
Lecture 1: Single processor
performance

Why parallel computing

• Solving an 𝑛 × 𝑛 linear system Ax=b by using Gaussian

elimination takes ≈
1

3
𝑛3 flops.

• On Core i7 975 @ 4.0 GHz, which is capable of about
60-70 Gigaflops

𝑛 flops time

1000 3.3×108 0.006 seconds

1000000 3.3×1017 57.9 days

www.top500.org

Over 17 years, 10000-fold increases.

What’s in a computer

Motherboard diagram

http://en.wikipedia.org/wiki/Front-side_bus

http://en.wikipedia.org/wiki/Front-side_bus
http://en.wikipedia.org/wiki/Front-side_bus
http://en.wikipedia.org/wiki/Front-side_bus

von Neumann machine

• Common machine
model for many
years

• Stored-program
concept

• CPU executes a
stored program

• Machine is divided
into a CPU and
main memory

Memory

CPU

Fetch Store

16-bit Intel 8086 processor

Address ALU

Register

Memory
interface

Internal Bus

Control Unit

Insn.
fetch

Data ALU

First available in 1978

ALU

Arithmetic Logic Unit (ALU)
ALU takes one or two operands A,B
Operation:
1. Addition, Subtraction (integer)
2. Multiplication, Division (integer)
3. And, Or, Not (logical operation)
4. Bitwise operation (shifts,

equivalent to multiplication by
power of 2)

Specialized ALUs:
• Floating Point Unit (FPU)
• Address ALU

Memory read transaction (1)

• Load content of address A into a register
• CPU places address A on the system bus, I/O

bridge passes it onto the memory bus

Load operation: movl A, %eax

Memory read transaction (2)

• Main memory reads A from memory bus, retrieve
word x, and places x on the bus; I/O bridge passes
it along to the system bus

Load operation: movl A, %eax

Memory read transaction (3)

• CPU read word x from the bus and copies it
into register %eax

Load operation: movl A, %eax

Moore’s law
• Gordon Moore’s observation in 1965: the number of

transistors per square inch on integrated circuits had doubled
every year since the integrated circuit was invented (often
interpreted as Computer performance doubles every two years (same cost))

(Gordon_Moore_ISSCC_021003.pdf)

Moore’s law
• Moore’s revised observation in 1975: the pace slowed down a

bit, but data density had doubled approximately every 18
months

• Moore’s law is dead

Gordon Moore quote from 2005: “in terms of size [of transistor]
..we’re approaching the size of atoms which is a fundamental
barrier...”

Date Intel Transistors
CPU (x1000)

Technology

1971 4004 2.3

1978 8086 31 2.0 micron

1982 80286 110 HMOS

1985 80386 280 0.8 micron CMOS

1989 80486 1200

1993 Pentium 3100 0.8 micron biCMOS

1995 Pentium Pro 5500 0.6 micron – 0.25

Effect of memory latency on performance (1)
von Neumann Bottleneck: the transfer of data and instructions
between memory and the CPU

Effect of memory latency on performance (2)

Example. Assume a CPU operates at 1GHz (1 ns
clock) and is connected to a DRAM with a latency of
100 ns. Assume the CPU has 2 multiply/add units and
is capable of executing 4 instructions in each cycle of
1 ns. The peak CPU rating is 4GFLOPS (floating-point
operations per second).

Since the memory latency is 100 cycles, CPU must
wait 100 cycles before it can process data. Therefore,
the peak speed of computation is 10MFLOPS.

Source of slowness: CPU and memory speed

From Hennessy and Patterson,"Computer Architecture:

A Quantitative Approach,” 3rd Edition, 2003, Morgan Kaufman Publishers.

Improving effective memory latency using cache
memories (1)

• Put a look-up table of recently used data onto the CPU chip.
• Cache memories are small, fast SRAM-based memories

managed automatically in hardware.
• CPU look first for data in L1, then in L2,…, then in main

memory

Hierarchy of increasingly bigger, slower memories

Organization of a cache memory

Core i7 cache hierarchies

Improving effective memory latency using cache
memories (2)

Example. Consider to use a 1GHz CPU with a latency of 100
ns DRAM, and a cache of size 32KB with a latency of 1 ns to
multiply two matrices A and B of dimensions 32 × 32.

Fetching A and B into cache corresponds to fetching 2K
words, taking 200 μs. Multiplying A and B takes 2n3
operations = 64K operations, which can be performed in 16K
cycles (or 16 μs) at 4 instructions per cycle.

The total time for computing = 200 + 16 μs.

Peak computing rate = 64K/216 μs = 303 MFLOPS.

Cache performance measurements (1)

• Miss rate

-- Fraction of memory references not found in cache

• Hit time

-- Time to deliver a line in the cache to the processor,
including time to determine whether the line is in
the cache

• Missing penalty

-- Additional time required because of a miss

Cache performance measurements (2)

• Big difference between a hit and a miss

Example. Assume that cache hit time is 1 cycle,
and miss penalty is 100 cycles. A 99% hit rate is
twice as good as 97% rate.

-- Average access time

1. 97% hit rate: 0.97* 1 + 0.03*(1+100) = 4 cycles

2. 99% hit rate: 0.99*1 + 0.01*(1+100) = 2 cycles

Writing cache-friendly code (1)
• Principle of locality:

-- programs tend to reuse/use data items recently used or
nearby those recently used
-- Temporal locality: Recently referenced items are likely to be
referenced in the near future
-- Spatial locality: Items with nearby addresses tend to be
referenced close together in time

Data
-- Reference array elements in
succession: spatial locality
-- Reference “sum” in each iteration:
temporal locality

Instructions
-- Reference instructions in
sequence: Spatial locality
-- Cycle through loop repeatedly:
Temporal locality

How caches take advantage of temporal
locality

• The first time the CPU reads from an address in
main memory, a copy of that data is also stored
in the cache.

-- The next time that same address is read, the
copy of the data in the cache is used instead of
accessing the slower DRAM

• Commonly accessed data is stored in the faster
cache memory

How caches take advantage of spatial
locality

• When the CPU reads location i from main
memory, a copy of that data is placed in the
cache.

• Instead of just copying the contents of location
i, we can copy several values into the cache at
once, such as the four words from locations i
through i+3.

– If the CPU does need to read from locations
i+1, i+2 or i+3, it can access that data from
the cache.

Writing cache-friendly code (2)

In C/C++ language, array is stored in row-major order
in memory

Assume that there is a cache with size of 4-byte
words, 4-words cache blocks.
Left code has miss rate = ¼ = 25%
Right code has miss rate = 100%

Rearranging loops to improve locality
Miss rate analysis for matrix-matrix multiplication
• Assume a single matrix row does not fit in L1, each cache block

holds 4 elements, and compiler stores local variables in
registers.

• Scan A and C with stride of n
• 1 more memory operation

Trade-off: one memory operation – fewer misses

Matrix-matrix multiplication performance

From EECS213 Northwestern University

Sequential Operation

Double x[100], y[100], z[100];

 for (i = 0; i < 100; i++)

 z[i] = x[i] + y[i];

Fetch
operands

Add Normalize
results

Store in
memory

Fetch
operands

Add Normalize
results

Store in
memory

Solution: Pipelining
Divide a computation into stages that can support concurrency.

Double x[100], y[100], z[100];

 for (i = 0; i < 100; i++)

 z[i] = x[i] + y[i];

Fetch
operands

Add Normalize
results

Store in
memory

Fetch
operands

Add Normalize
results

Store in
memory

Fetch
operands

Add Normalize
results

Store in
memory

Fetch
operands

Add Normalize
results

Store in
memory

time

Another improvement: Vector processor pipeline.
Example: Cray 90

Software pipelining

Loop unrolling:

for (i = 0; i < 100; i++)

 do_a(i);

for (i = 0; i < 50; i+=2)
{
 do_a(i);
 do_a(i+1);
}

for (i = 0; i < 100; i++)

{

 do_a(i);

 do_b(i);

}

for (i = 0; i < 50; i+=2)

{

 do_a(i); do_a(i+1);

 do_b(i); do_b(i+1);

}

