

1

Project 1, due on 02/20.

Problem 1. Parallel Numerical Integration for Undergraduate Students.

Evaluate ∫ ∫ √

. Implement a parallel code using composite Gaussian

quadrature rule to approximate this definite integral.

Suppose processes are used and the integration domain [] [] is partitioned into
 grid blocks. Each of the processes is assigned with a sub-region [] [], which is

partitioned into √ √ blocks. Here √ -1.

We apply the 2D Gaussian quadrature rule to each of these grid blocks to compute a numerical
quadrature value. The approximation to the given integral is obtained by summing up these numerical
quadrature values.

Use the framework implemented in parallel_trapezoidal.c. Modify the script “HPCC_1.sh” to submit
your runs.

1. Use point-to-point communication, specifically, non-blocking send and blocking receive to transfer the
quadrature values computed by each of the processes to process 0 and let process 0 compute the sum
of these quadrature values.

2. Use to do the calculation respectively. For each computation, use 4,
16 and 64 processors respectively. Find the overall the wall clock times spent by the computation, and
the communication respectively. Make a table to list the results.

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and a

description of your implementation on point-to-point communication. Email the source code.

Coding Hints.

1. Defines an assignment of processes to subdomains.

find_Cartesian_coordinates(). This function identifies the coordinates of the subdomain with process

rank “id”. The identification of the id and subdomain coordinates are given by

id = icoords[0] + icoords[1]*gmax[0] + icoords[2]*gmax[0]*gmax[1].

This defines the natural lexographical assignment of id numbers to the subdomains, as illustrated for the

above 4x3 partition.

2

2. Compute subdomain boundaries

For process with rank “id” and coordinate on the process grid,

 √

3. Quadrature rules

1D 2-point Gaussian quadrature rule

Gaussian Quadrature Rule in 2D

)
3

1
()

3

1
()(

1

1
 ffdf

dtdstsfI

1

1

1

1
),(

typedef struct {
 int gmax[3]; /* # of subdomains in each dir */
 int nn; /* total number of nodes */
 int dim;
} PP_GRID;

 void find_Cartesian_coordinates(
 int id,
 PP_GRID *pp_grid,
 int *icoords)
{
 int dim = pp_grid->dim;
 int d, G;

 for (d = 0; d < dim; d++)
 {
 G = pp_grid->gmax[d];
 icoords[d] = id % G;
 id = (id - icoords[d])/G;
 }
} /*end find_Cartesian_coordinates*/

3

 ∫ ∫

 ∫ (∑ ()

)

 ∑∑

 ∑∑

Where

Problem 2. Parallel Explicit Finite Difference Scheme for Solving 1D

Heat Equation for Graduate Students.

Consider to solve {

with periodic boundary

condition by the explicit finite difference scheme. Compute the solution for

The exact solution is given by

Assume we use grid points. The grid space then is

. The grid points are

 Let be the time step size. For stability, we should satisfy

4

Let
) be the approximate solution. The explicit scheme is

 for

Implement a parallel version of the scheme to solve the above problem by arbitrary number of grid

points using processors. Assume Use non-blocking send and blocking receive for

message passing. Use respectively to do the mesh refinement study.

Compute error with respect to the mesh refinement. Do each of these calculations with 4, 8, 16

processors respectively. Make a table to list the wall clock time space on computation and

communication respectively. Hint: the code to compute work load assignment is work_division.c.

Let [[] []] be a subdomain assigned to a process. For convenience of computation, a virtual domain

is defined to hold the ghost points for updating solutions defined on grid points within [[] []]. This

virtual domain is defined as [[] []] Here [] [] , and [] [] .

is the number of ghost points.

The communication routine looks like the following:

5

void scatter_states(double *soln)

{

 int myid, side;

 int me[3];

 MPI_Comm_rank(MPI_COMM,&myid);

 find_Cartesian_coordinates(myid,pp_grid,me);

 for (side = 0; side < 2; ++side)

 {

 MPI_Barrier(MPI_COMM);

 pp_send_interior_states(me, side,soln);

 pp_receive_interior_states(me ,(side+1)%2,soln);

 }

}

void pp_send_interior_states(

 int *me,

 int side,

 double *soln)

{

 int myid, him[3], dst_id;

 MPI_Comm_rank(MPI_COMM,&myid);

 dst_id = neighbor_id(him,me,0,side,pp_grid);

 /* Next collect soln points to be sent and call MPI_Isend() to send the data

 to the process with rank dst_id */

}

void pp_receive_interior_states(

 int *me,

 int side,

 double *soln)

{

 int myid, him[3], src_id;

 MPI_Comm_rank(MPI_COMM,&myid);

 src_id = neighbor_id(him,me,0,side,pp_grid);

 /* Next call MPI_Recv() to receive the data

 from the process with rank src_id */

}

6

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and

algorithmic notes on both computation and communication. Email the source code.

int neighbor_id(

 int *him,

 int *me,

 int dir,

 int side,

 PP_GRID *pp_grid)

{

 int *G = pp_grid->gmax;

 int i, dim = pp_grid->dim;

 for (i = 0; i < dim; i++)

 him[i] = me[i];

 him[dir] = (me[dir] + 2*side - 1);

 if (him[dir] < 0)

 him[dir] = G[dir] - 1;

 if (him[dir] >= G[dir])

 him[dir] = 0;

 return domain_id(him,G,dim);

} /*end neighbor_id*/

int domain_id(

 int *icoords,

 int *G,

 int dim)

{

 int tmpid;

 int i;

 tmpid = icoords[dim-1];

 for (i = dim-2; i >= 0; i--)

 tmpid = icoords[i] + G[i]*tmpid;

 return tmpid;

} /*end domain_id*/

