
Project 1, due on 02/17.

Problem 1. Parallel Numerical Integration for Undergraduate Students.

We can calculate by approximating ∫

. Implement a parallel code using composite Trapezoidal

rule to approximate this definite integral. Use the framework implemented in parallel_trapezoidal.c. In

general, each process is assigned with a subinterval . We apply composite Trapezoidal

rule on this subinterval to compute a partial sum. Modify the script “HPCC_1.sh” to submit your runs.

1. Use point-to-point communication to compute the sum of partial sums from each composite

Trapezoidal rule. Specifically, use non-blocking send and blocking receive to transfer the partial sums to

process 0 and let process 0 compute the sum.

2. Use numbers of subintervals to do the calculation respectively. For

each computation, use 4, 8 and 16 processors respectively. Find the overall the wall clock time spent by

the whole program. Make a table to list the results.

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and a

description of your implementation on point-to-point communication.

Problem 2. Parallel Explicit Finite Difference Scheme for Solving 1D Heat Equation for Graduate

Students.

Consider to solve {
 () ()

 () ()
with periodic boundary

condition by the explicit finite difference scheme. Compute the solution for

The exact solution is given by () ()

Assume we use grid points. The grid space then is

. The grid points are

 Let be the time step size. For stability, we should satisfy

Let
 () be the approximate solution. The explicit scheme is

 (

) for

Implement a parallel version of the scheme to solve the above problem by arbitrary number of grid

points using processors. Assume Use non-blocking send and receive for message

passing. Use respectively to do the mesh refinement study. Compute

 error with respect to the mesh refinement. Do each of these calculations with 4, 8, 16 processors

respectively. Make a table to list the wall clock time space on computation and communication

respectively. Hint: the code to compute work load assignment is work_division.c.

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and

algorithmic notes on both computation and communication.

