Project 3, due on 04/12.

Problem. Implementing Arnoldi algorithm.

Step 1: Generate a 50×50 strictly diagonally dominant matrix. Do this by modifying the code my_io.c at:

/afs/crc.nd.edu/user/z/zxu2/Public/ACMS40212-S12/col_decomp_mat_vec_multi/data_gen

The current my_io.c code generates a matrix with randomly filled entries.

Step 2: Implement your stable Arnoldi algorithm. You can simply use unit vector e_1 as v_1 .

Let the dimension k of the Krylov subspace be much less than the dimension of the matrix. For instance, let k = 20.

Hand-In.

1. The hardcopy of your source code (Also send the source code to me by email. Please use the email title: Project 3: your name).

2. A report which contains validation of results and a description of your algorithm using the pseudo code language.

3. Validation. Since now you have the orthonormal basis Q of the Krylov subspace $span\{r^{(0)}, A^2r^{(0)}, \dots, A^{k-1}r^{(0)}\}$, generate a vector \boldsymbol{b} in this subspace by doing a linear combination of $r^{(0)}, Ar^{(0)}, A^2r^{(0)}, \dots, A^{k-1}r^{(0)}$, then solve $Q\boldsymbol{x} = \boldsymbol{b}$ for \boldsymbol{x} by $\boldsymbol{x} = Q^T\boldsymbol{b}$ to see if \boldsymbol{x} agrees with coefficients of the linear combination to generate \boldsymbol{b} .

Remark: for parallel implementation of GMRES method, see

(a) H.F. Walker. Implementation of the GMRES method using Householder transformations, SIAM Journal on Scientific and Statistical Computing, 1988

(b) J. Erhel. A parallel GMRES version for general sparse matrices, Electronic Transactions on Numerical Analysis, 1995