see if the chunk size needs to be
adjusted. This will ensure that the amount of work being
divided among processors remains somewhat even. The
chunk size will decrease with every p iterations of the
algorithm.

The chunk vectors used in the scatter and gather
functions contain p elements, where each ith element
represents the chunk size of the data that is going to be
passed to each i-1 processor. The MPI_SCATTERV
routine allows us to distribute varying amounts of data to
each processor. The displacement vectors that will be
used with MPI_SCATTERV and MPI_GATHERV
contain p elements, where each ith element represents the

starting point (displacement) at which processor i-1 will
begin to get its chunk size of data from p0.

At the end of the communication maintenance, the
data is distributed among the available processors. First,
the MPI_BCAST library routine was used to pass the
pivot equation to each thread [12]. The MPI_SCATTER
routine distributes the chunk vector that was calculated
from matrix A. The reason for scattering this data is
because MPI_SCATTERV expects each thread to know
the chunk size of data that they are going to receive.
Without this information, extra work would have to be
done to figure out how much data was received by each
processor.

The matrix A was distributed so that each processor
will get approximately the same amount of work in order
to maximize performance. As we loop through the
matrix, the amount of rows left to work with decreases.
The SCATTERV routine allows you to specify the data
you want to send to each processor, which reduces the
amount of data transmitted for each row [12].

There was one disadvantage to using the SCATTERV
library routine. Since Fortran stores data in column-
major order the algorithm was modified to work with this
new format. Before performing the next step, the matrix
was reverted back to row-major order to take advantage
of the original backward substitution algorithm.

Since the amount of time involved in performing the
backward substitution phase of this algorithm is minimal

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

as compared to the forward elimination phase this section
of the algorithm was run sequentially [8]. Also, the
dependence involved in the outer loop of the backward
substitution phase limits the amount of parallelization
possible.

In our results, (see Tables 5, 6 and 7) comparisons
are made based on time spent in the forward elimination
phase of the problem. With the MPI version, we were
able to extract the time spent on communication and
compare it to the time spent on calculations.

The speedups in Table 7 show that as the amount of
work increases, there is a point at which the distributed
system begins to demonstrate performance. The reason
why no speedup was achieved with small n is because
the amount of overhead involved in distributing the data
was overwhelming as compared to the amount of work
required. A simple solution to this problem would be to
run the application sequentially if the size of n is too
small.

4. Conclusions

The major disadvantage to using the distributed
memory architecture for this application, is that most of
the distribution work is data related, not task related.
The only way the nodes can access the data is by passing
it back and forth. In a shared memory model, this does
not cause a problem because the data can be made
available to all processors at all times.

One thing to note from the results is the impact on
performance that occurs as we change the size of n.
When we increase the value of n, the MPI program
displays an improvement in performance as opposed to
the OpenMP program where performance increase seems
to diminish. It is possible that as n increases, we may
find a point where the distributed environment will show
a greater increase in performance than the shared
platform.

5. References

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, X. S. Li,
(2000) Analysis and comparison of two general sparse solvers
for distributed memory computers, ACM Transactions on
Mathematical Software, (to appear).
[2] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, X. S. Li,
(2001) Impact of the implementation of MPI point-to-point
communications on the performance of two general sparse
solvers, Tech report LBNL-48978, Lawrence Berkeley National
Laboratory, http://www.nersc.gov/~xiaoye/.
[3] E. Aubanel (2000), ACRL configuration,
www.cs.unb.ca/acrl/acrl_configuration.html.
[4] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald,
R. Menon, (2001) Parallel Programming in OpenMP, Morgan
Kauffmann Publishers Inc.

[5] W. Cheney, D. Kincaid, (1998) Numerical Mathematics and
Computing, third edition, Brooks/Cole Publishing Company.
[6] J. W. Demmel, J. R. Gilbert, X. S. Li, (1997) An
asynchronous parallel supernodal algorithm for sparse
Gaussian Elimination, SIAM Journal on Matrix Analysis and
Applications, 20(4):915-952.
[7] J. Howe & S. Bratcher, (1996) Parallel Gaussian Elimination,
http://www.cse.ucsd.edu/classes/fa98/cse164b/Projects/PastProjects
/LU/.
[8] P. S. Pacheco, (1997) Parallel Programming with MPI,
Morgan Kaufmann Pub. Inc.
[9] C. Severance, R. Enbody, (1995) A hybrid approach to load
balancing on shared memory parallel processors,
http://www.netfact.com/crs/papers/load_94/.
[10] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J.
Dongarra, (1999) MPI – The Complete Reference, Volume 1,
The MPI Core, second edition, The MIT Press

Proceedings of the 16th Annual International Symposium on High Performance Computing Systems and Applications (HPCS�02)
0-7695-1626-2/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

