
Lecture 4: Principles of Parallel
Algorithm Design (part 1)

1

Constructing a Parallel Algorithm

• identify portions of work that can be performed
concurrently

• map concurrent portions of work onto multiple
processes running in parallel

• distribute a program’s input, output, and
intermediate data

• manage accesses to shared data: avoid conflicts

• synchronize the processes at stages of the
parallel program execution

2

Task Decomposition and Dependency Graphs

Decomposition: divide a computation into smaller
parts, which can be executed concurrently

Task: programmer-defined units of computation.

3

Task-dependency graph:
Node represent s task.
Edge represents control
dependence.

Example 1: Dense Matrix-Vector Multiplication

• Computing y[i] only use ith row of A and b – treat
computing y[i] as a task.

• Remark:
– Task size is uniform

– No dependence between tasks

– All tasks need b
4

Example 2: Database Query Processing
• Executing the query:
Model =“civic” AND Year = “2001” AND (Color = “green” OR
Color = “white”)
on the following database:

5

• Task: create sets of elements that satisfy a (or several)
criteria.

• Edge: output of one task serves as input to the next

6

• An alternate task-dependency graph for query

7

• Different task decomposition leads to different
parallelism

Granularity of Task Decomposition

• Fine-grained decomposition: large number of
small tasks

• Coarse-grained decomposition: small number of
large tasks

Matrix-vector multiplication example

-- coarse-grain: each task computes 3 elements of y[]

8

Degree of Concurrency

• Degree of Concurrency: # of tasks that can
execute in parallel

-- maximum degree of concurrency: largest # of
concurrent tasks at any point of the execution

-- average degree of concurrency: average # of tasks
that can be executed concurrently

• Degree of Concurrency vs. Task Granularity

– Inverse relation

9

Critical Path of Task Graph

• Critical path: The longest directed path
between any pair of start node (node with no
incoming edge) and finish node (node with on
outgoing edges).

• Critical path length: The sum of weights of
nodes along critical path.

• Average degree of concurrency = total
amount of work / critical path length

10

Example: Critical Path Length

11

Task-dependency graphs of query processing operation

Left graph:
 Critical path length = 27
 Average degree of concurrency = 63/27 = 2.33
Right graph:
 Critical path length = 34
 Average degree of concurrency = 64/34 = 1.88

Limits on Parallelization

• Facts bounds on parallel execution

– Maximum task granularity is finite

• Matrix-vector multiplication O(n2)

– Communication between tasks

• Speedup = sequential execution time/parallel
execution time

• Parallel efficiency = sequential execution
time/(parallel execution time × processors used)

12

