
Lecture 11: Programming on GPUs 
(Part 2) 
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GPU Vector Sums – Another Thread Allocation 
Method 

#include <stdio.h> 

#include <cuda.h> 

#include <cuda_runtime.h> 

#include <curand_kernel.h> 

 

#define N 50 

__global__ void add(int *a, int *b, int *c){ 

    int tid = threadIdx.x;  // handle the data at this index 

 

    if(tid < N)    c[tid] = a[tid] + b[tid]; 

} 

 

int main() 

{ 

    int a[N], b[N], c[N], i; 

    int *dev_a, *dev_b, *dev_c; 

    … 

    add <<<1, N>>>(dev_a, dev_b, dev_c); 

    cudaMemcpy(c, dev_c, N*sizeof(int), cudaMemcpyDeviceToHost); 

    for(i=0; i < N; i++) 

        printf("%d + %d = %d\n", a[i], b[i], c[i]); 

    … 

    return 0; 

} 

2 



Host

Kernel 

1

Kernel 

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(0, 1)

Block

(1, 1)

Grid 2

Courtesy: NDVIA

Figure 3.2. An Example of CUDA Thread Organization.
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• A collection of blocks from a grid (1D, or 
2D) 
– Built-in variable gridDim specifies the size 

(or dimension) of the grid. 
– Each copy of the kernel can determine 

which block it is executing with the built-in 
variable blockIdx.  
 

• Threads in a block are arranged in 1D, 2D, 
or 3D arrays.  
– Built-in variable blockDim specifies the 

size (or dimensions) of block. 
– threadIdx index (or 2D/3D indices)  thread 

within a block 
– maxThreadsPerBlock: The limit is 512 

threads per block 
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kernel_routine<<<gridDim, blockDim>>>(args); 



Language Extensions: Built-in Variables 

• dim3 gridDim; 

– Dimensions of the grid in blocks (gridDim.z unused) 

• dim3 blockDim; 

– Dimensions of the block in threads 

• dim3 blockIdx; 

– Block index within the grid 

• dim3 threadIdx; 

– Thread index within the block 
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Specifying 1D Grid and 1D Block  
/// host code 
int main(int argc, char **argv) { 
    float *h_x, *d_x; // h=host, d=device 
    int nblocks=3, nthreads=4, nsize=3*4; 
 
    h_x = (float *)malloc(nsize*sizeof(float)); 
    cudaMalloc((void **)&d_x,nsize*sizeof(float)); 
    my_first_kernel<<<nblocks,nthreads>>>(d_x); 
    cudaMemcpy(h_x,d_x,nsize*sizeof(float), 
    cudaMemcpyDeviceToHost); 
    for (int n=0; n<nsize; n++) 
        printf(" n, x = %d %f \n",n,h_x[n]); 
    cudaFree(d_x); free(h_x); 
} 
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/// Kernel code 
__global__ void my_first_kernel(float *x) 
{ 
int tid = threadIdx.x + blockDim.x*blockIdx.x; 
x[tid] = (float) threadIdx.x; 
} 

Within each block of threads, 
threadIdx.x ranges from 0 to 
blockDim.x-1, so each thread 
has a unique value for tid 

Block 0 Thread 0 Thread 1 Thread 2 Thread 3 

Block 1 Thread 0 Thread 1 Thread 2 Thread 3 

Block 2 Thread 0 Thread 1 Thread 2 Thread 3 



GPU SUMs of a Long Vector 

• Assume 65,535*512 >> N > 512, so we need to launch 
threads across multiple blocks.  

• Let’s use 128 threads per block. We need N/128 blocks. 
– N/128 is integer division. If N were < 128, N/128 would be 0. 

– Actually compute (N+127)/128 blocks. 

•   add <<<(N+127)/128, 128>>>(dev_a, dev_b, dev_c); 
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#define N 4000 
__global__ void add(int *a, int *b, int *c){ 
    int tid = threadIdx.x + blockDim.x*blockIdx.x;  // handle the data at this index 
 
    if(tid < N)    c[tid] = a[tid] + b[tid]; // launch too many treads when N is not exact  
}                                                               // multiple of 128 



Specifying 1D Grid and 2D Block  
If we want to use a 1D grid of blocks and 2D set of threads, then 
blockDim.x, blockDim.y give the block dimensions, and threadIdx.x, 
threadIdx.y give the thread indices. 
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Main() 
{ 
    int nblocks = 2; 
    dim3  nthreads(16, 4); 
    my_second_kernel<<<nblocks, nthreads>>>(d_x); 
} 

dim3 is a special CUDA datatype with 3 components .x, .y, .z each initialized to 1.  

/// Kernel code 
__global__ void my_second_kernel(float *x) 
{ 
int tid = threadIdx.x + blockDim.x* threadIdx.y +blockDim.x*blockDim.y*blockIdx.x; 
x[tid] = (float) threadIdx.x; 
} 



• In 3D blocks of threads, thread ID is computed by: 

 threadIdx.x +threadIdx.y * blockDim.x + threadIdx.z * 
blockDim.x * blockDim.y 
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__global__ void KernelFunc(...); 

 
main() 
{ 

   dim3   DimGrid(100, 50);   // 5000 thread blocks  

 dim3   DimBlock(4, 8, 8);  // 256 threads per block  

   KernelFunc<<< DimGrid, DimBlock>>>(...); 
} 



GPU Sums of Arbitrarily Long Vectors 

• Neither dimension of a grid of blocks may exceed 65,535. 

• Let’s use 1D grid and 1D block. 
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__global__ void add(int *a, int *b, int *c){ 
    int tid = threadIdx.x + blockIdx.x*blockDim.x;  // handle the data at this index 
 
    while(tid < N){ 
         c[tid] = a[tid] + b[tid]; 
         tid += blockDim.x*gridDim.x;  
     } 
} 

Principle behind this implementation: 
• Initial index value for each parallel thread is: 

int tid = threadIdx.x + blockIdx.x*blockDim.x; 
• After each thread finishes its work at current index, increment each 

of them by the total number of threads running in the grid, which is 
blockDim.x*gridDim.x 



#define N (55*1024) 
__global__ void add(int *a, int *b, int *c){ 
    int tid = threadIdx.x + blockIdx.x*blockDim.x;  // handle the data at this index 
 
    while(tid < N){ 
         c[tid] = a[tid] + b[tid]; 
         tid += blockDim.x*gridDim.x;  
     } 
} 
int main() 
{ 
… 
    add <<<128, 128>>>(dev_a, dev_b, dev_c); 
… 
} 
 
 

10 



Matrix Multiplication 

• Demonstrate basic features of memory and 
thread management in CUDA programs 

– Leave shared memory usage until later 

– Local, register usage 

– Thread ID usage 

– Memory data transfer API between host and device 

– Assume square matrix for simplicity 
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• 𝑃 = 𝑀 ×𝑁 of size WIDTH×WIDTH 
• Without blocking: 

– One thread handles one element of 𝑃 
– M and N are loaded WIDTH times from 

global memory 
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C Language Implementation 

void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ 

{    

    for (int i = 0; i < Width; ++i)‏ 

        for (int j = 0; j < Width; ++j) { 

            double sum = 0; 

            for (int k = 0; k < Width; ++k) { 

                double a = M[i * width + k]; 

                double b = N[k * width + j]; 

                sum += a * b; 

            } 

            P[i * Width + j] = sum; 

        } 

} 
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Data Transfer (Host/Device) 
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void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 

   int size = Width * Width * sizeof(float);  

    float *Md, *Nd, *Pd; 

   … 

    //1. Allocate and Load M, N to device memory  

    cudaMalloc(&Md, size); 

    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); 

 

     cudaMalloc(&Nd, size); 

     cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice); 

 

     // Allocate P on the device 

    cudaMalloc(&Pd, size); 

 



     //2.  Kernel invocation code –  

     … 

 

      // 3. Read P from the device 

      cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost); 

 

       // Free device matrices 

      cudaFree(Md); cudaFree(Nd); cudaFree (Pd); 

} 
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Kernel Function 

// Matrix multiplication kernel – per thread code 
 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)‏ 

{ 

     

    // Pvalue is used to store the element of the matrix 

    // that is computed by the thread 

    float Pvalue = 0; 

    for (int k = 0; k < Width; ++k)‏ { 

       float Melement = Md[threadIdx.y*Width+k]; 

       float Nelement = Nd[k*Width+threadIdx.x]; 

       Pvalue += Melement * Nelement; 

   } 

 

  Pd[threadIdx.y*Width+threadIdx.x] = Pvalue; 

} 
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Kernel Invocation 

void MatrixMulOnDevice(float* M, float* N, float* P, int Width)‏ 

{ 

    … 

    //2. Kernel invocation code – to be shown later 

    // Setup the execution configuration 

       dim3 dimGrid(1, 1); 

       dim3 dimBlock(Width, Width); 

 

    // Launch the device computation threads 

    MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, 

Width); 

    … 

} 
17 
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• One Block of threads compute 
matrix Pd 
– Each thread computes one 

element of Pd 

• Each thread 
– Loads a row of matrix Md 

– Loads a column of matrix Nd 

– Perform one multiply and 
addition for each pair of Md and 
Nd elements 

– Compute to off-chip memory 
access ratio close to 1:1 (not very 
high)‏ 

• Size of matrix limited by the 
number of threads allowed in a 
thread block 
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• 𝑃 = 𝑀 ×𝑁 of size WIDTH×WIDTH 
• With blocking: 

– One thread block handles one BLOCK_SIZE 
× BLOCK_SIZE (or TILE_WIDTH × 
TILE_WIDTH) sub-matrix (tile) 𝑃𝑑𝑠𝑢𝑏 of 𝑃 
• Block size equal tile size 
• Each thread calculates one element 

– M and N are only loaded WIDTH/ 
BLOCK_SIZE times from global memory 

– Genrate a 2D grid of 
(WIDTH/TILE_WIDTH)2 blocks 
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Revised Matrix Multiplication Kernel 

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int 
Width) 

{ 
// Calculate the row index of the Pd element and M 
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y; 
// Calculate the column index of Pd and N 
int Col = blockIdx.x*TILE_WIDTH + threadIdx.x; 
 
float Pvalue = 0; 
// each thread computes one element of the block sub-matrix 
for (int k = 0; k < Width; ++k) 
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col]; 
 
Pd[Row*Width+Col] = Pvalue; 
} 

21 



Multithreading 

• Cores in a streaming multiprocessor (SM) are Single 
Instruction Multiple Threads (SIMT) cores: 

– all cores execute the same instructions simultaneously, but 
with different data. 

– minimum of 32 threads all doing the same thing at 
(almost) the same time. 

– no “context switching”; each thread has its own registers, 
which limits the number of active threads 

– threads on each SM execute in groups of 32 called “warps” 
– execution alternates between “active” warps, with warps 
becoming temporarily “inactive” when waiting for data 
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• Suppose we have 1000 blocks, and each one has 128 
threads – how does it get executed? 

• On current Fermi hardware, would probably get 8 blocks 
running at the same time on each SM, and each block has 
4 warps =) 32 warps running on each SM 

• Each clock tick, SM warp scheduler decides which warp to 
execute next, choosing from those not waiting for 
– data coming from device memory (memory latency) 

– completion of earlier instructions (pipeline delay) 

• Programmer doesn’t have to worry about this level of 
detail (can always do profiling later), just make sure there 
are lots of threads / warps 

23 



Spatial Locality 

__global__ void good_kernel(float *x) 
{ 
    int tid = threadIdx.x + blockDim.x*blockIdx.x; 
    x[tid] = threadIdx.x; 
} 
• 32 threads in a warp address neighboring elements of array 

x. 
• If the data is correctly “aligned” so that x[0] is at the 

beginning of a cache line, then x[0]-x[31] will be in the 
same cache line. 
– Cache line is the basic unit of data transfer, 128 bytes cache line 

(32 floats or 16 doubles).  

• Good spatial locality. 
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__global__ void bad_kernel(float *x) 

{ 

    int tid = threadIdx.x + blockDim.x*blockIdx.x; 

    x[1000*tid] = threadIdx.x; 

} 

• Different threads within a warp access widely 
spaced elements of array x. 

• Each access involves a different cache line, so 
performance is poor.  
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Software View 

At the top level, we have a master process which runs on the 
CPU and performs the following steps: 
1. initializes card 
2. allocates memory in host and on device 

– cudaMalloc(),… 

3. copies data from host to device memory 
– cudaMemcpy(…, cudaMemcpyHostToDevice); 

4. launches multiple instances of execution “kernel” on device 
– kernel_routine<<<gridDim, blockDim>>>(args); 

5. copies data from device memory to host 
– cudaMemcpy(…, cudaMemcpyDeviceToHost); 

6. repeats 3-5 as needed 
7. de-allocates all memory and terminates 

– cudaFree() 
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Software View 

At a lower level, within the GPU: 
 

1. each instance of the execution kernel executes on an SM 
 

2. if the number of instances exceeds the number of SMs, then more than one 
will run at a time on each SM if there are enough registers and shared 
memory, and the others will wait in a queue and execute later 
 

3. all threads within one instance can access local shared memory but can’t 
see what the other instances are doing (even if they are on the same SM) 
 

4. there are no guarantees on the order in which the instances execute 
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CUDA Memories 

• Each thread can: 
– Read/write per-thread 

registers  

– Read/write per-thread local 
memory 

– Read/write per-block shared 
memory 

– Read/write per-grid global 
memory 

– Read/only per-grid constant 
memory 
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Access Times 
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Variable Types 

• the __device__ indicates this is a global variable in the 
GPU 
– the variable can be read and modified by any kernel 
– its lifetime is the lifetime of the whole application 
– can also declare arrays of fixed size 
– can read/write by host code using standard cudaMemcpy 

• __device__ is optional when used with __local__,  
__shared__, or  __constant__ 
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Variable declaration Memory Scope Lifetime 

__device__ __local__    int LocalVar; local thread thread 

__device__ __shared__   int SharedVar; shared block block 

__device__              int GlobalVar; global grid application 

__device__ __constant__ int ConstantVar; constant grid application 



• Constant variables 
– Very similar to global variables, except that they can’t be modified by kernels 
– defined with global scope within the kernel file using the prefix __constant__ 
– initialized by the host code using cudaMemcpyToSymbol, 

cudaMemcpyFromSymbol or cudaMemcpy in combination with 
cudaGetSymbolAddress 

– Only 64KB of constant memory, but big benefit is that each SM has a 8KB cache 

• Pointers can only point to memory allocated or declared in global memory: 
– Allocated in the host and passed to the kernel:  
 __global__ void KernelFunc(float* ptr) 

– Obtained as the address of a global variable:  
 float* ptr = &GlobalVar; 

• Automatic variables without any qualifier reside in a register 
– Except arrays that reside in local memory 
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__global__ void lap(int I, int J,float *u1, float *u2) { 
int i = threadIdx.x + blockIdx.x*blockDim.x; 
int j = threadIdx.y + blockIdx.y*blockDim.y; 
int id = i + j*I; 
if (i==0 || i==I-1 || j==0 || j==J-1) { 
    u2[id] = u1[id]; // Dirichlet b.c.’s } 
else { 
u2[id] = 0.25f * ( u1[id-1] + u1[id+1] 
+ u1[id-I] + u1[id+I] );} 
} 



Shared Memory 

__shared__ int x_dim; 

__shared__ float x[128]; 

• declares data to be shared between all of the 
threads in the thread block – any thread can set its 
value, or read it. 

• Advantages of using shared memory 
– essential for operations requiring communication 

between threads  

– useful for data re-use 

– alternative to local arrays in device memory 

– reduces use of registers when a variable has same value 
for all threads 
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• If a thread block has more than one warp, it’s not pre-determined 
when each warp will execute its instructions – warp 1 could be 
many instructions ahead of warp 2, or well behind. 
 

• Consequently, almost always need thread synchronization to ensure 
correct use of shared memory. 
 

• Instruction 
– __syncthreads(); 

 
• inserts a “barrier”; no thread/warp is allowed to proceed beyond 

this point until the rest have reached it 
• Total size of shared memory is specified by an optional third 

arguments when launching the kernel: 
– kernel<<<blocks,threads,shared_bytes>>>(...) 

33 



Active Blocks per SM 
• Each block require certain resources: 

– threads 
– registers (registers per thread × number of threads) 
– shared memory (static + dynamic) 

• Together these decide how many blocks can be run 
simultaneously on each SM – up to a maximum of 8 blocks 

• General advice: 
– number of active threads depends on number of registers each 

needs 
– good to have at least 2-4 active blocks, each with at least 128 

threads 
– smaller number of blocks when each needs lots of shared 

memory 
– larger number of blocks when they don’t need shared memory 
– On Fermi card: 

• maybe 2 big blocks (512 threads) if each needs a lot of shared 
memory 

• maybe 6 smaller blocks (256 threads) if no shared memory needed 
• or 4 small blocks (128 threads) if each thread needs lots of registers 34 



• Global memory resides in device memory (DRAM) - much slower access than 
shared memory 

• So, a profitable way of performing computation on the device is to tile data to 
take advantage of fast shared memory: 
– Partition data into subsets that fit into shared memory 
– Handle each data subset with one thread block by: 

• Loading the subset from global memory to shared memory, using multiple threads to exploit 
memory-level parallelism 

• Performing the computation on the subset from shared memory; each thread can efficiently 
multi-pass over any data element 

• Copying results from shared memory to global memory 

• Constant memory also resides in device memory (DRAM) - much slower access 
than shared memory 
– But… cached! 
– Highly efficient access for read-only data 

• Carefully divide data according to access patterns 
– R/Only  constant memory (very fast if in cache) 
– R/W shared within Block  shared memory (very fast) 
– R/W within each thread  registers (very fast) 
– R/W inputs/results  global memory (very slow) 
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Shared Memory and Synchronization for Dot 
Product 

#define imin(a,b) ((a)<(b)?(a):(b)) 
const int N = 33*1024; 
const int threadsPerBlock = 256; 
const int blocksPerGrid = imin(32, (N+threadsPerBlock-1)/threadsPerBlock); 
int main(){ 
    float *a, *b, c, *partial_c; 
    float *dev_a, *dev_b, *dev_partial_c; 
    a = (float*)malloc(N*sizeof(float));  b = (float*)malloc(N*sizeof(float)); 
    partial_c = (float*)malloc(blocksPerGrid*sizeof(float)); 
    cudaMalloc((void**)&dev_a,N*sizeof(float));  
    cudaMalloc((void**)&dev_b,N*sizeof(float)); 
    cudaMalloc((void**)&dev_partial_c,blocksPerGrid*sizeof(float)); 
    // initialize a[] and b[] … 
    cudaMemcpy(dev_a,a,N*sizeof(float),cudaMemcpyHostToDevice); 
    cudaMemcpy(dev_b,b,N*sizeof(float),cudaMemcpyHostToDevice); 
    dot<<< blocksPerGrid, threadsPerBlock>>>(dev_a,dev_b,dev_partial_c); 
    cudaMemcpy(partial_c,dev_partialc,blocksPerGrid*sizeof(float),cudaMemcpyDeviceToHost); 
    c = 0; 
    for(int i=0; i<blocksPerGrid;i++)    c += partial_c[i]; 
    // cuda memory free, etc. 
} 
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__global__ void dot(float *a, float*b, float *c){ 
    __shared__ float cache[threadsPerBlock];  
    //this buffer will be used to store each thread’s running sum  

     // the compiler will allocate a copy of shared variables for each block 

    int tid = threadIdx.x + BlockIdx.x*blockDim.x; 
    int cacheIndex = threadIdx.x; 
    float temp = 0.0; 
    while(tid < N){ 
        temp += a[tid]*b[tid]; 
        tid += blockDim.x*gridDim.x; 
    } 
    // set the cache values 
    cache[cacheIndex]=temp; 
     
    // we need to sum all the temporary values in the cache. 
    // need to guarantee that all of these writes to the shared array 
    // complete before anyone to read from this array. 
     
    // synchronize threads in this block 
    __syncthreads();     // This call guarantees that every thread in the block has  
                                       // completed instructions prior to __syncthreads() before the  
                                       // hardware will execute the next instruction on any thread. 
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// each thread will add two of values in cache[] and  
// store the result back to cache[].  
// We continue in this fashion for log_2(threadsPerBlock)  
//steps till we have the sum of every entry in cache[]. 
// For reductions, threadsPerBlock must be a power of 2 
    int i=blockDim.x/2; 
    while(i!=0){ 
         if(cacheIndex <i) 
               cache[cacheIndex] += cache[cacheIndex+i]; 
          __syncthreads(); 
          i/=2;   
     } 
      if(cacheIndex==0) 
           c[blockIdx.x]=cache[0]; 
} 
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Shared Memory to Reuse Global Memory Data 

40 40 

• Each input element is 
read by Width 
threads. 

• Load each element 
into Shared Memory 
and have several 
threads use the local 
version to reduce the 
memory bandwidth 
– Tiled algorithms 
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Tiled Multiplication 
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• Break up the execution of the kernel into 
phases so that the data accesses in each 
phase is focused on one subset (tile) of 
Md and Nd 

• Each block computes one square sub-
matrix Pdsub of size TILE_WIDTH 

• Each thread computes one element of 
Pdsub 
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Every Md and Nd Element is used exactly twice in 
generating a 2X2 tile of P 
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Breaking Md and Nd into Tiles 
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Each Phase of a Thread Block Uses One Tile from 
Md and One from Nd 

Step 4 Step 5 Step 6 

T0,0 Md0,0  

‏↓

Mds0,0 

Nd0,0 

 ‏↓

Nds0,0 

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1 

Md2,0  

 ‏↓

Mds0,0  

Nd0,2 

 ‏↓

Nds0,0 

PValue0,0 += 

Mds0,0*Nds0,0 + 

Mds1,0*Nds0,1 

T1,0 Md1,0 

‏↓

Mds1,0  

Nd1,0 

 ‏↓

Nds1,0 

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1 

Md3,0  

 ‏↓

Mds1,0  

Nd1,2 

 ‏↓

Nds1,0 

PValue1,0 += 

Mds0,0*Nds1,0 + 

Mds1,0*Nds1,1 

T0,1 Md0,1 

‏↓

Mds0,1 

Nd0,1 

 ‏↓

Nds0,1 

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1 

Md2,1 

 ‏↓

Mds0,1 

Nd0,3 

 ‏↓

Nds0,1 

PdValue0,1 += 

Mds0,1*Nds0,0 + 

Mds1,1*Nds0,1 

T1,1 Md1,1 

‏↓

Mds1,1 

Nd1,1 

 ‏↓

Nds1,1 

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1 

Md3,1  

 ‏↓

Mds1,1  

Nd1,3 

 ‏↓

Nds1,1 

PdValue1,1 += 

Mds0,1*Nds1,0 + 

Mds1,1*Nds1,1 

 Phase 1  Phase 2 

time 



• Each thread block should have many threads 
– TILE_WIDTH of 16 gives 16*16 = 256 threads 

 

• There should be many thread blocks 
– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks 

 

• Each thread block perform 2*256 = 512 float 
loads from global memory for 256 * (2*16) = 
8,192 mul/add operations.  
– Memory bandwidth no longer a limiting factor 
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Kernel Execution Configuration  

// Setup the execution configuration 

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH); 

dim3 dimGrid(Width/TILE_WIDTH,  

      Width/TILE_WIDTH); 
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__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) 
{ 
  __shared__float Mds[TILE_WIDTH][TILE_WIDTH]; 

  __shared__float Nds[TILE_WIDTH][TILE_WIDTH]; 

 

  int bx = blockIdx.x;  int by = blockIdx.y; 

  int tx = threadIdx.x; int ty = threadIdx.y; 

 

// Identify the row and column of the Pd element to work on 

  int Row = by * TILE_WIDTH + ty; 

  int Col = bx * TILE_WIDTH + tx; 
 

   float Pvalue = 0; 

// Loop over the Md and Nd tiles required to compute the Pd element 

   for (int m = 0; m < Width/TILE_WIDTH; ++m) { 

    // Coolaborative loading of Md and Nd tiles into shared memory 

   Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)]; 

       Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width]; 

       __syncthreads(); 
 

       for (int k = 0; k < TILE_WIDTH; ++k) 

          Pvalue += Mds[ty][k] * Nds[k][tx]; 

       Synchthreads(); 

   } 

   Pd[Row*Width+Col] = Pvalue; 

} 



Performance on G80 
• Each SM in G80 has 16KB shared memory 

– SM size is implementation dependent! 
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.  
– Can potentially have up to 8 Thread Blocks actively executing  

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block) 

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared memory usage per 
thread block, allowing only up to two thread blocks active at the same time 

• Using 16x16 tiling, we reduce the accesses to the global memory by a factor 
of 16 
– The 86.4B/s bandwidth can now support (86.4/4)*16 = 347.6 GFLOPS 
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2D Laplace Solver 

• Jacobi iteration to solve discrete Laplace equation on a 
uniform grid 

 
for (int j=0; j<J; j++) { 
    for (int i=0; i<I; i++) { 
        id = i + j*I; // 1D memory location 
        if (i==0 || i==I-1 || j==0 || j==J-1) 
             u2[id] = u1[id]; 
        else 
        u2[id] = 0.25*( u1[id-1] + u1[id+1] 
                                 + u1[id-I] + u1[id+I] ); 
     } 
} 
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2D Laplace Solver Using CUDA 

• each thread responsible for one grid point 

• each block of threads responsible for a block 
of the grid 

• conceptually very similar to data partitioning 
in MPI distributed-memory implementations, 
but much simpler 
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                                                                         → 
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• Each block of threads processes one of these grid blocks, 
reading in old values and computing new values. 
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__global__ void lap(int I, int J, float *u1, float *u2) { 
    int i = threadIdx.x + blockIdx.x*blockDim.x; 
    int j = threadIdx.y + blockIdx.y*blockDim.y; 
    int id = i + j*I; 
    if (i==0 || i==I-1 || j==0 || j==J-1) { 
        u2[id] = u1[id]; // Dirichlet b.c.’s 
    } 
    else { 
        u2[id] = 0.25 * ( u1[id-1] + u1[id+1] 
                            + u1[id-I] + u1[id+I] ); 
    } 
} 
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Assumptions: 
• I is a multiple of blockDim.x 
• J is a multiple of blockDim.y 

grid breaks up perfectly into blocks 

• I is a multiple of 32 
 
Can remove these assumptions by 
• testing if i, j are within grid 
• padding the array in x to make it a multiple of 32, so 

each row starts at the beginning of a cache line – this 
uses a special routine cudaMallocPitch 
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