Lecture 8: Fast Linear Solvers (Part 4)

Iterative Methods for Solving Linear Systems

- Consider to solve $A \boldsymbol{x}=\boldsymbol{b}$ with $A \in R^{n \times n}$ and $\boldsymbol{b} \in R^{n}$.
- In practice, iteration terminates when residual $\|\boldsymbol{b}-A x\|$ is as small as desired.
- Let $B \in R^{n \times n}$ be a non-singular matrix
- Rewrite $A \boldsymbol{x}=\boldsymbol{b}$ as $(B+(A-B)) \boldsymbol{x}=\boldsymbol{b}$ $-\boldsymbol{x}=B^{-1}(B-A) \boldsymbol{x}+B^{-1} \boldsymbol{b}$, which is a fixed-point equation.
- One uses a iteration for the solution of the fixedpoint iteration:
$\boldsymbol{x}^{(k+1)}=B^{-1}(B-A) \boldsymbol{x}^{(k)}+B^{-1} \boldsymbol{b}, \quad k \in N_{0}$ where $x^{(0)}$ is an arbitrary initial guess.

Splitting Matrix B

Algorithmic Conditions for B

- B^{-1} must exist.
- The sequence $\left(x_{i}\right)^{(k)}$ converges for $1 \leq i \leq n$ as $k \rightarrow \infty$. Ideally, this convergences should be fast.
- Efficient solution of the system $B \boldsymbol{v}=\boldsymbol{g}$
- Efficient computation of $(B-A) \boldsymbol{v}$

Lipschitz Continuity

- Define $F(\boldsymbol{x})=B^{-1}(B-A) \boldsymbol{x}+B^{-1} \boldsymbol{b}$
- $||F(\boldsymbol{x})-F(\boldsymbol{y})||=\left|\left|B^{-1}(B-A)(\boldsymbol{x}-\boldsymbol{y})\right|\right| \leq$
$\left\|\left|B^{-1}(B-A)\right|\right\| x-y| | \equiv \delta| | x-y| |$,
$\boldsymbol{x}, \boldsymbol{y} \in R^{n}$
With $\delta:=\left\|B^{-1}(B-A)\right\|$

Convergence

Theorem. Let \| $\left\|\|\right.$ be a vector norm in R^{n} and $\|C\|:=\sup _{x \in R^{n}} \frac{\|C x\|}{\|x\|}, C \in R^{n \times n}$ the induced matrix norm. Assume $\delta:=\left|\left|B^{-1}(B-A)\right|\right|<1$, then the sequence $\left(x_{i}\right)^{(k)}$ converges for all initial values $\boldsymbol{x}^{(0)}$ to the solution $\boldsymbol{x} \in R^{n}$ of $A \boldsymbol{x}=\boldsymbol{b}$. The error is bounded by

$$
\left\|\boldsymbol{x}^{(k+1)}-\boldsymbol{x}| | \leq \frac{\delta^{k}}{1-\delta}\right\| \boldsymbol{x}^{(1)}-\boldsymbol{x}^{(0)}| |
$$

Jacobi Method

Decompose matrix $A=\left[a_{i j}\right]$ into
$A=D+L+U, L, D, U \in R^{n \times n}$
$D=\operatorname{diag}\left(a_{11}, a_{22}, \ldots, a_{n n}\right)$ is a diagonal matrix and

$$
L=\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
a_{21} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & 0
\end{array}\right] U=\left[\begin{array}{cccc}
0 & a_{12} & \ldots & a_{1 n} \\
0 & 0 & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right]
$$

- Choose $B=D, D \boldsymbol{x}=-(L+U) \boldsymbol{x}+\boldsymbol{b}$
- The Jacobi method can be written as
$\boldsymbol{x}^{(k+1)}=D^{-1}\left(\boldsymbol{b}-(L+U) \boldsymbol{x}^{(k)}\right)$
- Jacobi method requires nonzero diagonal entries, which can be obtained by permuting rows and columns.
- Requires storage for both $\boldsymbol{x}^{(k+1)}$ and $\boldsymbol{x}^{(k)}$.
- components of new iterate do not depend on each other. So they can be computed in parallel.
- Define $T_{j}=-D^{-1}(L+U), \boldsymbol{c}_{j}=D^{-1} \boldsymbol{b}$

Jacobi method can be written as

$$
\boldsymbol{x}^{(k+1)}=T_{j} \boldsymbol{x}^{(k)}+\boldsymbol{c}_{j}
$$

Algorithm of Jacobi Method

- Choose initial vector $x^{0} \in R^{n}$

Set $k=1$
while ($k \leq N$) do
for $i=1$ to n

$$
x_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=1, j \neq i}^{n} a_{i j} x o_{j}\right)
$$

end for
if $||x-x \boldsymbol{x}||<$ TOL stop.
Set $k=k+1$
for $i=1$ to n

$$
x o_{i}=x_{i}
$$

end for
end while

Gauss-Seidel Method

- Choose $B=D+L$, $(D+L) \boldsymbol{x}=-(U) \boldsymbol{x}+\boldsymbol{b}$
- The Gauss-Seidel method can be written as

$$
\begin{aligned}
\boldsymbol{x}^{(k+1)} & =(D)^{-1}\left(\boldsymbol{b}-U \boldsymbol{x}^{(k)}-L \boldsymbol{x}^{(k+1)}\right) \text { or } \\
x_{i}^{(k+1)} & =\frac{1}{a_{i i}}\left(b_{i}-\sum_{j<i} a_{i j} x_{j}^{(k+1)}-\sum_{j>i} a_{i j} x_{j}^{(k)}\right)
\end{aligned}
$$

- Gauss-Seidel requires nonzero diagonal entries
- Gauss-Seidel does not need to duplicate storage for \boldsymbol{x}, since component values of \boldsymbol{x} can be overwritten as they are computed.
- Computing $x_{j}^{(k+1)}$ depends on previous $x_{j-1}^{(k+1)}$, $x_{j-2}^{(k+1)}, \ldots$ so they must be computed successively.
- Gauss-Seidel converges about twice as fast as Jacobi method.
- Define $T_{g}=-(D+L)^{-1} U, \boldsymbol{c}_{g}=(D+L)^{-1} \boldsymbol{b}$

Gauss-Seidel method can be written as

$$
\boldsymbol{x}^{(k+1)}=T_{g} \boldsymbol{x}^{(k)}+\boldsymbol{c}_{g}
$$

Algorithm of Gauss-Seidel

- Choose initial vector $x^{0} \in R^{n}$

Set $k=1$
while $(k \leq N)$ do
for $i=1$ to n

$$
x_{i}=\frac{1}{a_{i i}}\left(b_{i}-\sum_{j=i+1}^{n} a_{i j} x o_{j}-\sum_{j=1}^{i-1} a_{i j} x_{j}\right)
$$

end for
if $||x-x \boldsymbol{x} \||<$ TOL stop.
Set $k=k+1$
for $i=1$ to n

$$
x o_{i}=x_{i}
$$

end for
end while

- M matrices
- A matrix $A=\left[a_{i j}\right] \in R^{n \times n}$ is a M-matrix if the following conditions are satisfied
- $a_{i j} \leq 0, i, j=1, \ldots, n, \quad i \neq j$.
- $A^{-1} \geq 0$ exists.
- If a matrix A is strongly diagonally dominant, then Gauss-Seidel and Jacobi method converges.
- Let A be M-matrix. Then Gauss-Seidel and Jacobi method converges.
- The spectral radius of Gauss-Seidel method is smaller than that of Jacobi method if both methods converges.

SOR Method

- Successive over-relaxation (SOR) method computes next iterate as

$$
\boldsymbol{x}^{(k+1)}=(1-\omega) \boldsymbol{x}^{(k)}+\omega\left(\boldsymbol{x}_{g}^{(k+1)}\right) \text { where } \boldsymbol{x}_{g}^{(k+1)} \text { is }
$$ next iterate computed by Gauss-Seidel method

- ω is fixed relaxation parameter.
- SOR can converge only if $0<\omega<2$.
$-\omega>1$ gives over-relaxation; while $\omega<1$ gives under-relaxation.
- Using matrix notation, SOR can be written as $(D+\omega L) \boldsymbol{x}^{(k+1)}=[(1-\omega) D-\omega U] \boldsymbol{x}^{(k)}+\omega \boldsymbol{b}$

Parallelization of Jacobi and Gauss-Seidel Method

- Parallelization of Jacobi method is straight forward in contrast to Gauss-Seidel method
- Jacobi and Gauss-Seidel method are rarely used in practical applications due to slow convergence
- Krylov space methods are more often used
- Jacobi and Gauss-Seidel method are often used as preconditioners for Krylov space methods for smoothers for multi-grid methods.

Parallel Jacobi Method

- Decompose the matrix $A=\left[a_{i j}\right]$ into submatrices and use 2D block mapping.
while error > TOL
On each process, compute all own components ($a_{i j} x_{j}^{(k)}$) of the current iteration.
Tasks in each row of the task grid perform a sum-reduction to compute $\sum_{j \neq i} a_{i j} x_{j}^{(k)}$
After the sum-reduction, compute $b_{i}-\sum_{j \neq i} a_{i j} x_{j}^{(k)}$ among the tasks in the first column of the task grid and these tasks compute $x_{j}^{(k+1)}$
Distribute $x_{j}^{(k+1)}$ on task grid

