Lecture 8: Fast Linear Solvers (Part 7)

Modified Gram-Schmidt Process with Reorthogonalization

- $v_{k+1} = Av_k$ for $j = 1, \dots, k$ $h_{jk} = v_{k+1}^T v_j$ $v_{k+1} = v_{k+1} - h_{jk}v_j$
- $h_{k+1,k} = \|v_{k+1}\|_2$
- If loss of orthogonality is detected For j = 1, ..., k $h_{tmp} = v_{k+1}^T v_j$ $h_{jk} = h_{jk} + h_{tmp}$ $v_{k+1} = v_{k+1} - h_{tmp} v_j$
- $h_{k+1,k} = \|v_{k+1}\|_2$
- $v_{k+1} = v_{k+1} / \|v_{k+1}\|_2$

Test Reorthogonalization If $||Av_k||_2 + \delta ||v_{k+1}||_2 =$ $||Av_k||_2$ to working precision. $\delta = 10^{-3}$

Householder Arnoldi

- In Arnoldi algorithm, the column vectors of a matrix to be orthonormalized are not available ahead of time.
- In stead, the next vector is Av_i , where v_i is current basis vector.
- In the Householder algorithm, an orthogonal column v_i is obtained as H₁ ... H_ie_i.

ALGORITHM 6.3: Householder Arnoldi
1. Select a nonzero vector
$$v$$
; Set $z_1 = v$
2. For $j = 1, ..., m, m + 1$ Do:
3. Compute the Householder unit vector w_j such that
4. $(w_j)_i = 0, i = 1, ..., j - 1$ and
5. $(P_j z_j)_i = 0, i = j + 1, ..., n$, where $P_j = I - 2w_j w_j^T$
6. $h_{j-1} = P_j z_j$
7. $v_j = P_1 P_2 ... P_j e_j$
8. If $j \le m$ compute $z_{j+1} := P_j P_{j-1} ... P_1 A v_j$
9. EndDo

H.F. Walker: Implementation of the GMRES method using Householder transformation. *SIAM J. on Sci. Comput.* 9:152-163, 1988

Givens Rotations

minimize_{$y \in R^k$} $||\beta e_1 - \overline{H}_m y^k||_2$ involves QR factorization.

Do QR factorizations of H_k by Givens Rotations.

• A 2 × 2 Givens rotation is a matrix of the form $G = \begin{bmatrix} c & -s \\ s & c \end{bmatrix}$ where $c = \cos(\theta)$, $s = \sin(\theta)$ for $\theta \in [-\pi, \pi]$. The orthogonal matrix G rotates the vector $(c, -s)^T$, which makes an angle of $-\theta$ with the *x*-axis, through an angle θ so that it overlaps the *x*-axis.

$$GA\begin{bmatrix} c\\ -s \end{bmatrix} = \begin{bmatrix} 1\\ 0 \end{bmatrix}$$

An $N \times N$ Givens rotation $G_j(c, s)$ replaces a 2×2 block on the diagonal of the $N \times N$ identity matrix with a 2×2 Givens rotations. $G_j(c, s)$ is with a 2×2 Givens rotations in rows and columns j and j + 1.

- Givens rotations can be used in reducing Hessenberg matrices to triangular form. This can be done in O(N) floating-point operations.
- Let H be an $N \times M(N \ge M)$ upper Hessenberg matrix with rank M. We reduce H to triangular form by first multiplying the matrix by a Givens rotations that zeros h_{21} (values of h_{11} and subsequent columns are changed)

- Step 1: Define $G_1(c_1, s_1)$ by $c_1 = h_{11}/\sqrt{h_{11}^2 + h_{21}^2}$ and $s_1 = -h_{21}/\sqrt{h_{11}^2 + h_{21}^2}$. Replace H by G_1H .
- Step 2: Define $G_2(c_2, s_2)$ by $c_2 = h_{22}/\sqrt{h_{22}^2 + h_{32}^2}$ and $s_2 = -h_{32}/\sqrt{h_{22}^2 + h_{32}^2}$. Replace *H* by G_2H .
- Step j: Define $G_j(c_j, s_j)$ by $c_j = h_{jj} / \sqrt{h_{jj}^2 + h_{j+1,j}^2}$ and $s_j = -h_{j+1,j} / \sqrt{h_{jj}^2 + h_{j+1,j}^2}$. Replace H by $G_j H$.

Setting $Q = G_N \dots G_1$. R = QH is upper triangular.

Let $\overline{H}_m = QR$ by Givens rotations matrices. $minimize_{y \in R^k} ||\beta e_1 - \overline{H}_m y^k||_2$ $= minimize_{y \in R^k} ||Q(\beta e_1 - \overline{H}_m y^k)||_2$ $= minimize_{y \in R^k} ||\beta Q e_1 - R y^k||_2$ ALGORITHM 3.5.1. $gmres(x, b, A, \epsilon, kmax, \rho)$ 1. r = b - Ax, $v_1 = r/||r||_2$, $\rho = ||r||_2$, $\beta = \rho$, k = 0; $g = \rho(1, 0, ..., 0)^T \in R^{kmax+1}$

2. While $\rho > \epsilon \|b\|_2$ and k < kmax do (a) k = k + 1(b) $v_{k+1} = Av_k$ for $j = 1, \ldots, k$ i. $h_{ik} = v_{k+1}^T v_i$ ii. $v_{k+1} = v_{k+1} - h_{jk}v_j$ (c) $h_{k+1,k} = ||v_{k+1}||_2$ (d) Test for loss of orthogonality and reorthogonalize if necessary. (e) $v_{k+1} = v_{k+1} / ||v_{k+1}||_2$ (f) i. If k > 1 apply Q_{k-1} to the kth column of H. ii. $\nu = \sqrt{h_{k,k}^2 + h_{k+1,k}^2}$. iii. $c_k = h_{k,k}/\nu, s_k = -h_{k+1,k}/\nu$ $h_{k,k} = c_k h_{k,k} - s_k h_{k+1,k}, \ h_{k+1,k} = 0$ iv. $q = G_k(c_k, s_k)q$.

(g)
$$\rho = |(g)_{k+1}|.$$

3. Set $r_{i,j} = h_{i,j}$ for $1 \le i, j \le k$. Set $(w)_i = (g)_i$ for $1 \le i \le k$. Solve the upper triangular system $Ry^k = w$.

$$4. \ x_k = x_0 + V_k y^k.$$

Preconditioning

Basic idea: using GMRES on a modified system such as $M^{-1}Ax = M^{-1}b$.

The matrix $M^{-1}A$ need not to be formed explicitly. However, Mw = v need to be solved whenever needed.

Left preconditioning

$$M^{-1}A\boldsymbol{x} = M^{-1}\boldsymbol{b}$$

Right preconditioning

$$AM^{-1}u = b$$
 with $x = M^{-1}u$

Split preconditioning: M is factored as $M = M_L M_R$ $M_L^{-1} A M_R^{-1} \boldsymbol{u} = M_L^{-1} \boldsymbol{b}$ with $\boldsymbol{x} = M_R^{-1} \boldsymbol{u}$

GMRES with Left Preconditioning

ALGORITHM 9.4: GMRES with Left Preconditioning

1. Compute
$$r_0 = M^{-1}(b - Ax_0), \beta = ||r_0||_2$$
 and $v_1 = r_0/\beta$
2. For $j = 1, ..., m$ Do:
3. Compute $w := M^{-1}Av_j$
4. For $i = 1, ..., j$, Do:
5. $h_{i,j} := (w, v_i)$
6. $w := w - h_{i,j}v_i$
7. EndDo
8. Compute $h_{j+1,j} = ||w||_2$ and $v_{j+1} = w/h_{j+1,j}$
9. EndDo
10. Define $V_m := [v_1, ..., v_m], \bar{H}_m = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le m}$
11. Compute $y_m = \operatorname{argmin}_y ||\beta e_1 - \bar{H}_m y||_2$, and $x_m = x_0 + V_m y_m$
12. If satisfied Stop, else set $x_0 := x_m$ and GoTo 1

The Arnoldi process constructs an orthogonal basis for Span{ $r_0, M^{-1}Ar_0, (M^{-1}A)^2r_0, \dots (M^{-1}A)^{k-1}r_0$ }.

GMRES with Right Preconditioning

Right preconditioned GMRES is based on solving $AM^{-1}u = b$ with $x = M^{-1}u$.

- The initial residual is: $\boldsymbol{b} AM^{-1}\boldsymbol{u}_0 = \boldsymbol{b} A\boldsymbol{x}_0$.
 - This means all subsequent vectors of the Krylov subspace can be obtained without any references to the $m{u}$.
- At the end of right preconditioned GMRES:

$$\boldsymbol{u}_{m} = \boldsymbol{u}_{0} + \sum_{i=1}^{m} \boldsymbol{v}_{i} \eta_{i} \quad \text{with} \quad \boldsymbol{u}_{0} = M\boldsymbol{x}_{0}$$
$$\boldsymbol{x}_{m} = \boldsymbol{x}_{0} + M^{-1} \sum_{i=1}^{m} \boldsymbol{v}_{i} \eta_{i}$$

GMRES with Right Preconditioning

ALGORITHM 9.5: GMRES with Right Preconditioning

1. Compute
$$r_0 = b - Ax_0$$
, $\beta = ||r_0||_2$, and $v_1 = r_0^{\top}/\beta$
2. For $j = 1, ..., m$ Do:
3. Compute $w := AM^{-1}v_j$
4. For $i = 1, ..., j$, Do:
5. $h_{i,j} := (w, v_i)$
6. $w := w - h_{i,j}v_i$
7. EndDo
8. Compute $h_{j+1,j} = ||w||_2$ and $v_{j+1} = w/h_{j+1,j}$
9. Define $V_m := [v_1, ..., v_m]$, $\bar{H}_m = \{h_{i,j}\}_{1 \le i \le j+1; 1 \le j \le m}$
10. EndDo
11. Compute $y_m = \operatorname{argmin}_y ||\beta e_1 - \bar{H}_m y||_2$, and $x_m = x_0 + M^{-1}V_m y_m$.
12. If satisfied Stop, else set $x_0 := x_m$ and GoTo 1.

The Arnoldi process constructs an orthogonal basis for $\text{Span}\{r_0, AM^{-1}r_0, (AM^{-1})^2r_0, \dots (AM^{-1})^{k-1}r_0\}.$

Sadd. Iterative Methods for Sparse Linear Systems.

Split Preconditioning

- *M* can be a factorization of the form M = LU.
- Then $L^{-1}AU^{-1}u = L^{-1}b$, with $x = U^{-1}u$.
 - Need to operate on the initial residual by $L^{-1}(\mathbf{b} A\mathbf{x_0})$
 - Need to operate on the linear combination $U^{-1}(V_m \mathbf{y}_m)$ in forming the approximate solution

Comparison of Left and Right Preconditioning

- Spectra of M⁻¹A, AM⁻¹ and L⁻¹AU⁻¹ are identical.
- In principle, one should expect convergence to be similar.
- When *M* is ill-conditioned, the difference could be substantial.

Jacobi Preconditioner

Iterative method for solving Ax = b takes the form: $x_{k+1} = M^{-1}Nx_k + M^{-1}b$ where M and N split A into A = M - N.

- Define $G = M^{-1}N = M^{-1}(M A) = I M^{-1}A$ and $f = M^{-1}b$.
- Iterative method is to solve $(I G)\mathbf{x} = \mathbf{f}$, which can be written as $M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$.

Jacobi iterative method: $x_{k+1} = G_{JA}x_k + f$ where $G_{JA} = (I - D^{-1}A)$ and $f = D^{-1}b$

• M = D for Jacobi method.

SOR/SSOR Preconditioner

- Define: A = D E F
- Gauss-Seidel: $G_{GS} = I (D E)^{-1}A$

•
$$M_{SOR} = \frac{1}{w} (D - wE)$$

A symmetric SOR (SSOR) consists of:

$$(D - wE)\mathbf{x}_{k+\frac{1}{2}} = [wF + (1 - w)D]\mathbf{x}_{k} + w\mathbf{b}$$
$$(D - wF)\mathbf{x}_{k+1} = [wE + (1 - w)D]\mathbf{x}_{k+\frac{1}{2}} + w\mathbf{b}$$

This gives

$$\boldsymbol{x}_{k+1} = G_{SSOR}\boldsymbol{x}_k + \boldsymbol{f}$$

Where

$$G_{SSOR} = (D - wF)^{-1}(wE + (1 - w)D)(D - wE)^{-1}(wF + (1 - w)D)$$

•
$$M_{SSOR} = (D - wE)D^{-1}(D - wF); M_{SGS} = (D - E)D^{-1}(D - F);$$

• Note: SSOR usually is used when A is symmetric

Take symmetric GS for example:

- $M_{SGS} = (D E)D^{-1}(D F)$
- Define: $L = (D E)D^{-1} = I ED^{-1}$ and U = D F.
- L is a lower triangular matrix and U is a upper triangular matrix.
- To solve M_{SGS} w = x for w, a forward solve and a backward solve are used:
 - Solve $(I ED^{-1})\mathbf{z} = \mathbf{x}$ for \mathbf{z}
 - $-\operatorname{Solve}(D-F)\boldsymbol{w} = \boldsymbol{z} \operatorname{for} \boldsymbol{w}$

Incomplete LU(0) Factorization

Define: $NZ(X) = \{(i, j) | X_{i,j} \neq 0\}$ Incomplete LU (ILU(0)):

• A = LU + R with $NZ(L) \cup NZ(U) = NZ(A)$ $r_{ij} = 0$ for $(i,j) \in NZ(A)$

I.e. L and U have no fill-ins at the entries $a_{ij} = 0$.

```
for i = 1 to n

for k = 1 to i - 1 and if (i, k) \in NZ(A)

a_{ik} = a_{ik}/a_{kj}

for j = k + 1 to n and if (i, k) \in NZ(A)

a_{ij} = a_{ij} - a_{ik}a_{kj}

end;

end;

end;
```

ILU(0)

Figure 10.2 The ILU(0) factorization for a five-point matrix.

Sadd. Iterative Methods for Sparse Linear Systems.

Parallel GMRES

- J. Erhel. A parallel GMRES version for general sparse matrices. Electronic Transactions on Numerical Analyis. 3:160-176, 1995.
- Implementation in PETSc (Portable, Extensible Toolkit for Scientific Computation)
 - <u>http://www.mcs.anl.gov/petsc/</u>

Parallel Libraries

ScaLAPACK

- <u>http://www.netlib.org/scalapack/</u>
- Based on LAPACK (Linear Algebra PACKage) and BLAS (Basic Linear Algebra Subroutines)
- Parallelized by "divide and conquer" or block distribution
- Written in Fortran 90
- Successor of LINPACK, which was originally written for vector supercomputers in the 1970s
- Implemented on top of MPI using MIMD, SPMD, and used explicit message passing

PETSc (Portable, Extensible Toolkit for Scientific Computation)

- http://www.mcs.anl.gov/petsc/
- Suite of data structures (core: distributed vectors and matrices) and routines for linea and non-linear solvers
- User (almost) never has to call MPI himself when using PETSc
- Uses two MPI communicators: PETSC_COMM_SELF for the library-internal communication and PETSC_COMM_WORLD for user processes
- Written in C, callable from Fortran
- Has been used to solve systems with over 500 millions unknowns
- Has been shown to scale up to over 6000 processors

PETSc Structure

PETSc Numerical Solvers

Nonlinear Solvers			Time Steppers			
Newton-based Methods		Other	Euler	Backward Euler	Pseudo Time Stepping Ot	Other
Line Search	Trust Region	Other				Ouler

Krylov Subspace Methods								
GMRES	CG	CGS	Bi-CG-STAB	TFQMR	Richardson	Chebychev	Other	

Preconditioners							
Additive Schwartz	Block Jacobi	Jacobi	ILU	ICC	LU (Sequential only)	Others	

Matrices							
Compressed Sparse Row (AIJ)	Blocked Compressed Sparse Row (BAIJ)	Block Diagonal (BDIAG)	Dense	Matrix-free	Other		

Distributed Arrays		Index Sets					
		Indices	Block Indices	Stride	Other		
Vectors							

Parallel Random Number Generator

SPRNG (The Scalable parallel random number generators library)

- http://sprng.cs.fsu.edu/
- Random number sequence does not depend on the number of processors used, but only on the seed
 a reproducible Monte Carlo simulations in parallel
- SPRNG implements parallel-safe, high-quality random number generators
- C++/Fortran (used to be C/Fortran in previous versions)

Parallel PDE Solver

POOMA (Parallel Object-Oriented Methods and Applications)

- http://acts.nersc.gov/formertools/pooma/index.html
- Collection of templated C++ classes for writing parallel PDE solvers
- Provides high-level data types (abstractions) for fields and particles using data-parallel arrays
- Supports finite-difference simulations on structured, unstructured, and adaptive grids. Also supports particle simulations, hybrid particle-mesh simulations, and Monte Carlo
- Uses mixed message-passing/thread parallelism

Many more...

- Aztec (iterative solvers for sparse linear systems)
- SuperLU (LU decomposition)
- Umfpack (unsymmetric multifrontal LU)
- EISPACK (eigen-solvers)
- Fishpack (cyclic reduction for 2nd & 4th order FD)
- PARTI (Parallel run-time system)
- Bisect (recursive orthogonal bisection)
- ROMIO (parallel distributed file I/O)
- KINSol (solves the nonlinear algebraic systems) <u>https://computation.llnl.gov/casc/sundials/main.html</u>
- SciPy (Scientific Tools for Phython) http://www.scipy.org/

References:

- C.T. Kelley. Iterative Methods for Linear and Nonlinear Equations.
- Yousef Sadd. Iterative methods for Sparse Linear Systems
- G. Karypis and V. Kumar. Parallel Threshold-based ILU Factorization. *Technical Report #96-061. U. of Minnesota*, Dept. of Computer Science, 1998.
- P.-O. Persson and J. Peraire. Newton-GMRES
 Preconditioning for Discontinuous Galerkin
 Discretizations of the Navier-Stokes Equations. SIAM J. on Sci. Comput. 30(6), 2008.