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ABSTRACT
In this paper we explore the idea of reusing loop sched-
ules to improve the scalability of numerical codes in shared–
memory architectures with non–uniform memory access.
The main objective is to implicitly construct affinity links be-
tween threads and data accesses and reuse them as much as
possible along the execution of the program. These links are
created through the definition and reuse of iteration sched-
ules which are either defined statically by the user or created
dynamically at run time. The paper does not include a formal
proposal of OpenMP extensions but includes some experi-
ments showing the usefulness of constructing affinity links
in both regular and irregular codes.
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1 INTRODUCTION
Scaling OpenMP programs on shared-memory architectures
with non-uniform memory access latency is a challeng-
ing problem, mostly because the OpenMP programming
paradigm is oblivious of the placement of data in memory
and partly because extending OpenMP to run efficiently on
NUMA architectures may have undesirable implications for
the portability and the design philosophy of the program-
ming model [1, 5].

We have undertaken a project to investigate whether scaling
OpenMP on NUMA architectures requires extensions to the
existing OpenMP API or not. More specifically, we investi-
gated if the OpenMP API should be extended with interfaces
for explicit placement of threads and data in the nodes of a
NUMA system. Such an extension would compromise the
user-friendly, incremental style of parallelization offered by
OpenMP and trade it for higher performance on architectures
where the placement of data in memory is critical for local-
izing memory accesses.

Our project was quite successful in relaxing the requirement
of introducing data distribution directives in OpenMP, for a
broad class of parallel codes. We were able to show that in it-
erative parallel codes with repeating memory access patterns
and statically scheduled parallel loops, the memory accesses
can be almost perfectly localized using a runtime data dis-
tribution technique based on dynamic page migration [3, 4].
The prerequisite for the effectiveness of this technique, is
the ability of the OpenMP runtime system to obtain an ac-
curate snapshot of the complete memory access pattern of
the program. If this snapshot is available early at runtime,
data can be relocated timely enough to minimize the latency
of remote memory accesses of the program and sustain high
performance and good scaling.

Unfortunately, there remain some important classes of par-
allel codes for which our runtime data distribution engine is
still unable to optimize memory access locality, either be-
cause of the constraint that the memory access pattern is not
iterative, or because runtime data distribution alone is insuf-
ficient if not combined with an application-specific load dis-
tribution scheme. In this paper we focus our interest in such
applications. In particular, we concern ourselves with codes
where although the memory access pattern is not repeatable,
it is possible to schedule the computation so that each pro-
cessor reuses the same data (or a subset of it per se) along
the execution time of the application. We are also concerned
with iterative irregular codes, for which explicit assignment
of data and computation to threads is the only option for load
balancing.

The key idea to improve the scalability of OpenMP in these
two classes of codes without reverting to thread or data distri-
bution, is the construction of implicit affinity links between
threads and data, through reusable loop schedules. As a
starting point, we use custom loop schedules that strive for
better load balancing. In cases in which the same loops are
executed repeatedly in the program, we identify their custom
schedules as reusable, meaning that in subsequent invoca-
tions, the same processors execute the same or a subset of
the iterations they executed during the first invocation. Com-
bined with a first-touch page placement strategy, this simple
technique sustains good memory access locality, even if the
memory access pattern of the program is non-iterative or ir-



program LU
integer n
parameter (n=problem size)
double precision a(n,n)
do k=1,n

do m=k+1,n
a(m,k)=a(m,k)/a(k,k)

end do
!$OMP PARALLEL DO PRIVATE(i,j)

do j=k+1, n
do i=k+1,n

a(i,j)=a(i,j)-a(i,k)*a(k,j)
enddo

enddo
enddo

program LU
integer n
parameter (n=problem size)
double precision a(n,n)
integer num procs
num procs = omp get max threads()
do k=1,n

do m=k+1,n
a(m,k)=a(m,k)/a(k,k)

enddo
!$OMP PARALLEL DO PRIVATE(i,j,myp,jlow)
!$OMP& SHARED(a,k)

do myp = 0, num procs-1
jlow = ((k / num procs) * num procs) + 1 + myp
if (myp .lt. mod(k, num procs))

jlow = jlow + num procs
do j=jlow, n, num procs

do i=k+1, n
a(i,j) = a(i,j) - a(i,k)*a(k,j)

enddo
enddo

enddo
enddo

Figure 1: A simple LU code implemented with OpenMP
(top) and transformed to exploit data affinity with iteration
schedule reuse (bottom).

regular. In the rest of the paper, we present motivating ex-
amples and the rationale behind reusable loop schedules and
support our arguments with measurements taken in three ir-
regular kernels from a complex weather forecasting code and
a simple hand-crafted LU decomposition, all written in un-
modified OpenMP.

2 REUSABLE CUSTOM LOOP SCHEDULES
Consider the simple LU decomposition shown in the upper
part of Figure 1. The memory access pattern of the code
changes so that any appropriate distribution of data in one it-
eration becomes obsolete in the next iteration. Although the
code is iterative, the amount of computation performed in
each iteration is progressively reduced. If data is distributed
with a regular BLOCK or CYCLIC distribution, each pro-

cessor will be forced to access remotely located data from
the second iteration of the k loop and beyond. Therefore,
neither manual, nor runtime data distribution are expected to
be effective. In order to achieve both balanced load and good
memory access locality simultaneously, the code should be
transformed so that each iteration of the j loop is executed
on the node where the j -th column of a is stored.

An elegant solution for localizing memory accesses is to
transform the code as shown in the lower part of Figure 1.
Each processor computes locally its own set of iterations
to execute. Iterations are assigned to processors in a cyclic
manner and during the k-th iteration of the outer loop, each
processor executes a subset of the iterations that the same
processor executed during the k-1-th iteration of the outer
loop. For example, assume that n=1024 and the program
is executed with 4 processors. When k=1, processor 0 exe-
cutes iterations 2,6,10,14,. . . , processor 1 executes iterations
3,7,11,15,. . . and so on. In the second iteration, processor 0
executes iterations 6,10,14 . . . , processor 1 executes itera-
tions 7,11,15, . . . etc.

The initial cyclic assignment of iterations to processors is
equivalent to a cyclic distribution of the columns of a, which
is likely to improve load balancing. However, the actual pur-
pose of the cyclic assignment of iterations is to have each
processor reuse the data that it touches during the first itera-
tion of the outermost k loop. If the program is executed with
a first-touch page placement algorithm, such a transforma-
tion achieves good localization of memory accesses.

A similar situation happens in a sequence of parallel loops
with slightly different lower and/or upper bounds. In this
case, the same STATIC schedule applied to each loop may
provoke a different assignment of iterations to threads. Re-
structuring the loops in a similar way ensures that each
thread reuses data accessed or computed in previous loops.

We believe that this kind of transformations can be rela-
tively easy to apply for a restructuring compiler, without
requiring a new OpenMP directive. Even if this is not the
case, the transformation requires merely an extension to the
SCHEDULE clause of the OpenMP PARALLEL DO direc-
tive. This extension would dictate the compiler to compute
the initial iteration schedule (cyclic in this case), provide it
with a name and reuse it in subsequent invocations of the
same loop or different loops in a sequence.

Although the previous examples have some interesting prop-
erties with respect to memory affinity, they are still fairly
simple parallel codes, which can be handled by a regular dis-
tribution of data combined with loop schedule reuse. How-
ever, this is not the case for irregular parallel codes, where
the notion of irregularity refers to the data access pattern.
The peculiar feature of irregular parallel codes is that the
physical problem they model has some form of structural ir-
regularity, which makes certain regions of the modeled data
space more densely populated with data points than others



!HPF$ PROCESSORS PROCS(NPROC),
!HPF$& PROCSAB(NRPOCA,NPROCB)
!HPF$ DISTRIBUTE(GEN BLOCK(MAPGLA),
!HPF$& INDIRECT(MAPFLD0)) ONTO PROCSAB::ZGL
REAL ZGL(NRPOMAG,NGT0)
!HPF$ INDEPENDENT,NEW(JFLD),
!HPF$& ONHOME(ZGL(INDL(J),:)), REUSE(LREUSE)
DO J=1,NGPTOTG

DO JFLD=1,NGT0
ZGL(INDL(J),JFLD)=ZGA(J,JFLD)

ENDDO
ENDDO

(a)

DO J=1,NGPTOTG
RINDL(INDL(J))=J

ENDDO

(b)

!$OMP PARALLEL DO PRIVATE(IAM)
DO IAM=1,OMP GET NUM THREADS()

DO J=1,MAPGLA(IAM)
MYITER(IAM,J)=RINDL(J)

ENDDO
ENDDO

(c)

!$OMP PARALLEL DO PRIVATE(IAM)
DO IAM=1,OMP GET NUM THREADS()

DO J=1,MAPGLA(IAM)
ZGL(MYITER(IAM,J),JFLD)=ZGA(J,JFLD)

ENDDO
ENDDO

(d)
Figure 2: Implementing a generalized block distribution implicitly, by proper assignment of loop iterations to processors.

(modeling the earth towards the poles and close to the equa-
torial is a simple example of an irregular data space). Ir-
regular codes necessitate the use of application-specific load
balancers, which are hard to formalize for inclusion in a flat
shared-memory programming model like OpenMP. At the
same time, implementing irregular data distributions is un-
desirable for the sake of the simplicity and the portability of
OpenMP.

A viable solution for establishing thread-to-data affinity re-
lationships in irregular OpenMP codes stems from allowing
more flexibility in the loop schedulers. More specifically, it
is possible to construct loop schedules such that the assign-
ment of iterations to processors implements implicitly irreg-
ular data distributions, customized to the semantics of the
application. The idea is to construct explicit maps of data
to processors (reflecting the irregular data distributions) and
have the compiler schedule the iterations, so that each pro-
cessor touches first and then reuses the data assigned to it by
the map. What makes this technique effective, is once again
the automatic first-touch data placement algorithm, which
places data (more specifically the pages that cache the data)
together with the processor that touches it first during the
course of the program.

Proper collocation of threads and data in an OpenMP par-
allel loop can be implemented transparently in the runtime
system with the following procedure. The compiler identi-
fies the data accessed during the loop and injects mprotect()
calls to invalidate the ranges of the virtual address space that
contain this data [4]. This invalidation is required to dis-
card the –possibly inopportune— placement of data before
the first execution of the loop. During the first execution of
the loop, data is placed in processor memories in the order

they are accessed by processors, according to the first-touch
algorithm. Having this observation in mind, the program-
mer can assign an arbitrarily sized and structured block of
data to a processor, simply by assigning the loop iterations
that access this block to the same processor in the OpenMP
PARALLEL loop.

Figure 2 illustrates an example of how proper assignment
of loop iterations to processors implements implicit irregular
data distributions, using the first-touch page placement algo-
rithm. The example shows an excerpt from the data transpo-
sition in the LG kernel, taken from the Integrated Forecasts
System of the European Center for Medium Range Weather
Forecasting [6]. The HPF implementation of the kernel dis-
tributes array ZGL using a generalized block distribution
along its first dimension (Figure 2(a)). Generalized block
distributions are used for load balancing in irregular grids.
They assign variable-sized blocks to processors, to cope with
structural irregularities that make certain regions of the grids
more densely populated than other regions of the grids. The
size of the block assigned to each processor in a general-
ized block distribution is defined by the elements of an array
(MAPGLA in our example). MAPGLA(i) contains the size
of the block assigned to processor i.

In order to implement the generalized block distribution by
assigning iterations to processors, we identify the iterations
that access the elements of the block assigned to each pro-
cessor by the GEN BLOCK distribution, as shown in Fig-
ure 2(b). The array element RINDL(J) stores the itera-
tion of the loop that accesses the elements of row INDL(J)
of ZGL. These elements must be mapped to the proces-
sor that owns INDL(J) according to the ONHOME clause.
This is implemented by constructing a map of iterations



to processors, which is defined as a two-dimensional array
MYITER(i,j), I=1, . . . P, J=1, . . . max(MAPGLA(i)). The el-
ements of this array are set with the code fragment shown
in Figure 2(c). Intuitively, if an element �� is assigned to
processor �, we first find the iteration �� that accesses ��, by
finding the value �� that satisfies �������� � ��. We then
set ��������� � �� and assign iteration �� to processor
� by setting �	 �
����� 
� � �� for some 
� � � 
 �

���������. Finally, the original loop is transformed so
that each processor executes its assigned set of iterations, as
shown in Figure 2(d).

This procedure can be easily automated in an extension
of the SCHEDULE clause of the OpenMP DO direc-
tive. In analogy to data-parallel directives implemented
in variants of HPF, the SCHEDULE clause may in-
clude a GEN BLOCK(MAP(� � � )) parameter or an
INDIRECT(MAP(� � � )) parameter. In the first case, el-
ement � of the MAP array contains the size of a contiguous
chunk of iterations assigned to processor �. In the second
case, element � of the MAP array contains the mapping of
an element of a shared array to a processor, along the di-
mension of the array indexed by the index of the parallelized
loop. The OpenMP compiler should interpret this as a map-
ping of the iteration that updates this element to the same
processor.

3 RESULTS
We present some results to demonstrate the potential of loop
schedule reuse for exploiting memory affinity and substitut-
ing irregular data distributions. The results are taken from
experiments on a 64-processor SGI Origin2000. The sys-
tem on which we experimented has MIPS R10000 proces-
sors running at 250 MHz, with 32 Kilobytes of split L1 cache
and 4 Megabytes of unified L2 cache per processor, and 12
Gigabytes of DRAM memory. The operating system is IRIX
version 6.5.5. The page size for data pages is 16 Kilobytes.
All experiments were conducted on a dedicated, idle system.
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Figure 3: Execution times of LU.

Figures 3 and 5 illustrate the execution times of our sim-
ple LU decomposition (performed on a dense 1400�1400
matrix) and the three irregular kernels from the Integrated
Forecasts System (IFS) of the European Center for Medium
Range Forecasting (ECMWF) [6], respectively. The irreg-
ular kernels perform data transpositions between the main
computational phases of the IFS code. LG transforms data
from the physical grid space to the Fourier grid space, TS
transforms data from the Fourier space to the spectral space
and vice versa, while SL computes trajectories of grid points
according to the encountered winds. LG and SL use quasi-
regular grids that model the atmosphere, using more points
towards the equatorial and less points towards the poles. TS
uses a triangular grid, which is produced from applying Leg-
endre transforms to the Fourier space grid.

Execution times are plotted on processor scales ranging from
1 to 64 processors in even powers of two. Note that exe-
cution times are drawn in logarithmic scale. The OpenMP
implementation of LU with loop schedule reuse is compared
against the unmodified OpenMP implementation and an im-
plementation that encompasses explicit data distribution di-
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Figure 4: Histograms of memory accesses in LU.
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Figure 5: Execution times of the irregular kernels.

rectives, provided as extensions to OpenMP by the SGI com-
piler [2]. The OpenMP implementation of the irregular ker-
nels that uses iteration maps and schedule reuse is compared
against the unmodified OpenMP implementation and a well-
tuned MPI implementation of the same programs. The MPI
implementation implements irregular data distributions, in-
cluding generalized block distributions (and indirect distri-
butions (i.e. distributions based on an indirection map be-
tween array indices and processors).

The message from the presented results is that it is possible to
obtain the full benefit of thread-to-memory affinity without
introducing data distribution extensions to OpenMP. This is
accomplished by providing additional flexibility in schedul-
ing the work-sharing constructs. Our transformations im-
prove the scalability of the unmodified OpenMP implemen-
tations approximately by a factor of 2, while the performance
of the irregular OpenMP kernels is competitive to that of
MPI. The latter result is of particular interest, first because
it is among the first to contradict the existing experimental
evidence that position OpenMP behind MPI in terms of per-
formance and scalability, and second because the program-
ming effort required to reach this level of performance with
OpenMP is one order of magnitude less than the program-
ming effort required to reach the same level with MPI.

Figures 4 and 6 show histograms of memory accesses, taken
from the execution of the benchmarks on 64 processors. The
processors on the Origin2000 are attached to nodes with two
processors per node. The processors in a node shared the
memory modules of the node. The histograms show the ac-
cumulated memory accesses per node, divided into local ac-
cesses (i.e. accesses from the processors on the node, gray
part of the bars) and remote accesses (i.e. accesses from pro-
cessors outside the node, black part of the bars). The his-
tograms demonstrate the impact of using loop schedule reuse
on memory access locality. Aside from reducing radically
memory latency by reducing the number of remote memory
accesses per node, the schedule reuse transformation helps
in alleviating contention at memory modules. Contention is

alleviated by balancing the remote memory accesses across
the nodes of the system. Balancing remote memory accesses
is crucial for distributing evenly the traffic of messages in
the interconnection network. Memory access balancing is al-
most excellent in LU and LG when iteration schedule reuse
is applied. TS has somewhat more unbalanced memory ac-
cess pattern, but the overall number of remote memory ac-
cesses is reduced drastically. The only program in which
schedule reuse has limited effectiveness in reducing and bal-
ancing remote memory accesses is SL. We suspect that false
sharing is the reason for this behaviour, but more experi-
ments are needed to track the source of this problem.

4 CONCLUSIONS
In this paper we have presented loop schedule reuse, a sim-
ple methodology for improving memory access locality in
OpenMP programs. We have also shown that it is possible
to use customizable loop schedules in OpenMP, to imple-
ment arbitrary data distributions using the first-touch page
placement algorithm. The results of this work corroborate
the belief that OpenMP can scale well on tightly-coupled
NUMA architectures without requiring extensions or mod-
ifications to the programming model. Further research is re-
quired to investigate if OpenMP can scale well on loosely-
coupled NUMA architectures such as clusters and constella-
tions, using automatic data placement algorithms and appro-
priate program transformations. This is the primary target of
our future work.
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Figure 6: Histograms of memory accesses in LG, SL and TS.
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