Project 1, due on 02/20.

Problem 1. Parallel Numerical Integration for Undergraduate Students.

Evaluate $\int_{2.0}^{5.0} \int_{2.0}^{5.0} \ln (x+2 y) e^{\sqrt{x^{2}+y^{2}}} d y d x$. Implement a parallel code using composite Gaussian quadrature rule to approximate this definite integral.

Suppose P processes are used and the integration domain $[2.0,5.0] \times[2.0,5.0]$ is partitioned into $M \times M$ grid blocks. Each of the processes is assigned with a sub-region $\left[x_{i, l}, x_{i, u}\right] \times\left[y_{i, l}, y_{i, u}\right]$, which is partitioned into $(M / \sqrt{P}) \times(M / \sqrt{P})$ blocks. Here $i=0,1, \ldots, \sqrt{P}-1$.

We apply the 2D Gaussian quadrature rule to each of these grid blocks to compute a numerical quadrature value. The approximation to the given integral is obtained by summing up these numerical quadrature values.

Use the framework implemented in parallel_trapezoidal.c. Modify the script "HPCC_1.sh" to submit your runs.

1. Use point-to-point communication, specifically, non-blocking send and blocking receive to transfer the quadrature values computed by each of the processes to process 0 and let process 0 compute the sum of these quadrature values.
2. Use $M=10000,20000$ and 40000 to do the calculation respectively. For each computation, use 4 , 16 and 64 processors respectively. Find the overall the wall clock times spent by the computation, and the communication respectively. Make a table to list the results.

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and a description of your implementation on point-to-point communication. Email the source code.

Coding Hints.

1. Defines an assignment of processes to subdomains.

find_Cartesian_coordinates(). This function identifies the coordinates of the subdomain with process rank "id". The identification of the id and subdomain coordinates are given by
id $=$ icoords[0] + icoords[1]*gmax[0] + icoords[2]*gmax[0]*gmax[1].
This defines the natural lexographical assignment of id numbers to the subdomains, as illustrated for the above 4×3 partition.
```
typedef struct {
    int gmax[3]; /* # of subdomains in each dir */
    int nn; /* total number of nodes */
    int dim;
} PP_GRID;
```

```
void find_Cartesian_coordinates(
    int id,
    PP_GRID *pp_grid,
    int *icoords)
{
    int dim = pp_grid->dim;
    int d, G;
    for (d = 0; d < dim; d++)
    {
        G = pp_grid->gmax[d];
        icoords[d] = id % G;
        id = (id - icoords[d])/G;
    }
} /*end find_Cartesian_coordinates*/
```


2. Compute subdomain boundaries

For process with rank "id" and coordinate (i, j) on the process grid,

$$
x_{i, l}=2.0+i *(5.0-2.0) / \sqrt{P}
$$

3. Quadrature rules

1D 2-point Gaussian quadrature rule

$$
\int_{-1}^{1} f(\xi) d \xi \approx f\left(\frac{1}{\sqrt{3}}\right)+f\left(-\frac{1}{\sqrt{3}}\right)
$$

Gaussian Quadrature Rule in 2D

$$
I=\int_{-1}^{1} \int_{-1}^{1} f(s, t) d s d t
$$

Where $w_{i j}=w_{i} w_{j}$.

Problem 2. Parallel Explicit Finite Difference Scheme for Solving 1D

Heat Equation for Graduate Students.

Consider to solve $\left\{\begin{array}{ll}u_{t}(x, t)=u_{x x}(x, t), & 0 \leq x \leq 2 \pi, t>0 \\ u(x, 0)=\sin (x) & 0 \leq x \leq 2 \pi\end{array} \quad\right.$ with periodic boundary condition by the explicit finite difference scheme. Compute the solution for $t=2.0$.

The exact solution is given by $u(x, t)=e^{-t} \sin (x)$.
Assume we use $M+1$ grid points. The grid space then is $\Delta x=\frac{2 \pi}{M}$. The grid points are $x_{k}=k \Delta x, k=$ $0, \ldots ., M$. Let Δt be the time step size. For stability, we should satisfy $\frac{\Delta t}{\Delta x^{2}} \leq 0.5$.

Let $v_{k}^{n} \approx u(k \Delta x, n \Delta t)$ be the approximate solution. The explicit scheme is
$v_{k}^{n+1}=v_{k}^{n}+\frac{\Delta t}{\Delta x^{2}}\left(v_{k+1}^{n}-2 v_{k}^{n}+v_{k-1}^{n}\right)$ for $k=0, \ldots ., M$.
Implement a parallel version of the scheme to solve the above problem by arbitrary number of grid points $M+1$ using P processors. Assume $M+1 \gg P$. Use non-blocking send and blocking receive for message passing. Use $M=1000,2000,4000,8000$ respectively to do the mesh refinement study. Compute $L_{2, \Delta x}$ error with respect to the mesh refinement. Do each of these calculations with 4, 8, 16 processors respectively. Make a table to list the wall clock time space on computation and communication respectively. Hint: the code to compute work load assignment is work_division.c.

Let $[l[0], u[0]]$ be a subdomain assigned to a process. For convenience of computation, a virtual domain is defined to hold the ghost points for updating solutions defined on grid points within $[l[0], u[0]]$. This virtual domain is defined as $[v l[0], v u[0]]$. Here $v l[0]=l[0]-N * \Delta x$, and $v u[0]=u[0]+N * \Delta x . N$ is the number of ghost points.

The communication routine looks like the following:

```
void scatter_states(double *soln)
{
    int myid, side;
    int me[3];
    MPI_Comm_rank(MPI_COMM,&myid);
    find_Cartesian_coordinates(myid,pp_grid,me);
    for (side = 0; side < 2; ++side)
    {
        MPI_Barrier(MPI_COMM);
        pp_send_interior_states(me, side,soln);
        pp_receive_interior_states(me ,(side+1)%2,soln);
    }
}
void pp_send_interior_states(
    int *me,
    int side,
    double *soln)
{
    int myid,him[3], dst_id;
    MPI_Comm_rank(MPI_COMM,&myid);
    dst_id = neighbor_id(him,me,0,side,pp_grid);
    /* Next collect soln points to be sent and call MPI_Isend() to send the data
        to the process with rank dst_id */
}
void pp_receive_interior_states(
    int *me,
    int side,
    double *soln)
{
    int myid, him[3], src_id;
    MPI_Comm_rank(MPI_COMM,&myid);
    src_id = neighbor_id(him,me,0,side,pp_grid);
    /* Next call MPI_Recv() to receive the data
        from the process with rank src_id */
}
```

```
int neighbor_id(
    int *him,
    int *me,
    int dir,
    int side,
    PP_GRID *pp_grid)
{
    int *G = pp_grid->gmax;
    int i, dim = pp_grid->dim;
    for (i = 0; i < dim; i++)
        him[i] = me[i];
    him[dir] = (me[dir] + 2*side - 1);
    if (him[dir] < 0)
        him[dir] = G[dir] - 1;
    if (him[dir] >= G[dir])
        him[dir] = 0;
    return domain_id(him,G,dim);
} /*end neighbor_id*/
int domain_id(
        int *icoords,
        int *G,
    int dim)
{
    int tmpid;
    int i;
    tmpid = icoords[dim-1];
    for (i = dim-2; i >= 0; i--)
        tmpid = icoords[i] + G[i]*tmpid;
    return tmpid;
} /*end domain_id*/
```

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and algorithmic notes on both computation and communication. Email the source code.

