Lecture 8: Fast Linear Solvers (Part 6)

Nonsymmetric System of Linear Equations

- The CG method requires to A to be an $n \times n$ symmetric positive definite matrix to solve $A \boldsymbol{x}=\boldsymbol{b}$.
- If A is nonsymmetric:
- Convert the system to a symmetric positive definite one
- Modify CG to handle general matrices

Normal Equation Approach

The normal equations corresponding to $A \boldsymbol{x}=\boldsymbol{b}$ are $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$

- If A is nonsingular then $A^{T} A$ is symmetric positive definite and the CG method can be applied to solve $A^{T} A \boldsymbol{x}=A^{T} \boldsymbol{b}$ (CG normal residual -- CGNR).
- Alternatively, we can first solve $A A^{T} \boldsymbol{y}=\boldsymbol{b}$ for \boldsymbol{y}, then $\boldsymbol{x}=A^{T} \boldsymbol{y}$.
- Disadvantages:
- Each iteration requires $A^{T} A$ or $\mathrm{A} A^{T}$
- Condition number of $A^{T} A$ or $\mathrm{A} A^{T}$ is square of that of A. However, CG works well if condition number is small

Arnoldi Iteration

- The Arnoldi method is an orthogonal projection onto a Krylov subspace $\mathrm{K}_{m}\left(A, \boldsymbol{r}_{0}\right)$ for $n \times n$ nonsymmetric matrix A. Here $m \ll n$.
- Arnoldi reduces A to a Hessenberg form.

Upper Hessenberg matrix: zero entries below the first subdiagonal.
$\left[\begin{array}{llll}2 & 3 & 4 & 1 \\ 2 & 5 & 1 & 9 \\ 0 & 2 & 1 & 2 \\ 0 & 0 & 3 & 2\end{array}\right]$

Lower Hessenberg matrix: zero entries above the first superdiagonal.
$\left[\begin{array}{llll}3 & 2 & 0 & 0 \\ 2 & 5 & 1 & 0 \\ 1 & 2 & 1 & 2 \\ 3 & 4 & 3 & 2\end{array}\right]$

Let H_{m} be a $m \times m$ Hessenberg matrix:

$$
H_{m}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \ldots & h_{1 m} \\
h_{21} & h_{22} & \ldots & h_{2 m} \\
0 & \ddots & \ddots & \vdots \\
0 & \ldots & h_{m, m-1} & h_{m m}
\end{array}\right]
$$

Let $(m+1) \times m \bar{H}_{m}$ be the extended matrix of H_{m} :

$$
\bar{H}_{m}=\left[\begin{array}{cccc}
h_{11} & h_{12} & \ldots & h_{1 m} \\
h_{21} & h_{22} & \ldots & h_{2 m} \\
0 & \ddots & \ddots & \vdots \\
0 & \cdots & h_{m, m-1} & h_{m m} \\
0 & \cdots & 0 & h_{m+1, m}
\end{array}\right]
$$

The Arnoldi iteration produces matrices V_{m}, V_{m+1} and \bar{H}_{m} for matrix A satisfying:

$$
A V_{m}=V_{m+1} \bar{H}_{m}=V_{m} H_{m}+\boldsymbol{w}_{m} \boldsymbol{e}_{m}^{T}
$$

Here V_{m}, V_{m+1} have orthonormal columns

$$
V_{m}=\left[\boldsymbol{v}_{1}\left|\boldsymbol{v}_{2}\right| \ldots \mid \boldsymbol{v}_{m}\right], \quad V_{m+1}=\left[\boldsymbol{v}_{1}\left|\boldsymbol{v}_{2}\right| \ldots\left|\boldsymbol{v}_{m}\right| \boldsymbol{v}_{m+1}\right]
$$

Arnoldi Algorithm

$$
\begin{aligned}
& \quad v_{1}=r_{0} /\left\|r_{0}\right\|_{2} \\
& w_{1}=A v_{1}-\left(A v_{1}, v_{1}\right) v_{1}, \quad v_{2}=w_{1} /\left\|w_{1}\right\|_{2} \\
& \quad \vdots \\
& w_{j}=A v_{j}-\left(A v_{j}, v_{1}\right) v_{1}-\ldots-\left(A v_{j}, v_{j}\right) v_{j}, \quad v_{j+1}=w_{j} /\left\|w_{j}\right\|_{2} \\
& \quad \vdots \\
& w_{m}=A v_{m}-\left(A v_{m}, v_{1}\right) v_{1}-\ldots-\left(A v_{m}, v_{m}\right) v_{m}, \quad v_{m+1}=w_{m} /\left\|w_{m}\right\|_{2} \\
& \text { Choose } \boldsymbol{r}_{0} \text { and let } \boldsymbol{v}_{1}=\boldsymbol{r}_{0} /\left\|\boldsymbol{r}_{0}\right\| \\
& \text { for } j=1, \ldots, m-1 \\
& \quad \boldsymbol{w}=A \boldsymbol{v}_{j}-\sum_{i=1}^{j}\left(\left(A \boldsymbol{v}_{j}\right)^{T} \boldsymbol{v}_{i}\right) \boldsymbol{v}_{i} \\
& \quad \boldsymbol{v}_{j+1}=\boldsymbol{w} /\|\boldsymbol{w}\|_{2} \\
& \text { endfor }
\end{aligned}
$$

- $V_{m}^{T} V_{m}=I_{m \times m}$.
- If Arnoldi process breaks down at $m t h$ step, $\boldsymbol{w}_{m}=\mathbf{0}$ is still welldefined but not v_{m+1}, and the algorithm stop.
- In this case, the last row of \bar{H}_{m} is set to zero, $h_{m+1, m}=0$

Theorem. The Arnoldi procedure generates a reduced QR factoriztion of the Krylov matrix $\mathrm{K}_{m}=\left[\boldsymbol{r}_{0}\left|A \boldsymbol{r}_{0}\right| A^{2} \boldsymbol{r}_{0}|\ldots| A^{k-1} \boldsymbol{r}_{0}\right]$ in the form
$\mathrm{K}_{m}=V_{m} R_{m}$,
with R_{m} being a triangular matrix $R_{m} \in R^{m \times m}$.
Furthermore,

$$
V_{m}^{T} A V_{m}=H_{m}
$$

Remark:

$$
\begin{aligned}
& A \boldsymbol{v}_{j}=\sum_{i=1}^{j+1} h_{i j} \boldsymbol{v}_{i}, \quad \text { for } j=1, \ldots, m-1 \\
& A V_{m}=V_{m+1} \bar{H}_{m}=V_{m} H_{m}+\boldsymbol{w}_{m} \boldsymbol{e}_{m}^{T}
\end{aligned}
$$

Stable Arnoldi Algorithm

Choose \boldsymbol{x}_{0} and let $\boldsymbol{v}_{1}=\boldsymbol{x}_{0} /\left\|\boldsymbol{x}_{0}\right\|$.
for $j=1, \ldots, m$

$$
\begin{aligned}
& \boldsymbol{w}=A \boldsymbol{v}_{j} \\
& \text { for } i=1, \ldots, j
\end{aligned}
$$

$$
\left.h_{i j}=<\boldsymbol{w}, \boldsymbol{v}_{i}\right\rangle
$$

$$
\boldsymbol{w}=\boldsymbol{w}-h_{i j} \boldsymbol{v}_{i}
$$

endfor

$$
\begin{aligned}
h_{j+1, i} & =\|\boldsymbol{w}\|_{2} \\
\boldsymbol{v}_{j+1} & =\boldsymbol{w} / h_{j+1, i}
\end{aligned}
$$

endfor

Generalized Minimum Residual (GMRES) Method

Let the Krylov space associated with $A \boldsymbol{x}=\boldsymbol{b}$ be
$\mathrm{K}_{k}\left(A, \boldsymbol{r}_{0}\right)=\operatorname{span}\left\{\boldsymbol{r}_{0}, A \boldsymbol{r}_{0}, A^{2} \boldsymbol{r}_{0}, \ldots, A^{k-1} \boldsymbol{r}_{0}\right\}$, where $\boldsymbol{r}_{0}=\boldsymbol{b}-A \boldsymbol{x}_{0}$ for some initial guess \boldsymbol{x}_{0}.

The $k t h(k \geq 1)$ iteration of GMRES is the solution to the least squares problem:

$$
\operatorname{minimize}_{\boldsymbol{x} \in x_{0}+\mathrm{K}_{k}}\|\boldsymbol{b}-A \boldsymbol{x}\|_{2} \text {, i.e. }
$$

Find $\boldsymbol{x}_{\boldsymbol{k}} \in \boldsymbol{x}_{0}+\mathrm{K}_{k}$ such that $\left\|\boldsymbol{b}-A \boldsymbol{x}_{k}\right\|_{2}=$

$$
\min _{x \in x_{0}+\mathrm{K}_{k}}\|\boldsymbol{b}-A \boldsymbol{x}\|_{2}
$$

If $\boldsymbol{x} \in \boldsymbol{x}_{0}+\mathrm{K}_{k}$, then $\boldsymbol{x}=\boldsymbol{x}_{0}+\sum_{j=0}^{k-1} \gamma_{j} A^{j} \boldsymbol{r}_{0}$. So $\boldsymbol{b}-A \boldsymbol{x}=\boldsymbol{b}-A \boldsymbol{x}_{0}-\sum_{j=0}^{k-1} \gamma_{j} A^{j+1} \boldsymbol{r}_{0}=\boldsymbol{r}_{0}-$ $\sum_{j=1}^{k} \gamma_{j-1} A^{j} \boldsymbol{r}_{0}$.

Define: Let \bar{p}_{k} be a $k t h$ degree polynomial such that $\bar{p}_{k}(0)=1 . \bar{p}_{k}$ is called a residual polynomial.
The set of $k t h$ degree residual polynomial is
$P_{k}=\left\{\bar{p}_{k} \mid \bar{p}_{k}\right.$ is a kth degree polynomial and $\left.\bar{p}_{k}(0)=1\right\}$

$$
\boldsymbol{r}=\boldsymbol{r}_{0}-\sum_{j=1}^{k} \gamma_{j-1} A^{j} \boldsymbol{r}_{0}=\bar{p}_{k}(A) \boldsymbol{r}_{0}
$$

Theorem. Let \boldsymbol{x}_{k} be the k th GMRES iteration. Then for all $\bar{p}_{k} \in P_{k}$

$$
\left\|\boldsymbol{r}_{k}\right\|_{2} \leq\left\|\bar{p}_{k}(A) \boldsymbol{r}_{0}\right\|_{2}
$$

GMRES Implementation

- The $k t h(k \geq 1)$ iteration of GMRES is the solution to the least squares problem:

$$
\operatorname{minimize}_{x \in x_{0}+\mathrm{K}_{k}}\|\boldsymbol{b}-A \boldsymbol{x}\|_{2}
$$

- Suppose we have used Arnoldi process constructed an orthogonal basis V_{k} for $\mathrm{K}_{k}\left(A, \boldsymbol{r}_{0}\right)$.
$-\boldsymbol{r}_{0}=\beta V_{k} \boldsymbol{e}_{1}$, where $\boldsymbol{e}_{1}=(1,0,0, \ldots)^{T}, \beta=\left\|\boldsymbol{r}_{0}\right\|_{2}$
- Any vector $\boldsymbol{z} \in \mathrm{K}_{k}\left(A, \boldsymbol{r}_{0}\right)$ can be written as $\boldsymbol{z}=$ $\sum_{l=1}^{k} y_{l} \boldsymbol{v}_{l}^{k}$, where \boldsymbol{v}_{l}^{k} is the lth column of V_{k}. Denote $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)^{T} \in R^{k}$.

$$
\boldsymbol{z}=V_{k} \boldsymbol{y}
$$

Since $\boldsymbol{x}-\boldsymbol{x}_{0}=V_{k} \boldsymbol{y}$ for some coefficient vector
$\boldsymbol{y} \in R^{k}$, we must have $\boldsymbol{x}_{k}=\boldsymbol{x}_{0}+V_{k} \boldsymbol{y}$ where \boldsymbol{y} minimizes $\left\|\boldsymbol{b}-A\left(\boldsymbol{x}_{0}+V_{k} \boldsymbol{y}\right)\right\|_{2}=\left\|\boldsymbol{r}_{0}-A V_{k} \boldsymbol{y}\right\|_{2}$.

- The $k t h(k \geq 1)$ iteration of GMRES now is equivalent to a least squares problem in R^{k}, i.e.

$$
\begin{aligned}
& \operatorname{minimize}_{x \in x_{0}+K_{k}}\|\boldsymbol{b}-A \boldsymbol{x}\|_{2} \\
& \quad=\text { minimize }_{y \in R^{k}}\left\|\boldsymbol{r}_{0}-A V_{k} \boldsymbol{y}\right\|_{2}
\end{aligned}
$$

- Remark: This is a linear least square problem.
- The associate normal equation is $\left(A V_{k}\right)^{T} A V_{k} \boldsymbol{y}=$ $\left(A V_{k}\right)^{T} \boldsymbol{r}_{0}$. But we will solve it differently.
- Let \boldsymbol{x}_{k} be $k t h$ iterative solution of GMRES.

Define: $\boldsymbol{r}_{k}=\boldsymbol{b}-A \boldsymbol{x}_{k}=\boldsymbol{r}_{0}-A\left(\boldsymbol{x}_{k}-\boldsymbol{x}_{0}\right)=$ $\beta V_{k+1} \boldsymbol{e}_{1}-A\left(\boldsymbol{x}_{0}+V_{k} \boldsymbol{y}-\boldsymbol{x}_{0}\right)=\beta V_{k+1} \boldsymbol{e}_{1}-$ $V_{k+1} \bar{H}_{k} \boldsymbol{y}^{k}=V_{k+1}\left(\beta \boldsymbol{e}_{1}-\bar{H}_{k} \boldsymbol{y}^{k}\right)$

Using orthogonality of V_{k+1} :

$$
\begin{aligned}
& \operatorname{minimize}_{x \in x_{0}+K_{k}}\|\boldsymbol{b}-A \boldsymbol{x}\|_{2} \\
& \quad=\text { minimize }_{y \in R^{k}}\left\|\beta \boldsymbol{e}_{1}-\bar{H}_{k} \boldsymbol{y}^{k}\right\|_{2}
\end{aligned}
$$

$$
\operatorname{minimize}_{y \in R^{k}}\left\|\beta \boldsymbol{e}_{1}-\bar{H}_{m} \boldsymbol{y}^{k}\right\|_{2}
$$

Theorem. Let $n \times k(k \leq n)$ matrix B be with linearly independent columns (full column rank). Let $B=Q R$ be a $Q R$ factorization of B. Then for each $\boldsymbol{b} \in R^{n}$, the equation $B \boldsymbol{u}=\boldsymbol{b}$ has a unique least-square solution, given by $\widehat{\boldsymbol{u}}=R^{-1} Q^{T} \boldsymbol{b}$.

Using Householder reflection to do QR factorization gives $\bar{H}_{m}=Q_{m+1} \bar{R}_{m}$ where $Q_{m+1} \in R^{(m+1) \times(m+1)}$ is orthogonal and $\bar{R}_{m} \in R^{(m+1) \times m}$ has the form $\bar{R}_{m}=\left[\begin{array}{c}R_{m} \\ 0\end{array}\right]$, where $R_{m} \in R^{m \times m}$ is upper triangular.

Algorithm 3.4.2. gmresa $(x, b, A, \epsilon, k \max , \rho)$

1. $r=b-A x, v_{1}=r /\|r\|_{2}, \rho=\|r\|_{2}, \beta=\rho, k=0$
2. While $\rho>\epsilon\|b\|_{2}$ and $k<k \max$ do
(a) $k=k+1$
(b) for $j=1, \ldots, k$

$$
h_{j k}=\left(A v_{k}\right)^{T} v_{j}
$$

(c) $v_{k+1}=A v_{k}-\sum_{j=1}^{k} h_{j k} v_{j}$
(d) $h_{k+1, k}=\left\|v_{k+1}\right\|_{2}$
(e) $v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|_{2}$
(f) $e_{1}=(1,0, \ldots, 0)^{T} \in R^{k+1}$

Minimize $\left\|\beta e_{1}-H_{k} y^{k}\right\|_{R^{k+1}}$ over R^{k} to obtain y^{k}.
(g) $\rho=\left\|\beta e_{1}-H_{k} y^{k}\right\|_{R^{k+1}}$.
3. $x_{k}=x_{0}+V_{k} y^{k}$.

- \boldsymbol{v}_{j} may become nonorthogonal as a result of round off errors.
$-\left\|\beta \boldsymbol{e}_{1}-\bar{H}_{k} \boldsymbol{y}^{k}\right\|_{2}$ which depends on orthogonality, will not hold and the residual could be inaccurate.
- Replace the loop in Step 2c of Algorithm gmresa with

$$
\begin{aligned}
& v_{k+1}=A v_{k} \\
& \text { for } j=1, \ldots k \\
& \quad v_{k+1}=v_{k+1}-\left(v_{k+1}^{T} v_{j}\right) v_{j}
\end{aligned}
$$

We illustrate this point with a simple example from [128], doing the computations in MATLAB. Let $\delta=10^{-7}$ and define

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
\delta & \delta & 0 \\
\delta & 0 & \delta
\end{array}\right)
$$

We orthogonalize the columns of A with classical Gram-Schmidt to obtain

$$
V=\left(\begin{array}{lll}
1.0000 e+00 & 1.0436 e-07 & 9.9715 e-08 \\
1.0000 e-07 & 1.0456 e-14 & -9.9905 e-01 \\
1.0000 e-07 & -1.0000 e+00 & 4.3568 e-02
\end{array}\right)
$$

The columns of V_{U} are not orthogonal at all. In fact $v_{2}^{T} v_{3} \approx-.004$. For modified Gram-Schmidt

$$
V=\left(\begin{array}{lll}
1.0000 e+00 & 1.0436 e-07 & 1.043 \mid 6 e-07 \\
1.0000 e-07 & 1.0456 e-14 & -1.0000 e+00 \\
1.0000 e-07 & -1.0000 e+00 & 4.3565 e-16
\end{array}\right)
$$

Here $\left|v_{i}^{T} v_{j}-\delta_{i j}\right| \leq 10^{-8}$ for all i, j.

Algorithm 3.4.3. $\operatorname{gmresb}(x, b, A, \epsilon, k m a x, \rho)$ 1. $r=b-A x, v_{1}=r /\|r\|_{2}, \rho=\|r\|_{2}, \beta=\rho, k=0$
2. While $\rho>\epsilon\|b\|_{2}$ and $k<k \max$ do
(a) $k=k+1$
(b) $v_{k+1}=A v_{k}$
for $j=1, \ldots k$
i. $h_{j k}=v_{k+1}^{T} v_{j}$
ii. $v_{k+1}=v_{k+1}-h_{j k} v_{j}$
(c) $h_{k+1, k}=\left\|v_{k+1}\right\|_{2}$
(d) $v_{k+1}=v_{k+1} /\left\|v_{k+1}\right\|_{2}$
(e) $e_{1}=(1,0, \ldots, 0)^{T} \in R^{k+1}$

Minimize $\left\|\beta e_{1}-H_{k} y^{k}\right\|_{R^{k+1}}$ to obtain $y^{k} \in R^{k}$.
(f) $\rho=\left\|\beta e_{1}-H_{k} y^{k}\right\|_{R^{k+1}}$.
3. $x_{k}=x_{0}+V_{k} y^{k}$.

