
Lecture 11: Programming on GPUs
(Part 2)

1

GPU Vector Sums – Another Thread Allocation
Method

#include <stdio.h>

#include <cuda.h>

#include <cuda_runtime.h>

#include <curand_kernel.h>

#define N 50

__global__ void add(int *a, int *b, int *c){

 int tid = threadIdx.x; // handle the data at this index

 if(tid < N) c[tid] = a[tid] + b[tid];

}

int main()

{

 int a[N], b[N], c[N], i;

 int *dev_a, *dev_b, *dev_c;

 …

 add <<<1, N>>>(dev_a, dev_b, dev_c);

 cudaMemcpy(c, dev_c, N*sizeof(int), cudaMemcpyDeviceToHost);

 for(i=0; i < N; i++)

 printf("%d + %d = %d\n", a[i], b[i], c[i]);

 …

 return 0;

}

2

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

• A collection of blocks from a grid (1D, or
2D)
– Built-in variable gridDim specifies the size

(or dimension) of the grid.
– Each copy of the kernel can determine

which block it is executing with the built-in
variable blockIdx.

• Threads in a block are arranged in 1D, 2D,
or 3D arrays.
– Built-in variable blockDim specifies the

size (or dimensions) of block.
– threadIdx index (or 2D/3D indices) thread

within a block
– maxThreadsPerBlock: The limit is 512

threads per block

3

kernel_routine<<<gridDim, blockDim>>>(args);

Language Extensions: Built-in Variables

• dim3 gridDim;

– Dimensions of the grid in blocks (gridDim.z unused)

• dim3 blockDim;

– Dimensions of the block in threads

• dim3 blockIdx;

– Block index within the grid

• dim3 threadIdx;

– Thread index within the block

4

Specifying 1D Grid and 1D Block
/// host code
int main(int argc, char **argv) {
 float *h_x, *d_x; // h=host, d=device
 int nblocks=3, nthreads=4, nsize=3*4;

 h_x = (float *)malloc(nsize*sizeof(float));
 cudaMalloc((void **)&d_x,nsize*sizeof(float));
 my_first_kernel<<<nblocks,nthreads>>>(d_x);
 cudaMemcpy(h_x,d_x,nsize*sizeof(float),
 cudaMemcpyDeviceToHost);
 for (int n=0; n<nsize; n++)
 printf(" n, x = %d %f \n",n,h_x[n]);
 cudaFree(d_x); free(h_x);
}

5

/// Kernel code
__global__ void my_first_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;
x[tid] = (float) threadIdx.x;
}

Within each block of threads,
threadIdx.x ranges from 0 to
blockDim.x-1, so each thread
has a unique value for tid

Block 0 Thread 0 Thread 1 Thread 2 Thread 3

Block 1 Thread 0 Thread 1 Thread 2 Thread 3

Block 2 Thread 0 Thread 1 Thread 2 Thread 3

GPU SUMs of a Long Vector

• Assume 65,535*512 >> N > 512, so we need to launch
threads across multiple blocks.

• Let’s use 128 threads per block. We need N/128 blocks.
– N/128 is integer division. If N were < 128, N/128 would be 0.

– Actually compute (N+127)/128 blocks.

• add <<<(N+127)/128, 128>>>(dev_a, dev_b, dev_c);

6

#define N 4000
__global__ void add(int *a, int *b, int *c){
 int tid = threadIdx.x + blockDim.x*blockIdx.x; // handle the data at this index

 if(tid < N) c[tid] = a[tid] + b[tid]; // launch too many treads when N is not exact
} // multiple of 128

Specifying 1D Grid and 2D Block
If we want to use a 1D grid of blocks and 2D set of threads, then
blockDim.x, blockDim.y give the block dimensions, and threadIdx.x,
threadIdx.y give the thread indices.

7

Main()
{
 int nblocks = 2;
 dim3 nthreads(16, 4);
 my_second_kernel<<<nblocks, nthreads>>>(d_x);
}

dim3 is a special CUDA datatype with 3 components .x, .y, .z each initialized to 1.

/// Kernel code
__global__ void my_second_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x* threadIdx.y +blockDim.x*blockDim.y*blockIdx.x;
x[tid] = (float) threadIdx.x;
}

• In 3D blocks of threads, thread ID is computed by:

 threadIdx.x +threadIdx.y * blockDim.x + threadIdx.z *
blockDim.x * blockDim.y

8

__global__ void KernelFunc(...);

main()
{

 dim3 DimGrid(100, 50); // 5000 thread blocks

 dim3 DimBlock(4, 8, 8); // 256 threads per block

 KernelFunc<<< DimGrid, DimBlock>>>(...);
}

GPU Sums of Arbitrarily Long Vectors

• Neither dimension of a grid of blocks may exceed 65,535.

• Let’s use 1D grid and 1D block.

9

__global__ void add(int *a, int *b, int *c){
 int tid = threadIdx.x + blockIdx.x*blockDim.x; // handle the data at this index

 while(tid < N){
 c[tid] = a[tid] + b[tid];
 tid += blockDim.x*gridDim.x;
 }
}

Principle behind this implementation:
• Initial index value for each parallel thread is:

int tid = threadIdx.x + blockIdx.x*blockDim.x;
• After each thread finishes its work at current index, increment each

of them by the total number of threads running in the grid, which is
blockDim.x*gridDim.x

#define N (55*1024)
__global__ void add(int *a, int *b, int *c){
 int tid = threadIdx.x + blockIdx.x*blockDim.x; // handle the data at this index

 while(tid < N){
 c[tid] = a[tid] + b[tid];
 tid += blockDim.x*gridDim.x;
 }
}
int main()
{
…
 add <<<128, 128>>>(dev_a, dev_b, dev_c);
…
}

10

Matrix Multiplication

• Demonstrate basic features of memory and
thread management in CUDA programs

– Leave shared memory usage until later

– Local, register usage

– Thread ID usage

– Memory data transfer API between host and device

– Assume square matrix for simplicity

11

• 𝑃 = 𝑀 ×𝑁 of size WIDTH×WIDTH
• Without blocking:

– One thread handles one element of 𝑃
– M and N are loaded WIDTH times from

global memory

12

M

N

P

C Language Implementation

void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏

{

 for (int i = 0; i < Width; ++i)‏

 for (int j = 0; j < Width; ++j) {

 double sum = 0;

 for (int k = 0; k < Width; ++k) {

 double a = M[i * width + k];

 double b = N[k * width + j];

 sum += a * b;

 }

 P[i * Width + j] = sum;

 }

}

13

M0,2

M1,1

M0,1 M0,0

M1,0

M0,3

M1,2 M1,3

M2,1 M2,0 M2,2 M2,3

M3,1 M3,0 M3,2 M3,3

M0,2 M0,1 M0,0 M0,3 M1,1 M1,0 M1,2 M1,3 M2,1 M2,0 M2,2 M2,3 M3,1 M3,0 M3,2 M3,3

M

Data Transfer (Host/Device)

14

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏

{

 int size = Width * Width * sizeof(float);

 float *Md, *Nd, *Pd;

 …

 //1. Allocate and Load M, N to device memory

 cudaMalloc(&Md, size);

 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);

 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device

 cudaMalloc(&Pd, size);

 //2. Kernel invocation code –

 …

 // 3. Read P from the device

 cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

 // Free device matrices

 cudaFree(Md); cudaFree(Nd); cudaFree (Pd);

}

15

Kernel Function

// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏

{

 // Pvalue is used to store the element of the matrix

 // that is computed by the thread

 float Pvalue = 0;

 for (int k = 0; k < Width; ++k)‏ {

 float Melement = Md[threadIdx.y*Width+k];

 float Nelement = Nd[k*Width+threadIdx.x];

 Pvalue += Melement * Nelement;

 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;

}

16

Kernel Invocation

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏

{

 …

 //2. Kernel invocation code – to be shown later

 // Setup the execution configuration

 dim3 dimGrid(1, 1);

 dim3 dimBlock(Width, Width);

 // Launch the device computation threads

 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd,

Width);

 …

}
17

18

• One Block of threads compute
matrix Pd
– Each thread computes one

element of Pd

• Each thread
– Loads a row of matrix Md

– Loads a column of matrix Nd

– Perform one multiply and
addition for each pair of Md and
Nd elements

– Compute to off-chip memory
access ratio close to 1:1 (not very
high)‏

• Size of matrix limited by the
number of threads allowed in a
thread block

 Grid 1

Block 1

3 2 5 4

2

4

2

6

48

Thread

 ‏(2 ,2)

 WIDTH

Md Pd

Nd

• 𝑃 = 𝑀 ×𝑁 of size WIDTH×WIDTH
• With blocking:

– One thread block handles one BLOCK_SIZE
× BLOCK_SIZE (or TILE_WIDTH ×
TILE_WIDTH) sub-matrix (tile) 𝑃𝑑𝑠𝑢𝑏 of 𝑃
• Block size equal tile size
• Each thread calculates one element

– M and N are only loaded WIDTH/
BLOCK_SIZE times from global memory

– Genrate a 2D grid of
(WIDTH/TILE_WIDTH)2 blocks

19

20

P1,0 P0,0

P0,1

P2,0 P3,0

P1,1

P0,2 P2,2 P3,2 P1,2

P3,1 P2,1

P0,3 P2,3 P3,3 P1,3

Block(0,0) Block(1,0)

Block(1,1) Block(0,1)

TILE_WIDTH = 2

Pd1,0 Md2,0

Md1,1

Md1,0 Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0 Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3

Revised Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int
Width)

{
// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column index of Pd and N
int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}

21

Multithreading

• Cores in a streaming multiprocessor (SM) are Single
Instruction Multiple Threads (SIMT) cores:

– all cores execute the same instructions simultaneously, but
with different data.

– minimum of 32 threads all doing the same thing at
(almost) the same time.

– no “context switching”; each thread has its own registers,
which limits the number of active threads

– threads on each SM execute in groups of 32 called “warps”
– execution alternates between “active” warps, with warps
becoming temporarily “inactive” when waiting for data

22

• Suppose we have 1000 blocks, and each one has 128
threads – how does it get executed?

• On current Fermi hardware, would probably get 8 blocks
running at the same time on each SM, and each block has
4 warps =) 32 warps running on each SM

• Each clock tick, SM warp scheduler decides which warp to
execute next, choosing from those not waiting for
– data coming from device memory (memory latency)

– completion of earlier instructions (pipeline delay)

• Programmer doesn’t have to worry about this level of
detail (can always do profiling later), just make sure there
are lots of threads / warps

23

Spatial Locality

__global__ void good_kernel(float *x)
{
 int tid = threadIdx.x + blockDim.x*blockIdx.x;
 x[tid] = threadIdx.x;
}
• 32 threads in a warp address neighboring elements of array

x.
• If the data is correctly “aligned” so that x[0] is at the

beginning of a cache line, then x[0]-x[31] will be in the
same cache line.
– Cache line is the basic unit of data transfer, 128 bytes cache line

(32 floats or 16 doubles).

• Good spatial locality.

24

__global__ void bad_kernel(float *x)

{

 int tid = threadIdx.x + blockDim.x*blockIdx.x;

 x[1000*tid] = threadIdx.x;

}

• Different threads within a warp access widely
spaced elements of array x.

• Each access involves a different cache line, so
performance is poor.

25

Software View

At the top level, we have a master process which runs on the
CPU and performs the following steps:
1. initializes card
2. allocates memory in host and on device

– cudaMalloc(),…

3. copies data from host to device memory
– cudaMemcpy(…, cudaMemcpyHostToDevice);

4. launches multiple instances of execution “kernel” on device
– kernel_routine<<<gridDim, blockDim>>>(args);

5. copies data from device memory to host
– cudaMemcpy(…, cudaMemcpyDeviceToHost);

6. repeats 3-5 as needed
7. de-allocates all memory and terminates

– cudaFree()

26

Software View

At a lower level, within the GPU:

1. each instance of the execution kernel executes on an SM

2. if the number of instances exceeds the number of SMs, then more than one
will run at a time on each SM if there are enough registers and shared
memory, and the others will wait in a queue and execute later

3. all threads within one instance can access local shared memory but can’t
see what the other instances are doing (even if they are on the same SM)

4. there are no guarantees on the order in which the instances execute

27

CUDA Memories

• Each thread can:
– Read/write per-thread

registers

– Read/write per-thread local
memory

– Read/write per-block shared
memory

– Read/write per-grid global
memory

– Read/only per-grid constant
memory

28

Grid

Global Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

Constant Memory

Access Times

29

Variable Types

• the __device__ indicates this is a global variable in the
GPU
– the variable can be read and modified by any kernel
– its lifetime is the lifetime of the whole application
– can also declare arrays of fixed size
– can read/write by host code using standard cudaMemcpy

• __device__ is optional when used with __local__,
__shared__, or __constant__

30

Variable declaration Memory Scope Lifetime

__device__ __local__ int LocalVar; local thread thread

__device__ __shared__ int SharedVar; shared block block

__device__ int GlobalVar; global grid application

__device__ __constant__ int ConstantVar; constant grid application

• Constant variables
– Very similar to global variables, except that they can’t be modified by kernels
– defined with global scope within the kernel file using the prefix __constant__
– initialized by the host code using cudaMemcpyToSymbol,

cudaMemcpyFromSymbol or cudaMemcpy in combination with
cudaGetSymbolAddress

– Only 64KB of constant memory, but big benefit is that each SM has a 8KB cache

• Pointers can only point to memory allocated or declared in global memory:
– Allocated in the host and passed to the kernel:
 __global__ void KernelFunc(float* ptr)

– Obtained as the address of a global variable:
 float* ptr = &GlobalVar;

• Automatic variables without any qualifier reside in a register
– Except arrays that reside in local memory

31

__global__ void lap(int I, int J,float *u1, float *u2) {
int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;
if (i==0 || i==I-1 || j==0 || j==J-1) {
 u2[id] = u1[id]; // Dirichlet b.c.’s }
else {
u2[id] = 0.25f * (u1[id-1] + u1[id+1]
+ u1[id-I] + u1[id+I]);}
}

Shared Memory

__shared__ int x_dim;

__shared__ float x[128];

• declares data to be shared between all of the
threads in the thread block – any thread can set its
value, or read it.

• Advantages of using shared memory
– essential for operations requiring communication

between threads

– useful for data re-use

– alternative to local arrays in device memory

– reduces use of registers when a variable has same value
for all threads

32

• If a thread block has more than one warp, it’s not pre-determined
when each warp will execute its instructions – warp 1 could be
many instructions ahead of warp 2, or well behind.

• Consequently, almost always need thread synchronization to ensure
correct use of shared memory.

• Instruction
– __syncthreads();

• inserts a “barrier”; no thread/warp is allowed to proceed beyond

this point until the rest have reached it
• Total size of shared memory is specified by an optional third

arguments when launching the kernel:
– kernel<<<blocks,threads,shared_bytes>>>(...)

33

Active Blocks per SM
• Each block require certain resources:

– threads
– registers (registers per thread × number of threads)
– shared memory (static + dynamic)

• Together these decide how many blocks can be run
simultaneously on each SM – up to a maximum of 8 blocks

• General advice:
– number of active threads depends on number of registers each

needs
– good to have at least 2-4 active blocks, each with at least 128

threads
– smaller number of blocks when each needs lots of shared

memory
– larger number of blocks when they don’t need shared memory
– On Fermi card:

• maybe 2 big blocks (512 threads) if each needs a lot of shared
memory

• maybe 6 smaller blocks (256 threads) if no shared memory needed
• or 4 small blocks (128 threads) if each thread needs lots of registers 34

• Global memory resides in device memory (DRAM) - much slower access than
shared memory

• So, a profitable way of performing computation on the device is to tile data to
take advantage of fast shared memory:
– Partition data into subsets that fit into shared memory
– Handle each data subset with one thread block by:

• Loading the subset from global memory to shared memory, using multiple threads to exploit
memory-level parallelism

• Performing the computation on the subset from shared memory; each thread can efficiently
multi-pass over any data element

• Copying results from shared memory to global memory

• Constant memory also resides in device memory (DRAM) - much slower access
than shared memory
– But… cached!
– Highly efficient access for read-only data

• Carefully divide data according to access patterns
– R/Only  constant memory (very fast if in cache)
– R/W shared within Block  shared memory (very fast)
– R/W within each thread  registers (very fast)
– R/W inputs/results  global memory (very slow)

35

Shared Memory and Synchronization for Dot
Product

#define imin(a,b) ((a)<(b)?(a):(b))
const int N = 33*1024;
const int threadsPerBlock = 256;
const int blocksPerGrid = imin(32, (N+threadsPerBlock-1)/threadsPerBlock);
int main(){
 float *a, *b, c, *partial_c;
 float *dev_a, *dev_b, *dev_partial_c;
 a = (float*)malloc(N*sizeof(float)); b = (float*)malloc(N*sizeof(float));
 partial_c = (float*)malloc(blocksPerGrid*sizeof(float));
 cudaMalloc((void**)&dev_a,N*sizeof(float));
 cudaMalloc((void**)&dev_b,N*sizeof(float));
 cudaMalloc((void**)&dev_partial_c,blocksPerGrid*sizeof(float));
 // initialize a[] and b[] …
 cudaMemcpy(dev_a,a,N*sizeof(float),cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b,b,N*sizeof(float),cudaMemcpyHostToDevice);
 dot<<< blocksPerGrid, threadsPerBlock>>>(dev_a,dev_b,dev_partial_c);
 cudaMemcpy(partial_c,dev_partialc,blocksPerGrid*sizeof(float),cudaMemcpyDeviceToHost);
 c = 0;
 for(int i=0; i<blocksPerGrid;i++) c += partial_c[i];
 // cuda memory free, etc.
}

36

__global__ void dot(float *a, float*b, float *c){
 __shared__ float cache[threadsPerBlock];
 //this buffer will be used to store each thread’s running sum

 // the compiler will allocate a copy of shared variables for each block

 int tid = threadIdx.x + BlockIdx.x*blockDim.x;
 int cacheIndex = threadIdx.x;
 float temp = 0.0;
 while(tid < N){
 temp += a[tid]*b[tid];
 tid += blockDim.x*gridDim.x;
 }
 // set the cache values
 cache[cacheIndex]=temp;

 // we need to sum all the temporary values in the cache.
 // need to guarantee that all of these writes to the shared array
 // complete before anyone to read from this array.

 // synchronize threads in this block
 __syncthreads(); // This call guarantees that every thread in the block has
 // completed instructions prior to __syncthreads() before the
 // hardware will execute the next instruction on any thread.

37

// each thread will add two of values in cache[] and
// store the result back to cache[].
// We continue in this fashion for log_2(threadsPerBlock)
//steps till we have the sum of every entry in cache[].
// For reductions, threadsPerBlock must be a power of 2
 int i=blockDim.x/2;
 while(i!=0){
 if(cacheIndex <i)
 cache[cacheIndex] += cache[cacheIndex+i];
 __syncthreads();
 i/=2;
 }
 if(cacheIndex==0)
 c[blockIdx.x]=cache[0];
}
 38

0 1 2 3 4 5 6 7

39

+
+

+

+

+
+

+

Shared Memory to Reuse Global Memory Data

40 40

• Each input element is
read by Width
threads.

• Load each element
into Shared Memory
and have several
threads use the local
version to reduce the
memory bandwidth
– Tiled algorithms

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

ty

tx

Tiled Multiplication

41 41

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTH WIDTH

TILE_WIDTH TILE_WIDTH

bx

tx
0 1 TILE_WIDTH-1 2

0 1 2

by
ty

2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_

W
ID

T
H

T

IL
E

_
W

ID
T

H

T

IL
E

_
W

ID
T

H
E

W
ID

T
H

W

ID
T

H

• Break up the execution of the kernel into
phases so that the data accesses in each
phase is focused on one subset (tile) of
Md and Nd

• Each block computes one square sub-
matrix Pdsub of size TILE_WIDTH

• Each thread computes one element of
Pdsub

42

Every Md and Nd Element is used exactly twice in
generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2

M2,0 * N1,2

M2,1 * N0,2

M2,1 * N1,2

M3,0 * N0,3

M3,0 * N1,3

M3,1 * N0,3

M3,1 * N1,3

Access

order

Breaking Md and Nd into Tiles

43

Pd1,0 Md2,0

Md1,1

Md1,0 Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Nd0,3 Nd1,3

Nd1,2

Nd1,1

Nd1,0 Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2 Pd3,2 Pd1,2

Pd3,1 Pd2,1

Pd0,3 Pd2,3 Pd3,3 Pd1,3

44

Each Phase of a Thread Block Uses One Tile from
Md and One from Nd

Step 4 Step 5 Step 6

T0,0 Md0,0

‏↓

Mds0,0

Nd0,0

 ‏↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

Md2,0

 ‏↓

Mds0,0

Nd0,2

 ‏↓

Nds0,0

PValue0,0 +=

Mds0,0*Nds0,0 +

Mds1,0*Nds0,1

T1,0 Md1,0

‏↓

Mds1,0

Nd1,0

 ‏↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

Md3,0

 ‏↓

Mds1,0

Nd1,2

 ‏↓

Nds1,0

PValue1,0 +=

Mds0,0*Nds1,0 +

Mds1,0*Nds1,1

T0,1 Md0,1

‏↓

Mds0,1

Nd0,1

 ‏↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

Md2,1

 ‏↓

Mds0,1

Nd0,3

 ‏↓

Nds0,1

PdValue0,1 +=

Mds0,1*Nds0,0 +

Mds1,1*Nds0,1

T1,1 Md1,1

‏↓

Mds1,1

Nd1,1

 ‏↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

Md3,1

 ‏↓

Mds1,1

Nd1,3

 ‏↓

Nds1,1

PdValue1,1 +=

Mds0,1*Nds1,0 +

Mds1,1*Nds1,1

 Phase 1 Phase 2

time

• Each thread block should have many threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks
– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float
loads from global memory for 256 * (2*16) =
8,192 mul/add operations.
– Memory bandwidth no longer a limiting factor

45

Kernel Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width/TILE_WIDTH,

 Width/TILE_WIDTH);

46

47

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
 __shared__float Mds[TILE_WIDTH][TILE_WIDTH];

 __shared__float Nds[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;

 int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

 int Row = by * TILE_WIDTH + ty;

 int Col = bx * TILE_WIDTH + tx;

 float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

 for (int m = 0; m < Width/TILE_WIDTH; ++m) {

 // Coolaborative loading of Md and Nd tiles into shared memory

 Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];

 Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];

 __syncthreads();

 for (int k = 0; k < TILE_WIDTH; ++k)

 Pvalue += Mds[ty][k] * Nds[k][tx];

 Synchthreads();

 }

 Pd[Row*Width+Col] = Pvalue;

}

Performance on G80
• Each SM in G80 has 16KB shared memory

– SM size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
– Can potentially have up to 8 Thread Blocks actively executing

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per
thread block, allowing only up to two thread blocks active at the same time

• Using 16x16 tiling, we reduce the accesses to the global memory by a factor
of 16
– The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS

48

G
F

L
O

P
S

0

10

20

30

40

50

60

70

80

90

100

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
lle

d

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
lle

d

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
lle

d

ti
le

d

o
n

ly

ti
le

d
 &

u
n

ro
lle

d

no t tiled 4x4 tile s 8x8 tile s 12 x12 tile s 16 x16 tile s

2D Laplace Solver

• Jacobi iteration to solve discrete Laplace equation on a
uniform grid

for (int j=0; j<J; j++) {
 for (int i=0; i<I; i++) {
 id = i + j*I; // 1D memory location
 if (i==0 || i==I-1 || j==0 || j==J-1)
 u2[id] = u1[id];
 else
 u2[id] = 0.25*(u1[id-1] + u1[id+1]
 + u1[id-I] + u1[id+I]);
 }
}

49

2D Laplace Solver Using CUDA

• each thread responsible for one grid point

• each block of threads responsible for a block
of the grid

• conceptually very similar to data partitioning
in MPI distributed-memory implementations,
but much simpler

50

 →

51

52

• Each block of threads processes one of these grid blocks,
reading in old values and computing new values.

53

__global__ void lap(int I, int J, float *u1, float *u2) {
 int i = threadIdx.x + blockIdx.x*blockDim.x;
 int j = threadIdx.y + blockIdx.y*blockDim.y;
 int id = i + j*I;
 if (i==0 || i==I-1 || j==0 || j==J-1) {
 u2[id] = u1[id]; // Dirichlet b.c.’s
 }
 else {
 u2[id] = 0.25 * (u1[id-1] + u1[id+1]
 + u1[id-I] + u1[id+I]);
 }
}

54

Assumptions:
• I is a multiple of blockDim.x
• J is a multiple of blockDim.y

grid breaks up perfectly into blocks

• I is a multiple of 32

Can remove these assumptions by
• testing if i, j are within grid
• padding the array in x to make it a multiple of 32, so

each row starts at the beginning of a cache line – this
uses a special routine cudaMallocPitch

55

References

• http://developer.nvidia.com/nvidia-gpu-
computing-documentation

• J. Sanders and E. Kandrot, CUDA by Example,
An Introduction to General-Purpose GPU
Programming

56

http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://developer.nvidia.com/nvidia-gpu-computing-documentation

