
Lecture 10: Introduction to 
OpenMP (Part 2) 
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Performance Issues I 

• C/C++ stores matrices in row-major fashion. 
• Loop interchanges may increase cache locality 
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{ 
    … 
            #pragma omp parallel for 
            for(i=0;i< N; i++) 
            { 
                     for(j=0;j< M; j++) 
                    { 
                         A[i][j] =B[i][j] + C[i][j]; 
                    } 
             } 
} 

• Parallelize outer-most loop 



Performance Issues II 
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{ 
    … 
            for(i=0;i< N; i++) 
            { 
                     #pragma omp parallel for 
                     for(j=0;j< M; j++) 
                    { 
                         A[i][j] =B[i][j] + C[i][j]; 
                    } 
             } 
} 

• Move synchronization points outwards. The inner loop is 
parallelized.  

• In each iteration step of the outer loop, a parallel region is 
created. This causes parallelization overhead. 



Performance Issues III 
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{ 
    … 
                
     #pragma omp parallel for if(M > 800) 
      for(j=0;j< M; j++) 
       { 
             aa[j] =alpha*bb[j] + cc[j]; 
       } 
} 

• Avoid parallel overhead at low iteration counts 



C++: Random Access Iterators Loops 

• Parallelization of random access iterator loops is supported 
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void iterator_example(){ 
    std::vector vec(23); 
    std::vector::iterator  it;   
     
    #pragma omp parallel for default(none) shared(vec) 
    for(it=vec.begin();  it< vec.end(); it++) 
    { 
           // do work with it // 
     } 
} 



Conditional Compilation 

• Keep sequential and parallel programs as a single source 
code 
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#if def _OPENMP 
#include “omp.h” 
#endif  
 
Main() 
{ 
 #ifdef _OPENMP 
    omp_set_num_threads(3);  
#endif    
            for(i=0;i< N; i++) 
            { 
                     #pragma omp parallel for 
                     for(j=0;j< M; j++) 
                    { 
                         A[i][j] =B[i][j] + C[i][j]; 
                    } 
             } 
} 



Be Careful with Data Dependences 

• Whenever a statement in a program reads or writes a memory 
location and another statement reads or writes the same 
memory location, and at least one of the two statements 
writes the location, then there is a data dependence on that 
memory location between the two statements. The loop may 
not be executed in parallel.  
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for(i=1;i< N; i++) 
{ 
    a[i] = a[i] + a[i-1]; 
}             

a[i] is written in loop iteration i and read in loop iteration i+1. 
This loop can not be executed in parallel. The results may not 
be correct.  



Classification of Data Dependences 

• A data dependence is called loop-carried if the two 
statements involved in the dependence occur in 
different iterations of the loop. 

• Let the statement executed earlier in the sequential 
execution be loop S1 and let the later statement be 
S2.  
– Flow dependence: the memory location is written in S1 

and read in S2. S1 executes before S2 to produce the value 
that is consumed in S2. 

– Anti-dependence: The memory location is read in S1 and 
written in S2.  

– Output dependence: The memory location is written in 
both statements S1 and S2.  
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• Anti-dependence 
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for(i=0;i< N-1; i++) 
{ 
    x = b[i] + c[i]; 
    a[i] = a[i+1] + x; 
}             

• Parallel version with dependence removed 
#pragma omp parallel for shared (a, a2) 
for(i=0; i < N-1; i++) 
     a2[i] = a[i+1]; 
#pragma omp parallel for shared (a, a2) lastprivate(x) 
for(i=0;i< N-1; i++) 
{ 
    x = b[i] + c[i]; 
    a[i] = a2[i] + x; 
}             



Poor performance, it requires 
m-1 fork/join steps.  
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for(i=1;i< m; i++) 
     for(j=0;j<n;j++) 
{ 
     a[i][j] = 2.0*a[i-1][j]; 
}             

for(i=1;i< m; i++) 
 #pragma omp parallel for 
     for(j=0;j<n;j++) 
{ 
     a[i][j] = 2.0*a[i-1][j]; 
}             

#pragma omp parallel for private (i) 
for(j=0;j< n; j++) 
   for(i=1;i<m;i++) 
{ 
     a[i][j] = 2.0*a[i-1][j]; 
}             

Invert loop to yield 
better performance.  



• Flow dependence is in general difficult to be 
removed.  
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X = 0.0; 
for(i=0;i< N; i++) 
{ 
    X = X + a[i]; 
}             

X = 0.0; 
#pragma omp parallel for  reduction(+:x) 
for(i=0;i< N-1; i++) 
{ 
    x = x + a[i]; 
}             



• Elimination of induction variables.  
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idx = N/2+1; isum = 0; pow2 = 1; 
for(i=0;i< N/2; i++) 
{ 
    a[i] = a[i] + a[idx]; 
    b[i] = isum; 
    c[i] = pow2; 
    idx++; isum += i; pow2 *=2; 
}             

#pragma omp parallel for shared (a,b) 
for(i=0;i< N/2; i++) 
{ 
    a[i] = a[i] + a[i+N/2]; 
    b[i] = i*(i-1)/2; 
    c[i] = pow(2,i); 
}             

• Parallel version  



• Remove flow dependence using loop skewing 
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for(i=1;i< N; i++) 
{ 
    b[i] = b[i] + a[i-1]; 
    a[i] = a[i]+c[i]; 
}             

• Parallel version 
b[1]=b[1]+a[0]; 
#pragma omp parallel for shared (a,b,c) 
for(i=1;i< N-1; i++) 
{ 
    a[i] = a[i] + c[i]; 
    b[i+1] = b[i+1]+a[i]; 
}        
a[N-1] = a[N-1]+c[N-1];      



• A flow dependence that can in general not be 
remedied is a recurrence: 

14 

for(i=1;i< N; i++) 
{ 
    z[i] = z[i] + l[i]*z[i-1]; 
} 



Recurrence: LU Factorization of Tridiagonal Matrix 
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• Tx=LUx=Lz=b,  z=Ux. 
• Proceed as follows: 
• Lz=b,  Ux=z 
• Lz=b is solved by: 
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z[0] = b[0];  
for(i=1;i< n; i++) 
{ 
    z[i] = b[i] - l[i]*z[i-1]; 
} 

• Cyclic reduction probably is the best method to solve tridiagonal systems 
• Z. Liu, B. Chapman, Y. Wen and L. Huang.  Analyses for the Translation of OpenMP 

Codes into SPMD Style with Array Privatization. OpenMP shared memory parallel 
programming: International Workshop on OpenMP 

• C. Addison, Y. Ren and M. van Waveren. OpenMP Issues Arising in the 
Development of Parallel BLAS and LAPACK libraries. J. Sci. Programming – 
OpenMP, 11(2), 2003. 

• S.F. McGinn and R.E. Shaw. Parallel Gaussian Elimination Using OpenMP and MPI 



V=alpha(); 
W=beta(); 
X=gamma(v,w); 
Y=delta(); 
printf(“%g\n”, epsilon(x,y)); 
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alpha beta 

gamma 

epsilon 

delta 

Data dependence diagram 

Functions alpha, beta, delta may be executed 
in parallel  



Worksharing sections Directive 

sections directive enables specification of task parallelism 
– Sections construct gives a different structured block to each thread. 

#pragma omp sections [clause list]  
                                          private (list)  
                                          firstprivate (list) 
                                          lastprivate (list) 
                                          reduction (operator: list) 
                                          nowait 
{ 
#pragma omp section  
      structured_block 
#pragma omp section 
      structured_block 
}  
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#include “omp.h” 
#define N 1000 
int main(){ 
    int i; 
    double a[N], b[N], c[N], d[N]; 
    for(i=0; i<N; i++){ 
        a[i] = i*2.0; 
        b[i] = i + a[i]*22.5; 
    } 
    #pragma omp parallel  shared(a,b,c,d) private(i) 
    { 
        #pragma omp sections nowait 
        { 
            #pragma omp section 
                for(i=0; i<N;i++) c[i] = a[i]+b[i]; 
            #pragma omp section 
                for(i=0; i<N;i++) d[i] = a[i]*b[i]; 
         } 
    }  
} 
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Two tasks  are 
computed  

concurrently 

By default, there is a barrier at the end of  the 
sections. Use the “nowait” clause to turn of 

the barrier.  
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#include “omp.h” 
 
#pragma omp parallel  
{ 
#pragma omp sections  
        { 
            #pragma omp section 
                v=alpha(); 
            #pragma omp section 
                w=beta(); 
         } 
#pragma omp sections  
        { 
            #pragma omp section 
                x=gamma(v,w); 
            #pragma omp section 
                y=delta(); 
         } 
         printf(“%g\n”, epsilon(x,y)); 
} 



Synchronization I 

• Threads communicate through shared variables. 
Uncoordinated access of these variables can lead  to 
undesired effects.  
– E.g. two threads update (write) a shared variable in the 

same step of execution, the result is dependent on the 
way this variable is accessed. This is called a race 
condition.  

• To prevent race condition, the access to shared 
variables must be synchronized.  

• Synchronization can be time consuming. 
• The barrier directive is set to synchronize all threads. 

All threads wait at the barrier until all of them have 
arrived. 
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Synchronization II 

• Synchronization imposes order constraints and is 
used to protect access to shared data 

• High level synchronization: 

– critical 

– atomic 

– barrier 

– ordered 

• Low level synchronization 

– flush 

– locks (both simple and nested) 
22 



Synchronization: critical 

• Mutual exclusion: only one thread at a time can enter a critical region. 
{ 
    double res; 
     #pragma omp parallel 
     { 
          double B;  
           int  i, id, nthrds; 
           id = omp_get_thread_num(); 
           nthrds = omp_get_num_threads(); 
            for(i=id; i<niters; i+=nthrds){ 
                B = some_work(i);  
                 #pragma omp critical 
                 consume(B,res); 
            } 
     } 
} 
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Threads wait here: only one thread 
at a time calls consume(). So this is 
a piece of sequential code inside 

the for loop. 
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{ 
    … 
     #pragma omp parallel 
     { 
            #pragma omp for nowait shared(best_cost) 
            for(i=0; i<N; i++){ 
                int   my_cost;  
                my_cost = estimate(i); 
                #pragma omp critical 
                { 
                     if(best_cost < my_cost) 
                         best_cost = my_cost; 
                } 
           } 
     } 
} 
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Only one thread at a time 
executes if() statement. This 

ensures mutual exclusion when 
accessing shared data.  

Without critical, this will set up 
a race condition,  in which the 

computation exhibits 
nondeterministic behavior 

when performed by multiple 
threads accessing a shared 

variable  
 



Synchronization: atomic 

• atomic provides mutual exclusion but only applies to the 
load/update of a memory location. 

• This is a lightweight, special form of a critical section. 
• It is applied only to the (single) assignment statement that 

immediately follows it. 
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{ 
    … 
     #pragma omp parallel 
     { 
               double tmp, B; 
               …. 
                #pragma omp atomic 
                { 
                     X+=tmp; 
                } 
     } 
} 

Atomic only protects the update of X.  



“ic” is a counter. The atomic construct ensures that no updates 
are lost when multiple threads are updating a counter value.   
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• Atomic construct may only be used together with an expression 
statement with one of operations: +, *, -, /, &, ^, |, <<, >>.  
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• The atomic construct does not prevent multiple threads 
from executing the function bigfunc() at the same time.  

 



Synchronization: barrier 

Suppose each of the following two loops are run in parallel 
over i, this may give a wrong answer. 
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for(i= 0; i<N; i++) 
    a[i] = b[i] + c[i]; 
for(i= 0; i<N; i++) 
    d[i] = a[i] + b[i]; 

There could be a data race in a[]. 
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for(i= 0; i<N; i++) 

    a[i] = b[i] + c[i]; 

for(i= 0; i<N; i++) 

    d[i] = a[i] + b[i]; 

wait 

barrier 

To avoid race condition: 
• NEED: All threads wait at the barrier point and only continue 

when all threads have reached the barrier point.  
Barrier syntax: 
• #pragma omp barrier 



Synchronization: barrier 

barrier: each threads waits until all threads arrive 
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#pragma omp parallel shared (A,B,C) private (id) 
{ 
     id=omp_get_thread_num(); 
     A[id] = big_calc1(id); 
     #pragma omp barrier 
     #pragma omp for 
           for(i=0; i<N;i++){C[i]=big_calc3(i,A);} 
     #pragma omp for nowait 
            for(i=0;i<N;i++) {B[i]=big_calc2(i,C);} 
      A[id]=big_calc4(id); 
} 

Implicit barrier at 
the end of for 

construct 

No implicit barrier 
due to nowait 

Implicit barrier at the end of 
a parallel region 



When to Use Barriers 

• If data is updated asynchronously and data 
integrity is at risk 

• Examples: 

– Between parts in the code that read and write the 
same section of memory 

– After one timestep/iteration in a numerical solver 

• Barriers are expensive and also may not scale to a 
large number of processors 
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“master” Construct 

• The “master” construct defines a structured block that is only executed 
by the master thread. 

• The other threads skip the “master” construct. No synchronization is 
implied. 

• It does not have an implied barrier on entry or exit.  
• The lack of a barrier may lead to problems. 
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#pragma omp parallel  
{ 
     … 
     #pragma omp master 
     { 
          exchange_information(); 
     } 
     #pragma omp barrier 
     … 
} 



• Master construct to initialize the data 
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“single” Construct 

• The “single” construct builds a block of code that is 
executed by only one thread (not necessarily the master 
thread). 

• A barrier is implicitly set at the end of the single block (the 
barrier can be removed by the nowait clause) 
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#pragma omp parallel  
{ 
     … 
     #pragma omp single 
     { 
          exchange_information(); 
     } 
     do_other_things(); 
     … 
} 



• Single construct to initialize a shared variable 
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Synchronization: ordered 

• The “ordered” region executes in the sequential 
order 
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#pragma omp parallel private (tmp) 
{ 
     … 
     #pragma omp for ordered reduction(+:res) 
     for(i=0;i<N;i++) 
     { 
          tmp = compute(i); 
      #pragma ordered 
          res += consum(tmp);     
     } 
     do_other_things(); 
     … 
} 



Synchronization: Lock routines 

• A lock implies a memory fence of all thread visible variables. 
• These routines are used to guarantee that only one thread 

accesses a variable at a time to avoid race conditions.  
• C/C++ lock variables must have type “omp_lock_t” or 

“omp_nest_lock_t”. 
• All lock functions require an argument that has a pointer to 

omp_lock_t or omp_nest_lock_t. 
• Simple Lock routines: 

– omp_init_lock(omp_lock_t*); omp_set_lock(omp_lock_t*);  
omp_unset_lock(omp_lock_t*); 
omp_test_lock(omp_lock_t*); omp_destroy_lock(omp_lock_t*); 
 
http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top 
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http://gcc.gnu.org/onlinedocs/libgomp/index.html


General Procedure to Use Locks 

1. Define the lock variables 

2. Initialize the lock via a call to omp_init_lock 

3. Set the lock using omp_set_lock or omp_test_lock. 
The latter checks whether the lock is actually 
available before attempting to set it. It is useful to 
achieve asynchronous thread execution. 

4. Unset a lock after the work is done via a call to 
omp_unset_lock. 

5. Remove the lock association via a call to 
omp_destroy_lock. 
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Locking Example 

• The protected region 
contains the update 
of a shared variable 

• One thread acquires 
the lock and 
performs the update 

• Meanwhile, other 
threads perform 
some other work 

• When the lock is 
released again, the 
other threads 
perform the update 
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omp_lock_t lck; 
omp_init_lock(&lck); 
#pragma omp parallel shared(lck) private (tmp, id) 
{ 
     id = omp_get_thread_num(); 
     tmp = do_some_work(id); 
     omp_set_lock(&lck); 
         printf(“%d %d\n”, id, tmp); 
     omp_unset_lock(&lck); 
} 
omp_destroy_lock(&lck);  

Thread waits here 
for its turn. 

Release the lock so 
that the next thread 

gets a turn 

Dissociate the given lock 
variable from any locks. 

Initialize a lock 
associated with lock 

variables “lck” for 
use in subsequent 

calls. 



Runtime Library Routines 

• Routines for modifying/checking number of threads 
– omp_set_num_threads(int n);  
– int omp_get_num_threads(void);  
– int omp_get_thread_num(void);  
– int omp_get_max_threads(void);  

• Test whether in active parallel region 
– int omp_in_parallel(void);  

• Allow system to dynamically vary the number of threads from one 
parallel construct to another 
– omp_set_dynamic(int set)  

• set = true: enables dynamic adjustment of team sizes 
• set = false: disable dynamic adjustment 

– int omp_get_dynamic(void) 

• Get number of processors in the system 
– int omp_num_procs(void); returns the number of processors online 

 
http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top 
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Default Data Storage Attributes 

• A shared variable has a single storage location in memory for the 
whole duration of the parallel construct. All threads that 
reference such a variable accesses the same memory. Thus, 
reading/writing a shared variable provides an easy mechanism for 
communicating between threads. 
– In C/C++, by default, all program variables except the loop index 

become shared variables in a parallel region.  
– Global variables are shared among threads 
– C: File scope variables, static variables, dynamically allocated 

memory (by malloc(), or by new). 

• A private variable has multiple storage locations, one within the 
execution context of each thread.  
– Not shared variables 

• Stack variables in functions called from parallel regions are private. 
• Automatic variables within a statement block are private.  

– This holds for pointer as well. Therefore, do not assign a private 
pointer the address of a private variable of another thread. The 
result is not defined. 
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/** main file **/ 
#include <stdio.h> 
#include <stdlib.h> 
 
double  A[100]; 
int main(){ 
     int index[50]; 
     #pragma omp parallel 
         work(index); 
     printf(“%d\n”, index[0]); 
} 

/** file 1 **/ 
#include <stdio.h> 
#include <stdlib.h> 
 
extern double  A[100]; 
void work(int *index){ 
     double temp[50]; 
     static int count; 
} 

• Variables “A”, “index” and “count” are shared by all threads. 
• Variable “temp” is local (or private) to each thread. 



Changing Data Storage Attributes 

• Clauses for changing storage attributes 
– “shared”, “private”, “firstprivate” 

• The final value of a private inside a parallel “for” loop can 
be transmitted to the shared variable outside the loop 
with: 
– “lastprivate” 

• The default attributes can be overridden with: 
– Default(private|shared|none) 

• All data clauses listed here apply to the parallel construct 
region and worksharing construct region except “shared”, 
which only applies to parallel constructs.  
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Private Clause 

• “private (variable list)” clause creates a new local copy of variables for 
each thread.  
– Values of these variables are not initialized on entry of the parallel region.  
– Values of the data specified in the private clause can no longer be accessed 

after the corresponding region terminates (values are not defined on exit of 
the parallel region).  
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/*** wrong implementation ***/ 
int main(){ 
     int  tmp = 0; 
#pragma omp parallel for private(tmp) 
     for (int j=0; j<1000;j++) 
          tmp += j;  
     printf(“%d\n”, tmp); 
} 

“tmp” is not initialized 

“tmp” is 0  in version 3.0; unspecified in 
version 2.5. 



Firstprivate Clause 

• firstprivate initializes each private copy with the 
corresponding value from the master thread. 
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/*** still wrong implementation ***/ 
int main(){ 
     int  tmp = 0; 
#pragma omp parallel for firstprivate(tmp) 
     for (int j=0; j<1000;j++) 
          tmp += j;  
     printf(“%d\n”, tmp); 
} 

Each thread get its own 
“tmp” with an initial 

value of 0. 

“tmp” is 0  in version 3.0; unspecified in 
version 2.5. 



Lastprivate Clause 

• Lastprivate clause passes the value of a private variable from the last 
iteration to a global variable.  
– It is supported on the work-sharing loop and sections constructs. 
– It ensures that the last value of a data object listed is accessible after the 

corresponding construct has completed execution. 
– In case use with a work-shared loop, the object has the value from the 

iteration of the loop that would be last in a “sequential” execution. 
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/*** useless implementation ***/ 
int main(){ 
     int  tmp = 0; 
#pragma omp parallel for firstprivate(tmp) lastprivate(tmp) 
     for (int j=0; j<5;j++) 
          tmp += j;  
     printf(“%d\n”, tmp); 
} 

“tmp” is defined as its value at the “last 
sequential” iteration, i.e, j = 5. 



Correct Usage of Lastprivate 
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/*** correct usage of lastprivate ***/ 
int main(){ 
     int  a, j; 
#pragma omp parallel for private(j) lastprivate(a) 
     for (j=0; j<5;j++) 
     { 
          a = j + 2; 
          printf(“Thread %d has a value of a = %d for j =  %d\n”,  
                    omp_get_thread_num(), a, j); 
      }  
      printf(“value of a after parallel = %d\n”, a); 
} 

Tread 0 has a value of a = 2 for j =  0 
Tread 2 has a value of a = 4 for j =  2 
Tread 1 has a value of a = 3 for j =  1 
Tread 3 has a value of a = 5 for j =  3 
Tread 4 has a value of a = 6 for j =  4 
value of a after parallel = 6 
 



Default Clause 

• C/C++ only has default(shared) or default(none) 

• Only Fortran supports default(private) 

• Default data attribute is default(shared) 
– Exception: #pragma omp task 

• Default(none): no default attribute for variables 
in static extent. Must list storage attribute for 
each variable in static extent. Good programming 
practice.  
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Lexical (static) and Dynamic Extent I 

• Parallel regions enclose an arbitrary block of code, 
sometimes including calls to another function. 

• The lexical or static extent of a parallel region is the 
block of code to which the parallel directive applies. 

• The dynamic extent of a parallel region extends the 
lexical extent by the code of functions that are called 
(directly or indirectly) from within the parallel region. 

• The dynamic extent is determined only at runtime.  
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Lexical and Dynamic Extent II 
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int main(){ 
#pragma omp parallel 
     { 
          print_thread_id(); 
      }  
} 
 
void print_thread_id() 
{ 
     int id = omp_get_thread_num(); 
     printf(“Hello world from thread %d\n”, id); 
} 

Static extent 

Dynamic 
extent 
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54 R. Hartman-Baker. Using OpenMP 



Threadprivate 

• Threadprivate makes global data private to a thread 
– C/C++: file scope and static variables, static class members 
– Each thread gives its own set of global variables, with initial 

values undefined.  

• Different from private 
– With private clause, global variables are masked. 
– Threadrpivate preserves global scope within each thread.  
– Parallel regions must be executed by the same number of 

threads for global data to persist. 

• Threadprivate variables can be initialized using copyin 
clause or at time of definition. 
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If all of the conditions below hold, and if a 
threadprivate object is referenced in two consecutive 
(at run time) parallel regions, then threads with the 
same thread number in their respective regions 
reference the same copy of that variable: 

– Neither parallel region is nested inside another parallel 
region. 

– The number of threads used to execute both parallel 
regions is the same. 
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#include <stdio.h> 
#include <stdlib.h> 
#include "omp.h" 
 
int   *pglobal; 
#pragma omp threadprivate(pglobal) 
 
int main(){ 
     … 
#pragma omp parallel for private(i,j,sum,TID) shared(n,length,check) 
     for (i=0; i<n;i++) 
     { 
          TID = omp_get_thread_num(); 
          if((pglobal = (int*) malloc(length[i]*sizeof(int))) != NULL) { 
              for(j=sum=0; j < length[i];j++) pglobal[j] = j+1; 
              sum = calculate_sum(length[i]); 
              printf(“TID %d: value of sum for I = %d is %d\n”, TID,i,sum); 
              free(pglobal); 
          } else { 
              printf(“TID %d: not enough memory : length[%d] = %d\n", TID,i,length[i]); 
          } 
     } 
} 57 

Threadprivate directive is 
used to give each thread a 
private copy of the global 

pointer pglobal. 
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/* source of function calculate_sum() */ 
extern int *pglobal; 
 
int  calculate_sum(int   length){ 
     int  sum = 0; 
     for (j=0; j<length;j++) 
     { 
          sum  += pglobal[j]; 
      }  
      return (sum); 
} 



• Each thread has its own copy of sum0, updated in a parallel 
region that is called several times. The values for sum0 
from one execution of the parallel region will be available 
when it is next started.  59 



Copyin Clause 

• Copyin allows to copy the master thread’s 
threadprivate variables to corresponding 
threadprivate variables of the other threads.  
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int   global[100]; 
#pragma omp threadprivate(global) 
 
int main(){ 
    for(int i= 0; i<100; i++) global[i] = i+2; // initialize data 
#pragma omp parallel copyin(global) 
    {  
         /// parallel region, each thread gets a copy of global, with initialized value 
    }     
} 



Copyprivate Clause 

• Copyprivate clause is supported on the single directive to broadcast values of 
privates from one thread of a team to the other threads in the team. 
– The typical usage is to have one thread read or initialize private data that is 

subsequently used by the other threads as well. 
– After the single construct has ended, but before the threads have left the associated 

barrier, the values of variables specified in the associated list are copied to the other 
threads.  

– Do not use copyprivate in combination with the nowait clause.  
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#include “omp.h” 
Void input_parameters(int, int); // fetch values of input parameters 
 
int main(){ 
    int Nsize, choice; 
#pragma omp parallel private(Nsize, choice) 
    {  
         #pragma omp single copyprivate (Nsize, choice) 
              input_parameters(Nsize,choice); 
        do_work(Nsize, choice); 
    }     
} 



Flush Directive 

• OpenMP supports a shared memory model.  
– However, processors can have their own “local” high 

speed memory, the registers and cache.  
– If a thread updates shared data, the new value will first 

be saved in register and then stored back to the local 
cache.  

– The update are thus not necessarily immediately visible 
to other threads. 

62 



Flush Directive 

The flush directive is to make a thread’s temporary 
view of shared data consistent with the value in 
memory.  

– #pragma omp flush (list) 

– Thread-visible variables are written back to memory 
at this point.  

– For pointers in the list, note that the pointer itself is 
flushed, not the object it points to.   
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References: 
– http://bisqwit.iki.fi/story/howto/openmp/ 
– http://openmp.org/mp-documents/omp-hands-on-

SC08.pdf 
– https://computing.llnl.gov/tutorials/openMP/ 
– http://www.mosaic.ethz.ch/education/Lectures/hpc 
– R. van der Pas. An Overview of OpenMP 
– B. Chapman, G. Jost and R. van der Pas. Using OpenMP: 

Portable Shared Memory Parallel Programming. The MIT 
Press, Cambridge, Massachusetts, London, England 

– B. Estrade, Hybrid Programming with MPI and OpenMP 
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