Lecture 8: Fast Linear Solvers (Part 6)

Nonsymmetric System of Linear Equations

- The CG method requires to A to be an n × n symmetric positive definite matrix to solve Ax = b.
- If *A* is nonsymmetric:
 - Convert the system to a symmetric positive definite one
 - Modify CG to handle general matrices

Normal Equation Approach

The normal equations corresponding to $A\mathbf{x} = \mathbf{b}$ are $A^T A \mathbf{x} = A^T \mathbf{b}$

- If A is nonsingular then $A^T A$ is symmetric positive definite and the CG method can be applied to solve $A^T A \mathbf{x} = A^T \mathbf{b}$ (CG normal residual -- CGNR).
- Alternatively, we can first solve $AA^T y = b$ for y, then $x = A^T y$.
- Disadvantages:
 - Each iteration requires $A^T A$ or $A A^T$
 - Condition number of $A^T A$ or $A A^T$ is square of that of A. However, CG works well if condition number is small

Arnoldi Iteration

- The Arnoldi method is an orthogonal projection onto a Krylov subspace $K_m(A, \mathbf{r}_0)$ for $n \times n$ nonsymmetric matrix A. Here $m \ll n$.
- Arnoldi reduces A to a Hessenberg form.

Upper Hessenberg matrix: zero entries below the first subdiagonal. $3 \ 4 \ 1^{-1}$

- 2 5 1 9 0 2 1 2
- 3 2

Lower Hessenberg matrix: zero entries above the first superdiagonal. 3 2 ()() 4 3 2

Let H_m be a $m \times m$ Hessenberg matrix:

$$H_m = \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1m} \\ h_{21} & h_{22} & \dots & h_{2m} \\ 0 & \ddots & \ddots & \vdots \\ 0 & \dots & h_{m,m-1} & h_{mm} \end{bmatrix}$$

Let $(m + 1) \times m \overline{H}_m$ be the extended matrix of H_m :
$$\overline{H}_m = \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1m} \\ h_{21} & h_{22} & \dots & h_{2m} \\ 0 & \ddots & \ddots & \vdots \\ 0 & \dots & h_{m,m-1} & h_{mm} \\ 0 & \dots & 0 & h_{m+1,m} \end{bmatrix}$$

The Arnoldi iteration produces matrices V_m, V_{m+1} and \overline{H}_m for matrix A satisfying:
$$AV_m = V_{m+1}\overline{H}_m = V_mH_m + \mathbf{w}_m \mathbf{e}_m^T$$

Here V_m , V_{m+1} have orthonormal columns $V_m = [\boldsymbol{v}_1 | \boldsymbol{v}_2 | \dots | \boldsymbol{v}_m], \quad V_{m+1} = [\boldsymbol{v}_1 | \boldsymbol{v}_2 | \dots | \boldsymbol{v}_m | \boldsymbol{v}_{m+1}]$

Arnoldi Algorithm

 $v_{1} = r_{0}/||r_{0}||_{2}$ $w_{1} = A v_{1} - (A v_{1}, v_{1}) v_{1}, \qquad v_{2} = w_{1}/||w_{1}||_{2}$ \vdots $w_{j} = A v_{j} - (A v_{j}, v_{1}) v_{1} - \dots - (A v_{j}, v_{j}) v_{j}, \qquad v_{j+1} = w_{j}/||w_{j}||_{2}$ \vdots $w_{m} = A v_{m} - (A v_{m}, v_{1}) v_{1} - \dots - (A v_{m}, v_{m}) v_{m}, \qquad v_{m+1} = w_{m}/||w_{m}||_{2}$

Choose
$$\boldsymbol{r}_0$$
 and let $\boldsymbol{v}_1 = \boldsymbol{r}_0/||\boldsymbol{r}_0||$
for $j = 1, ..., m - 1$
 $\boldsymbol{w} = A\boldsymbol{v}_j - \sum_{i=1}^j ((A\boldsymbol{v}_j)^T \boldsymbol{v}_i)\boldsymbol{v}_i$
 $\boldsymbol{v}_{j+1} = \boldsymbol{w}/||\boldsymbol{w}||_2$
endfor

- $V_m^T V_m = I_{m \times m}$.
- If Arnoldi process breaks down at mth step, $w_m = 0$ is still welldefined but not v_{m+1} , and the algorithm stop.
- In this case, the last row of \overline{H}_m is set to zero, $h_{m+1,m} = 0$

Theorem. The Arnoldi procedure generates a reduced QR factoriztion of the Krylov matrix $K_m = [r_0 | A r_0 | A^2 r_0 | \dots | A^{k-1} r_0]$ in the form $K_m = V_m R_m$,

with R_m being a triangular matrix $R_m \in R^{m \times m}$. Furthermore,

$$V_m^T A V_m = H_m.$$

Remark:

$$A\boldsymbol{v}_{j} = \sum_{i=1}^{j+1} h_{ij}\boldsymbol{v}_{i}, \text{ for } j = 1, \dots, m-1$$
$$AV_{m} = V_{m+1}\overline{H}_{m} = V_{m}H_{m} + \boldsymbol{w}_{m}\boldsymbol{e}_{m}^{T}$$

Stable Arnoldi Algorithm

Choose
$$x_0$$
 and let $v_1 = x_0/||x_0||$.
for $j = 1, ..., m$
 $w = Av_j$
for $i = 1, ..., j$
 $h_{ij} = \langle w, v_i \rangle$
 $w = w - h_{ij}v_i$
endfor
 $h_{j+1,i} = ||w||_2$
 $v_{j+1} = w/h_{j+1,i}$
endfor

Generalized Minimum Residual (GMRES) Method

Let the Krylov space associated with $A\mathbf{x} = \mathbf{b}$ be $K_k(A, \mathbf{r}_0) = span\{\mathbf{r}_0, A\mathbf{r}_0, A^2\mathbf{r}_0, \dots, A^{k-1}\mathbf{r}_0\},\$ where $\mathbf{r}_0 = \mathbf{b} - A \mathbf{x}_0$ for some initial guess \mathbf{x}_0 .

The *kth* ($k \ge 1$) iteration of GMRES is the solution to the least squares problem:

$$\begin{aligned} \min inimize_{x \in x_0 + K_k} || \boldsymbol{b} - A\boldsymbol{x} ||_2, \text{ i.e.} \\ \text{Find } \boldsymbol{x}_k \in \boldsymbol{x}_0 + K_k \text{ such that } || \boldsymbol{b} - A\boldsymbol{x}_k ||_2 = \\ \min_{x \in x_0 + K_k} || \boldsymbol{b} - A\boldsymbol{x} ||_2 \end{aligned}$$

If
$$x \in x_0 + K_k$$
, then $x = x_0 + \sum_{j=0}^{k-1} \gamma_j A^j r_0$.
So $b - Ax = b - Ax_0 - \sum_{j=0}^{k-1} \gamma_j A^{j+1} r_0 = r_0 - \sum_{j=1}^{k} \gamma_{j-1} A^j r_0$.

Define: Let \bar{p}_k be a *kth* degree polynomial such that $\bar{p}_k(0) = 1$. \bar{p}_k is called a *residual polynomial*. The set of *kth* degree *residual polynomial* is $P_k = \{\bar{p}_k | \bar{p}_k \text{ is a kth degree polynomial and } \bar{p}_k(0) = 1\}$ $r = r_0 - \sum_{j=1}^k \gamma_{j-1} A^j r_0 = \bar{p}_k(A) r_0$

Theorem. Let x_k be the *kth* GMRES iteration. Then for all $\bar{p}_k \in P_k$

$$||\boldsymbol{r}_{k}||_{2} \leq ||\bar{p}_{k}(A)\boldsymbol{r}_{0}||_{2}$$

GMRES Implementation

- The *kth* ($k \ge 1$) iteration of GMRES is the solution to the least squares problem: $minimize_{x \in x_0 + K_k} || \boldsymbol{b} - A \boldsymbol{x} ||_2$
- Suppose we have used Arnoldi process constructed an orthogonal basis V_k for $K_k(A, \boldsymbol{r}_0)$.
 - $r_0 = \beta V_k e_1$, where $e_1 = (1,0,0,...)^T$, $\beta = ||r_0||_2$
 - Any vector $z \in K_k(A, r_0)$ can be written as $z = \sum_{l=1}^k y_l v_l^k$, where v_l^k is the *lth* column of V_k . Denote $y = (y_1, y_2, ..., y_k)^T \in R^k$. $z = V_k y$

Since $\mathbf{x} - \mathbf{x}_0 = V_k \mathbf{y}$ for some coefficient vector $\mathbf{y} \in R^k$, we must have $\mathbf{x}_k = \mathbf{x}_0 + V_k \mathbf{y}$ where \mathbf{y} minimizes $||\mathbf{b} - A(\mathbf{x}_0 + V_k \mathbf{y})||_2 = ||\mathbf{r}_0 - AV_k \mathbf{y}||_2$.

- The *kth* ($k \ge 1$) iteration of GMRES now is equivalent to a least squares problem in R^k , i.e. $minimize_{x \in x_0 + K_k} || \boldsymbol{b} - A \boldsymbol{x} ||_2$ $= minimize_{v \in R^k} || \boldsymbol{r}_0 - A V_k \boldsymbol{y} ||_2$
 - Remark: This is a linear least square problem.
 - The associate normal equation is $(AV_k)^T AV_k y = (AV_k)^T r_0$. But we will solve it differently.

• Let x_k be *kth* iterative solution of GMRES.

Define:
$$\mathbf{r}_k = \mathbf{b} - A\mathbf{x}_k = \mathbf{r}_0 - A(\mathbf{x}_k - \mathbf{x}_0) = \beta V_{k+1}\mathbf{e}_1 - A(\mathbf{x}_0 + V_k\mathbf{y} - \mathbf{x}_0) = \beta V_{k+1}\mathbf{e}_1 - V_{k+1}\overline{H}_k\mathbf{y}^k = V_{k+1}(\beta \mathbf{e}_1 - \overline{H}_k\mathbf{y}^k)$$

Using orthogonality of V_{k+1} :

$$\begin{array}{l} minimize_{\boldsymbol{x}\in\boldsymbol{x}_{0}+\boldsymbol{K}_{k}}||\boldsymbol{b}-A\boldsymbol{x}||_{2} \\ = minimize_{\boldsymbol{y}\in\boldsymbol{R}^{k}}||\boldsymbol{\beta}\boldsymbol{e}_{1}-\overline{H}_{k}\boldsymbol{y}^{k}||_{2} \end{array}$$

$$minimize_{y \in R^k} ||\beta e_1 - \overline{H}_m y^k||_2$$

Theorem. Let $n \times k$ ($k \le n$) matrix B be with linearly independent columns (full column rank). Let B = QR be a QR factorization of B. Then for each $\boldsymbol{b} \in R^n$, the equation $B\boldsymbol{u} = \boldsymbol{b}$ has a unique least-square solution, given by $\hat{\boldsymbol{u}} = R^{-1}Q^T\boldsymbol{b}$.

Using Householder reflection to do QR factorization gives $\overline{H}_m = Q_{m+1}\overline{R}_m$ where $Q_{m+1} \in R^{(m+1)\times(m+1)}$ is orthogonal and $\overline{R}_m \in R^{(m+1)\times m}$ has the form $\overline{R}_m = \begin{bmatrix} R_m \\ 0 \end{bmatrix}$, where $R_m \in R^{m \times m}$ is upper triangular. ALGORITHM 3.4.2. gmresa $(x, b, A, \epsilon, kmax, \rho)$ 1. r = b - Ax, $v_1 = r/||r||_2$, $\rho = ||r||_2$, $\beta = \rho$, k = 0

2. While
$$\rho > \epsilon ||b||_2$$
 and $k < kmax$ do
(a) $k = k + 1$
(b) for $j = 1, ..., k$
 $h_{jk} = (Av_k)^T v_j$
(c) $v_{k+1} = Av_k - \sum_{j=1}^k h_{jk} v_j$
(d) $h_{k+1,k} = ||v_{k+1}||_2$
(e) $v_{k+1} = v_{k+1}/||v_{k+1}||_2$
(f) $e_1 = (1, 0, ..., 0)^T \in \mathbb{R}^{k+1}$
Minimize $||\beta e_1 - H_k y^k||_{\mathbb{R}^{k+1}}$ over \mathbb{R}^k to obtain y^k .
(g) $\rho = ||\beta e_1 - H_k y^k||_{\mathbb{R}^{k+1}}$.

$$3. \ x_k = x_0 + V_k y^k.$$

"C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations".

- *v_j* may become nonorthogonal as a result of round off errors.
 - $-||\beta e_1 \overline{H}_k y^k||_2$ which depends on orthogonality, will not hold and the residual could be inaccurate.
 - Replace the loop in Step 2c of Algorithm gmresa with

$$v_{k+1} = Av_k$$

for $j = 1, ..., k$
 $v_{k+1} = v_{k+1} - (v_{k+1}^T v_j)v_j$.

We illustrate this point with a simple example from [128], doing the computations in MATLAB. Let $\delta = 10^{-7}$ and define

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ \delta & \delta & 0 \\ \delta & 0 & \delta \end{array}\right).$$

We orthogonalize the columns of A with classical Gram–Schmidt to obtain

$$V = \begin{pmatrix} 1.0000e + 00 & 1.0436e - 07 & 9.9715e - 08\\ 1.0000e - 07 & 1.0456e - 14 & -9.9905e - 01\\ 1.0000e - 07 & -1.0000e + 00 & 4.3568e - 02 \end{pmatrix}$$

The columns of V_U are not orthogonal at all. In fact $v_2^T v_3 \approx -.004$. For modified Gram–Schmidt

$$V = \left(\begin{array}{ccccc} 1.0000e + 00 & 1.0436e - 07 & 1.043 & e - 07 \\ 1.0000e - 07 & 1.0456e - 14 & -1.0000e + 00 \\ 1.0000e - 07 & -1.0000e + 00 & 4.3565e - 16 \end{array}\right).$$

Here $|v_i^T v_j - \delta_{ij}| \le 10^{-8}$ for all i, j.

"C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations".

ALGORITHM 3.4.3. gmresb
$$(x, b, A, \epsilon, kmax, \rho)$$

1. $r = b - Ax, v_1 = r/||r||_2, \rho = ||r||_2, \beta = \rho, k = 0$
2. While $\rho > \epsilon ||b||_2$ and $k < kmax$ do
(a) $k = k + 1$
(b) $v_{k+1} = Av_k$
for $j = 1, ..., k$
i. $h_{jk} = v_{k+1}^T v_j$
ii. $v_{k+1} = v_{k+1} - h_{jk}v_j$
(c) $h_{k+1,k} = ||v_{k+1}||_2$
(d) $v_{k+1} = v_{k+1}/||v_{k+1}||_2$
(e) $e_1 = (1, 0, ..., 0)^T \in R^{k+1}$
Minimize $||\beta e_1 - H_k y^k||_{R^{k+1}}$ to obtain $y^k \in R^k$.
(f) $\rho = ||\beta e_1 - H_k y^k||_{R^{k+1}}$.

"C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations" .