
OpenMP Issues Arising in the Development of Parallel BLAS and LAPACK
libraries

Dr. C. Addison, Dr. Y. Ren and Dr. M. van Waveren
Fujitsu European Centre for Information Technology,

Hayes, UK

Abstract: Dense linear algebra libraries need to
cope efficiently with a range of input problem sizes
and shapes. Inherently this means that parallel
implementations have to exploit parallelism
wherever it is present. While OpenMP allows
relatively fine grain parallelism to be exploited in a
shared memory environment it currently lacks
features to make it easy to partition computation
over multiple array indices or to overlap sequential
and parallel computations. The inherent flexible
nature of shared memory paradigms such as
OpenMP poses other difficulties when it becomes
necessary to optimise performance across
successive parallel library calls. Notions borrowed
from distributed memory paradigms, such as
explicit data distributions help address some of
these problems, but the focus on data rather than
work distribution appears misplaced in an SMP
context.

1 Introduction
The BLAS and LAPACK libraries [1] are widely
used by scientists and engineers to obtain good
levels of performance on today’s cache-based
computer systems. Distributed memory analogues,
the PBLAS and ScaLAPACK [2] have been
developed to assist people on this type of parallel
system. Shared memory (SMP) variants tend to
only be available from hardware vendors (e.g.
Intel’s Math Kernel Library, [3]) or from library
companies such as NAG Ltd. or Visual Numerics
Ltd.

Consistent with this pattern, Fujitsu recently
released its first SMP version of the parallel BLAS
and LAPACK libraries for its PRIMEPOWER
series. What makes this release interesting is that it
was written exclusively using OpenMP, rather than
a special purpose thread library. In the course of
developing these libraries, several issues arose
concerning OpenMP. Some of these issues can be
handled by careful use of OpenMP directives.
Other issues reveal weaknesses in the Version 1.1
specification that are addressed in the Version 2
specification. Still other issues reveal weaknesses
that are inherent in this approach to parallelisation
and may be difficult to resolve directly.

In the rest of this paper, we present a brief overview
of the SMP environment on the Fujitsu
PRIMEPOWER. We then discuss some of the basic
library issues surrounding the BLAS and how we
have resolved these using OpenMP. Parallel
performance in LAPACK routines is often obtained
through a sequence of calls to parallel BLAS and
by masking sequential computations with parallel
ones. The latter requires splitting thread families
into groups. The OpenMP Version 1.1 specification
[8] does not support this particularly well. OpenMP
Version 2 [9] has better support and some attractive
extensions have been proposed (e.g. the suggestions
in [4]) that make this approach simpler. Finally,
many LAPACK routines have kernels that consist
of a sequence of consecutive BLAS calls within a
loop. When these calls operate on just vectors, or
perform matrix-vector type operations, they are
sensitive to the migration of data from one
processor’s cache to another and by the overheads
that result from making each BLAS call a separate
parallel region. Avoiding such overheads is not
always possible and the paper concludes by
examining some of the limitations that are inherent
to OpenMP.

2 SMP programming on the Fujitsu
PRIMEPOWER
The Fujitsu PRIMEPOWER is an SMP system that
supports up to 128 processors in a Solaris
environment [6]. The current processor employed is
the SPARC64 IV. This is a SPARC V9 architecture
compliant processor that is similar to Sun’s
UltraSPARC processor series. The SPARC64 IV
contains extensive support for out-of-order and
speculative execution. It has a fused floating-point
multiply-add as well as a separate floating-point
add pipeline. Each processor has 128 Kbytes of
data cache and a similarly sized instruction cache.
There is also a unified second level cache of 8
Mbytes. In September 2001, the top clock speed of
these processors was 675 MHz, so the achievable
peak performance is 1350 Mflop/s.

Multi-processor systems are built from system
boards that have up to 4 processors and 16 Gbytes
of memory. There is a maximum of 8 such boards
in a node (cabinet) and then up to 4 nodes can be
connected together via a high-speed crossbar. The

system has nearly uniform memory access across
its potential 512 GBytes of memory. As the SPEC
OpenMP benchmarks, [7], show, it is possible to
obtain parallel speed-ups using the full 128
processor configuration on non-trivial applications.

The parallel programming environment is provided
by Fortran and C compilers that support OpenMP
Version 1.11. Both compilers also have extensive
support for the automatic parallelisation of user
codes. Fujitsu’s Parallelnavi batch environment,
accessible via NQS, binds threads to processors,
processors to jobs and provides support for 4
MByte pages. These all reduce performance
variations relating to system and other user activity.
Therefore, provided there are one or two processors
available for systems’ use and for handling basic
interactive facilities, user jobs run on effectively
dedicated processors.

3 Designing OpenMP parallel BLAS
One of the challenges in providing parallel BLAS
and LAPACK routines is that most BLAS routines
contain assembler kernels. Therefore OpenMP
parallelism must lie outside of these kernels. This
effectively introduces yet another level of blocking
within the routines. The practical aspects of this and
related issues are illustrated by the general matrix
by matrix multiplication routine dgemm. This
family of multiplications also forms the kernel
around which all the other matrix-matrix BLAS
operations are constructed, see [10].

The basic operation that dgemm supports is:
CABC βα +← , where C is a general m by n

matrix, A is a general m by k matrix and B is a
general k by n matrix. Both α and β are scalars. In
addition either A or B can be transposed, with a
consistent change in dimensionality. Each member
of this family of four operations is highly parallel.
When m and n are sufficiently large, an effective
solution is to partition the problem into an
appropriate number of sub-matrices and perform
each sub-matrix multiplication in parallel. With 4
threads one partition would be

+

×

=

2221

1211

2221

1211

2221

1211

2221

1211

CC

CC

BB

BB

AA

AA
CC

CC
βα

This then leads to:

 112112111111 CBABAC βαα +×+×= ,

 122212121112 CBABAC βαα +×+×= ,

 212122112121 CBABAC βαα +×+×= ,

 222222122122 CBABAC βαα +×+×= ,

1 Version 2.0 Fortran will be available in 2002.

where these sub-matrix operations are independent
of one another and can be performed by separate
calls to the sequential dgemm on different threads.
The only challenge is to ensure that the number of
threads allocated to a dimension is proportional to
m and n and that the sub-blocks are large enough
that near peak sequential performance is obtained.
Since OpenMP has no equivalent to the High
Performance Fortran (HPF) notion of processor
arrays with shape [11], the library writer must map
the 2-D thread partitioning onto the 1-D array of
thread identifiers. This is not difficult, but the
mapping clutters the code and makes it slightly
harder to maintain. This is particularly relevant
when one recalls that this mapping must be
performed separately for each variant of the
operation because the partitioning of the matrices A
and B across sequential calls depends on whether
they are transposed or not.

Performance of dgemm on the PRIMEPOWER is
good. Single processor performance using a 562.5
MHz system on 500 by 500 to 1000 by 1000
matrices is around 1 Gflop/s. On 16 processors, the
performance is around 12 Gflop/s on the same sized
problems and on 64 processors, the performance of
dgemm on 500 by 500 to 1000 by 1000 matrices is
around 32 Gflop/s.

The strategy of partitioning BLAS operations into a
series of independent sequential BLAS calls has
proven effective. However, the performance of the
matrix-vector and vector-vector BLAS routines is
sensitive to whether the matrix was already in
cache (the “hot-cache” case) or not (the “cold-
cache” case). This will be discussed in more detail
at the end of this paper.

4 Building OpenMP LAPACK
routines on top of OpenMP BLAS
One of the design decisions in LAPACK was to
make extensive use of the matrix-matrix BLAS in
order to block computations and thereby make
better use of data in cache, [1]. It was also felt, with
some justification, that the performance of major
LAPACK computation routines would improve
simply from the use of SMP versions of the BLAS
routines. While the operations performed between
matrix blocks tend to parallelise well, the
operations performed within blocks tend to be
sufficiently fine grain that performance is mediocre
sequentially and scales poorly.

A classical way to remove such sequential
bottlenecks is to overlap the sequential
computations on one processor with different
parallel computations performed by the remaining

processors.

Consider the pseudo-code for the main block of the
LU-decomposition routine dgetrf as shown in
Figure 1.

The operations performed within dgetf2 and the
pivot updates are best performed on a single
processor. The routines dtrsm and dgemm are
BLAS routines that operate on large parts of the
matrix and that tend to perform well in parallel.
Observe that the first nb columns of the trailing
matrix will be the panel used for factorisation with
the next value of j. Therefore this factorisation
could be overlapped with the remainder of the
update of the trailing matrix. Indeed, it is possible
to do better than this, as is shown in Figure 2 with a
segment of a variant of dgetrf containing
OpenMP directives.

It is useful to distinguish between the names of the
sequential BLAS called from within a parallel
region (as in Figure 2) and the parallel BLAS called
from a sequential region (as in Figure 1), but the
functionality of the routines is identical. The
pseudo-code in Figure 2 allows the factorisation of

the second and subsequent panels to be overlapped
with the updating of the remainder of the matrix.
The code will only work if thread 0 updates at least
A(j:m,j:j+jb-1)prior to factoring this same
block. Further notice that the partitioning in the
dl_gemm call is only over columns, which will

limit scalability on small to medium problems.

When the problem size is large enough and the
number of threads small enough for a column
decomposition to be appropriate, then the
computation performed in thread 0 can almost be
totally masked by the operations in the other
threads. Consider using 4 threads and a problem
size of 1000. A paper and pencil study that only
considers floating point operations suggests that the
parallel BLAS leads to a speed-up of around 2.3.
Overlapping the panel LU with matrix
multiplication leads to a theoretical speed-up of
around 3.8. Measured speed-up is less because of
OpenMP overheads and because the rate of floating
point computation is also relevant. On a 300 MHz
PRIMEPOWER, a speed-up of 2.3 on 4 processors
has been observed on the 2000 by 2000 system
using parallel BLAS only, which rises to 3.6 when
overlapping is also used. These are compared
against the base LAPACK code with tuned BLAS.

 do j = 1, min(m, n), nb
 jb = min(min(m, n)-j+1, nb)
*
* Factor diagonal and subdiagonal blocks and test for exact
* singularity.
*
 call dgetf2(m-j+1, jb, a(j, j), lda, ipiv(j), iinfo)
*
* Adjust info and the pivot indices. (Code not shown!)
*
*
* Apply interchanges to columns 1:j-1. (Code not shown!)
*
 if(j+jb.le.n) then
*
* Apply interchanges to columns j+jb:n. (Code not shown!)
*
*
* Compute block row of U.
*
 call dtrsm(’left’, ’lower’, ’no transpose’, ’unit’, jb,
 $ n-j-jb+1, one, a(j, j), lda, a(j, j+jb),
 $ lda)
 if(j+jb.le.m) then
*
* Update trailing submatrix.
*
 call dgemm(’no transpose’, ’no transpose’, m-j-jb+1,
 $ n-j-jb+1, jb, -one, a(j+jb, j), lda,
 $ a(j, j+jb), lda, one, a(j+jb, j+jb),
 $ lda)
 end if
 end if
 end do

Figure 1 - Pseudo-code for dgetrf

A comparison of performance over a wider range of
problems is shown in Figure 3. When only floating
point operations are considered, this strategy
appears effective, so that good performance on 8
threads is possible on the 1000 by 1000 problem.

Improving scalability further runs into limitations
of the OpenMP Version 1.1 specification. It also
makes the code much more complicated.
Effectively, three work groups of threads are
desired. The first group contains thread 0. The
second group (empty in the code of Figure 2, but
probably just 1 or 2 threads) consists of threads that
update a part of A(j:m,j:j+jb-1) and then
proceed to update a part of A(j:m,j+jb:n). The
third group of threads just updates a portion of

A(j:m,j+jb:n). The goal is to distribute the
matrix update across all threads subject to the
constraint that thread 0 has additional processing to
perform when factoring A(j:m,j:j+jb-1).

When there are a larger (say 16 or more) number of
threads, it is desirable to partition the matrix
multiply performed with the main thread group by
both rows and columns. This is only possible if the
operations can be synchronised properly. For
instance, before a part of the matrix multiplication
can be performed, all earlier operations (e.g. the
call to dl_trsm to update the sub-matrix that will
form B in the subsequent matrix multiply) must
have updated all the relevant parts of the sub-
matrices. A block of columns that is partitioned

Figure 2 - OpenMP overlapped dgetrf

 jb = min(min(m, n), nb)
 call dgetf2(m, jb, a(1, 1), lda, ipiv, info)

 jmax = min((n/nb-1)*nb,m)

*$OMP PARALLEL default(shared) private(range_n,i,low_n,jb)
 n_pmax = omp_get_num_threads()-1

 do j = nb+1, jmax, nb

 jb = min(jmax-j+1, nb)
*$OMP DO schedule(static)
 do i_n=0,n_pmax
*
* Compute range_n and low_n for each value of i_n (Not shown)
*
 call dlaswp(range_n, a(1, low_n),lda,j-nb,j-1,
 $ ipiv, 1)

 call dl_trsm(’left’, ’lower’, ’no transpose’, ’unit’,
 $ nb, range_n,one, a(j-nb, j-nb), lda,
 $ a(j-nb, low_n), lda)
*
 call dl_gemm(’no transpose’, ’no transpose’, m-j+1,
 $ range_n, nb, -one, a(j, j-nb), lda,
 $ a(j-nb, low_n),lda,one,
 $ a(j, low_n),lda)

 if (i_n .eq. 0) then

 call dgetf2(m-j+1, jb, a(j, j), lda, ipiv(j), iinfo)
*
* Adjust INFO and the pivot indices. (Code not shown!)
 end if
 end do
*$OMP END DO
*$OMP MASTER

 call dlaswp(nb, a(1,j-nb),lda, J, J+JB-1, IPIV, 1)
*$OMP END MASTER

 end do
*$OMP END PARALLEL
*
* Finish by updating then factoring a(jmax+1:m,jmax+1:n)
*

among several threads for the matrix multiply will
be composed from several column blocks that were
updated independently in the previous call to
dl_trsm. Therefore explicit synchronisation is
required.

With the OpenMP Version 1.1 specification, this is
only possible through the use of several sets of
locks.

OpenMP Version 2 removes the need for locks
because it allows the number of threads used within
a parallel region to be specified at run time and
barrier synchronisation can be used within a
parallel region. The specification of the 3 thread
groups mentioned above could be performed as
follows:
1. At the outer most parallel region the

NUM_THREADS attribute is set to 2.
2. The row and columns indices over which the

different thread groups operate are determined.
3. The two nested parallel regions are defined.
4. Calls to dlaswp and dl_trsm are

performed. Partitioning would be over columns
only. The first thread group would take at least
the first nb columns of the trailing matrix. The
second group would take the balance of the
columns.

5. The second thread group would perform the
dl_gemm call over independent rectangular
regions that covered its portion of the trailing
matrix. Barrier synchronisation is required to
prevent threads making dl_gemm calls before

the relevant dl_trsm call has been
completed.

6. The first thread group would first perform its
dl_gemm calls over the first nb columns of
the trailing matrix. The thread group would
then split into two, with the group’s master
thread performing the panel LU decomposition
over the first nb columns while the remaining
threads made dl_gemm calls to update its
portion of the trailing matrix.

7. The nested regions would end and there would
be a barrier synchronisation performed
between the two “outer” threads.

The pseudo-code that implements the above steps is
shown in Figure 4. The code has been simplified by
hiding the computation of the partition values and
by using a parallel do loop to differentiate the
actions taken by the two outer threads. Also note
the implicit assumption in step 5 that the column
partitionings used for dlaswp and dl_trsm do
not lead to any dependencies between the 2 thread
groups when calls to dl_gemm are performed.

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Matrix size

M
fl

o
p

/s

4threads-overrlap 4threads-base

Figure 3 - Tuned versus base parallel dgetrf on a 4 processor 300 MHz SPARC64 III system

Similar scalable performance issues can be found in
many other LAPACK routines. Essentially the
difficulty is that the Version 1.1 OpenMP
specification does not offer sufficient flexibility in
the way in which thread groups can be defined. At
present, synchronising the activity of a sub-set of
threads in a parallel region requires the use of

locks, which can become very cumbersome. This
problem has not been resolved in the Version 2.0
specification with recursive algorithms, which are
becoming increasingly important in linear algebra
operations such as factorisation, see [12]. There are
also new algorithms to support, such as the divide
and conquer algorithms for the symmetric
tridiagonal eigenvalue problem and singular value

 jb = min(min(m, n), nb)
 call dgetf2(m, jb, a(1, 1), lda, ipiv, info)

 jmax = min((n/nb-1)*nb,m)

*$OMP PARALLEL default(shared) private(range_n,low_n,range_m,low_m,m_th,nth)
 mn_th = omp_get_num_threads()-1

 do j = nb+1, jmax, nb
 jb = min(jmax-j+1, nb)
* Determine m_th (number row blocks), n_th (number column blocks),
* tot_th(0), tot_th(1) (total number of threads in each group)

*$OMP DO schedule(static)
 do i_n=0,1
*$OMP PARALLEL NUM_THREADS(tot_th(i_n))
*
* Determine range_n, low_n for the following 2 operations
*
 call dlaswp(range_n, a(1, low_n),lda,j-nb,j-1,
 $ ipiv, 1)
 call dl_trsm(’left’, ’lower’, ’no transpose’, ’unit’,
 $ nb, range_n, one, a(j-nb, j-nb), lda,
 $ a(j-nb, low_n), lda)
*$OMP BARRIER
* Determine range_n, low_n, range_m, low_m for dl_gemm

 call dl_gemm(’no transpose’, ’no transpose’, range_m,
 $ range_n, nb, -one, a(low_m, j-nb), lda,
 $ a(j-nb, low_n),lda, one,
 $ a(low_m, low_n),lda)

 if (i_n .eq. 0) then
*$OMP BARRIER
* Reset values of partition variables (low_n etc.) for special phase
*$OMP MASTER
 call dgetf2(m-j+1, jb, a(j, j), lda, ipiv(j), iinfo)
*
* Adjust INFO and the pivot indices.
 range_m = 0; range_n=0; low_m=m; low_n=n
*$OMP END MASTER
 call dl_gemm(’no transpose’, ’no transpose’, range_m,
 $ range_n, nb, -one, a(low_m, j-nb), lda,
 $ a(j-nb, low_n),lda, one,
 $ a(low_m, low_n),lda)

 end if
*$OMP END PARALLEL
 end do
*$OMP END DO
*$OMP MASTER

 call dlaswp(nb, a(1,j-nb),lda, J, J+JB-1, IPIV, 1)
*$OMP END MASTER

 end do
*$OMP END PARALLEL
*
* Finish by updating then factoring a(jmax+1:m,jmax+1:n)

Figure 4 - Simplified pseudo-code for dgetrf using OpenMP Version 2

decomposition included in LAPACK Release 3.0.
Possibly something like the thread groups proposed
in [4] or the work queues proposed in [5] might be
required in a future OpenMP specification.

Another difficulty with writing efficient OpenMP
LAPACK routines relates to the overheads
associated with several successive calls to parallel
BLAS routines within one loop of an LAPACK
routine. For instance, in the main loop of the
symmetric tridiagonalisation routine dlatrd there
is a sequence of 5 calls to matrix-vector BLAS,
followed by 3 calls to vector BLAS. Each of these
creates its own parallel region and each defines
how many threads are appropriate for the operation
and how work is partitioned among these threads.
In a given call to dlatrd, this sequence of calls of
BLAS routines is executed about 64 times, so that
at least 512 different parallel regions are created.
Even though the overheads associated with creating
a new parallel region are low, the accumulated
overheads of this many different regions impact the
performance on smaller problems.

The current solution to this problem is to create
special “in-parallel” versions of the relevant BLAS
routines. These routines are written assuming that a
parallel region has already been created (i.e. they
are using “orphaned directives”). It is then possible
to have only one parallel region for the entire
calling routine. While this reduces the overheads of
creating the parallel regions, there is no mechanism
within OpenMP by which the partitioning of work
among threads within these various routines can be
organised to maximise the reuse of data that is
already in the cache of particular processors. This
can be a major performance difficulty.

5 Desired: OpenMP standards to
support cache reuse
Cache reuse is related to the discussion of
controlling data distribution on NUMA systems in
OpenMP, see [13] and [14], but it is not identical.
For example, the cache line (typically 64 bytes) is
the important unit of ownership on a uniform
memory access (UMA) system like the
PRIMEPOWER while the page (typically 8192
bytes or larger) is the more important on NUMA
systems. In many scientific applications, data is
statically defined within pages so on NUMA
systems this induces a data distribution across
processors. Latencies to access remote data
elements are orders of magnitude higher than
access latencies to local data elements and the
memory hierarchy is such that exploiting locality is
critical as is communicating blocks of data to
amortise the remote memory access cost. In such

situations, it is helpful to treat distribution as an
attribute of the data. This has been proposed as a
model for OpenMP, see [13], and is also a useful
model in a distributed memory / shared index space
environment for languages such as HPF.

In a UMA environment or in a NUMA system with
effective dynamic page management, there is a
more dynamic and much finer grain view of data
ownership by processors. Rather than distribution
being an attribute of the data, it might be more
useful to regard the partitioning of index spaces
among threads as an attribute of the operator, with
data residing in a cache line on a particular
processor being a side effect. The objective in this
setting is to minimize the differences in index space
partitions between successive parallel loops.
Alternatively, if the differences in index space
partitions are known between parallel loops, a less
demanding objective is to define a prefetch strategy
that allows the cache-resident data to be loaded
consistent with the second index space partition
while executing over the first index space partition.
The latter approach complements dynamic page
management on a NUMA system.

The performance problems due to different
partitionings and hence data lying in the “wrong”
cache can be severe. Consider the code fragment
for a parallel rank-1 update. This is the core
operation performed in the BLAS routine dger.

*$OMP PARALLEL DO schedule(static)
*$OMP& default(shared) private(i)
 do j=1,n
 do i = 1,m
 a(i,j) = a(i,j) + x(i)*y(j)
 end do
 end do
*$OMP END PARALLEL DO

This is a highly parallel operation that should scale
well for a range of problem sizes. However, parallel
performance is heavily dependent on what precedes
and follows this parallel region. For instance, if the
array a is defined immediately beforehand using a
single thread and the array is small enough that it
can fit into that processor’s Level 2 cache then
parallel performance will be terrible. It will be
faster to perform the update on the original
processor.

If the array is defined in an earlier parallel region
using a partitioning similar to that used in the above
code fragment, and if the matrix fits into the
collective Level 2 caches of the processors
involved, then parallel performance will be
excellent.

Optimal cache use cannot be determined just from
information about current data locality and the next

operation to be performed. Suppose that several
consecutive rank-1 updates were performed after
the array had been initialised in a sequential section
and that the array was small enough that it would fit
into the collective Level 2 cache of the processors
involved. A local decision to maximize cache reuse
by limiting parallelism to a single thread would be
the right decision with a single rank-1 update, but it
would certainly be the wrong decision if there were
50 updates.

The rank-1 update also provides an example of how
information from the calling program to the called
routine can improve cache reuse. It is possible for
the rank-1 update to be parallelised across both
array dimensions and so that the actual partitioning
used could be chosen to fit well with the
partitionings in earlier and subsequent parallel
sections while still using all available threads.

The adaptability of the parallel rank-1 update (as
well as that of matrix multiplication and several
other operations) suggests that HPF-style data
distribution directives would be useful. If the data
has been distributed among processes2 sensibly,
then many parallel BLAS routines will work well
just by inheriting this distribution. However, this
thinking misses the critical point – these routines
are called from within larger applications and it is
when defining effective data distributions for these
applications that the limitations of static data
distributions become clear.

5.1 Data distribution directives – cache
reuse at a price
Consider LU decomposition as discussed in Section
4. With static data distributions using HPF or MPI,
this application requires a doubly block-cyclic data
distribution, see [2] for a justification. The blocking
factor needs to be consistent with that required for
good performance from the single processor matrix
multiplication. The cyclic distribution is required to
provide a degree of load balance among the
processes. The block cyclic distribution is
performed over both rows and columns of the
matrix in order to have scalable matrix multiply
performance. However, the induced 2-D process
grid forces the “panel” factorisation (corresponding
to calling dgetf2 in Figure 1) to be performed
over multiple processes. This reduces performance
except on very large systems. The block cyclic data

2 When explicit data distributions are imposed, the
computation units become more heavy weight,
which is conveyed by referring to them as
processes rather than threads.

distribution also makes it difficult to overlap this
factorisation with updates to the rest of the matrix.
The data blocks are the same size, but the amount
of computation required over the sub-group of
blocks in the current panel is larger because of the
panel LU factorisation. Furthermore, this sub-group
changes as the computation proceeds.

Compare these difficulties with those involved in
performing LU decomposition with OpenMP. If the
panel factorisation is not overlapped with other
computation, then the code in Figure 1 becomes
parallel by providing parallel BLAS. The matrix
multiply will be partitioned over both row and
column indices in the call to dgemm, so
asymptotically the code will behave well, but panel
factorisation will be a bottleneck for many practical
problem sizes. The panel factorisation can be
overlapped with other computation, as shown in
Figure 2. Performance is now limited by the 1-D
partitioning in the matrix multiply. An optimal
matrix-multiplication that keeps the work
distributed evenly among threads can be combined
with the overlap of the panel factorisation using
locks or Version 2.0 features as in Figure 4. The
resulting code will work well on a range of problem
sizes with a large number of threads.

To summarize, data distribution directives are
useful on distributed memory systems. Data
distribution directives also promote cache reuse.
The performance benefits from better cache reuse
can be more than offset by a lack of scalability
when the computation performed on data blocks
changes dynamically. On balance, it seems this
approach will lead to sub-optimal performance on a
uniform memory access system such as the
PRIMEPOWER. When something like the dynamic
page management discussed in [14] is employed on
NUMA systems, the programming issues reflect
those of a UMA system. In other words, better-
balanced performance over a wider range of
problem sizes can be obtained with OpenMP
Version 2.0 and a focus on the operations involved
rather than with static or quasi-dynamic data
distributions.

5.2 Cache reuse – design and policy
standards?
If explicit data distributions are not a viable
solution to cache reuse, then what is? Perhaps
compilers should become “BLAS-aware” so that
potential performance problems can be flagged and
possibly fixed during compilation. Clear
documentation about the parallelisation strategy
used in each routine is one essential way to avoid
pitfalls such as alternating between sequential and

parallel sections. It would be useful if library
providers could agree upon a standard format and
terminology for index partitioning information.

There may be a need for information to be available
at run time. One possibility would be for a library
of parallel routines to include a “partitioning
inquiry” function. Given a routine name, a valid set
of input arguments and the number of threads, this
function could return a descriptor that defined how
the index space of the input and output arrays was
partitioned among the threads. Notice that the
intention is to provide this information for a
specific instance of a routine invocation. For
example, the way in which the array indices are
partitioned among threads in a call to dgemm
depends not only on the value of the arguments N,
M and K but also on whether array A or array B is
transposed and how many threads are available.
Given this information, it might be possible for the
writer of the calling program to organise the
computation done at this level to reduce the amount
of cache migration that will result from calls to a
particular routine.

While this idea has merits, there are many
difficulties with it. Firstly, there is the need for all
of the partitioning algorithms employed in a routine
such as dgemm to be accessible from the inquiry
function. This also implies that the control structure
of each routine is reproduced. When a parallel
library routine was written, would it be possible to
generate automatically a “shadow” routine that
could generate the information required by the
inquiry function? How general is the problem of
cache migration, does it extend much beyond linear
algebra? Would inquiry functions provide the
information required by a user? How complex does
the library routine have to become before this type
of information cannot be provided or is of limited
assistance in improving performance? Is there merit
in standardising the format of descriptors, possibly
to the extent that they become part of the OpenMP
specification? With the limitations of Fortran 77,
would there be merit in using external routines to
generate a 2-D partitioning for a given number of
rows and columns? A library would have its own
suite of partitioning routines, but users could be
given the specification for such routines so that
they could provide appropriate partitioning routines
for their application.

If runtime inquiry functions are too cumbersome,
could the required information on cache use be
encoded into performance analysis information?
This might allow users to be alerted to performance
problems related to cache reuse with suggestions on
how to address these problems.

6 Conclusions
OpenMP provides a convenient means by which
users can exploit SMP parallelism. However,
obtaining good SMP performance on more than a
handful of processors requires careful attention
being paid to all of the standard parallelisation
issues. OpenMP provides mechanisms to address
most of these issues, but the Version 1.1
specification leads to code that is more
cumbersome and harder to maintain than is
desirable. The Version 2 specification addresses
several of these limitations. While OpenMP
provides the flexibility and low overheads to
exploit loop parallelism, it lacks facilities to
optimise the performance of a sequence of such
parallel loops by exploiting data cache-locality.
This reduces the benefits of library routines that
deal with vector-vector or matrix-vector type
operations.

There is a case for including index partitioning as
an attribute of the arguments in calls to routines that
contain parallel loops, but it is not clear what the
most appropriate level of detail would be for this
attribute. There might also be benefits in organising
parallel routines so that one call option was to
determine the index partitioning but not perform
any further computation. However, when parallel
routines have a fixed Fortran 77 interface, the
problems become more difficult. One possibility
would be to move the partitioning into separate
routines and then document the interface to these
routines so that users could write their own
customized versions.

7 References
[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J.

Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov,

and D. Sorensen, LAPACK Users’ Guide, Third

Edition, SIAM, Philadelphia, PA, 1999.

[2] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo,

J. Demmel, I. Dhillon, J. Dongarra, S.

Hammarling, G. Henry, A. Petitet, K. Stanley, D.

Walker, R. C. Whaley, ScaLAPACK Users’ Guide,

SIAM, Philadelphia, PA, 1997.

[3] Intel Limited, Intel Math Kernel Library, Version

5.0, 2001,

http://developer.intel.com/software/products/mkl/i

ndex.htm

[4] M. Gonzalez, J. Oliver, X. Martorell, E. Ayguadé,

J. Labarta and N. Navarro, “OpenMP Extensions

for Thread Groups and Their Run-time Support”,

International Workshop on Languages and

Compilers for Parallel Computers (LCPC’00),

New York (USA), August 2000.

[5] S. Shah, G. Haab, P. Petersen and J. Throop,

“Flexible Control Structures for Parallelism in

OpenMP”. In 1st European Workshop on

OpenMP, Lund (Sweden), September 1999.

[6] N. Izuta, T. Watabe, T. Shimizu and T. Ichihashi,

“Overview of the PRIMEPOWER 2000/1000/800

Hardware”, Fujitsu Scientific and Technical

Journal, Vol. 36, No. 2, pp.121-127, December,

2000, (http://magazine.fujitsu.com/us/vol36-

2/paper03.pdf).

[7] SPEC Organization, “Standard Performance

Evaluation Corporation OpenMP Benchmark

Suite”, June 2001,

(http://www.spec.org/hpg/omp2001).

[8] OpenMP Architecture Review Board, Open MP

Fortran Application Program Interface 1.1,

November, 1999,

http://www.openmp.org/specs/mp-

documents/fspec11.pdf.

[9] OpenMP Architecture Review Board, Open MP

Fortran Application Program Interface 2.0,

November, 2000,

http://www.openmp.org/specs/mp-

documents/fspec2.pdf.

[10] B. Kågström, P. Ling and C. Van Loan. “GEMM-

Based Level 3 BLAS: High-Performance Model

Implementations and Performance Evaluation

Benchmark”, LAPACK Working Note 107,

University of Tennessee, CS-95-315, October,

1995.

[11] C. Koebel, D. Loveman, R. Schreiber, G. Steele,

and M. Zosel, The High Performance Fortran

Handbook, MIT Press, Cambridge,

Massachusetts, 1994.

[12] R. C. Clint and J. Dongarra, “Automatically

Tuned Linear Algebra Software”, LAPACK

Working Note 131, University of Tennessee, CS-

97-366, 1998.

[13] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J.

Harris, C.A. Nelson, C. D. Offner, “Extending

OpenMP for NUMA machines”, Proc.

Supercomputing 2000, Dallas, November, 2000.

[14] D. S. Nikolopoulos, T. S. Papatheodorou, C. D.

Polychronopoulos, J. Labarta and E. Ayguadé, “Is

Data Distribution Necessary in OpenMP?”, Proc.

Supercomputing 2000, Dallas, November, 2000.

