Project 2, due on 03/03.

1. Copy code ~zxu2/Public/Demo_pkg/20140216-driver.tar.gz

2. Implement all functions as the member functions of class Compute_1d.

3. Use “mpimkintel” command to compile your code. See README.txt file for details.

4. Modify the script “HPCC_1.sh” to submit your runs.

Problem 1. Parallel Numerical Integration for Undergraduate Students.

Evaluate fol_g'o In(x + 20)e‘/§dx. Use the Demo_Pkg code to implement a parallel program using
composite Gaussian quadrature rule to approximate this definite integral.

Suppose P processes are used and the integration domain [0.0,10.0] is partitioned into M grid blocks.
Each of the processes is assigned with a sub-region [x;;, x; ,,], which is partitioned into (M /P) blocks.
Herei = 0,1, ..., P-1.

We apply the 1D 3-point Gaussian quadrature rule to each of these grid blocks to compute a numerical
guadrature value. The approximation to the given integral is obtained by summing up these numerical
guadrature values.

1. Use point-to-point communication, specifically, non-blocking send and blocking receive to transfer the
partial sum of quadrature values computed by each of the processes to process 0 and let process 0
compute the sum of these quadrature values.

2. Use M =10000,20000 and 40000 to do the calculation respectively. For each computation, use 2, 4
and 8 processors respectively. Find the overall the wall clock times spent by the computation, and the
communication respectively. Make a table to list the results.

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and a
description of your implementation on point-to-point communication. Email the source code.

Coding Hints.

1. Defines an assignment of processes to subdomains.

RECT_GRID is used to save this information. This information is initialized in constructor of class
Compute_1d.

2. The workload assigned to each process is estimated in function Compute_1d::estimate_workload(). The
sub-region [x; ;, x; ,,] on ith process is saved in L[0] and U[0] of variable rect_grid of RECT_GRID type.
3. Implement a member function Compute_1d::integrate_on_subdomain() to integrate f;‘_i;” In(x +
20)eV}dx.

4. Implement a member function Compute_1d::sum_partial_int() to add partial integration values together.

Inside this function, implement the point-to-point communication. The nonblocking send function is
u_pp_isend(). Either pp_test() or pp_wait() could be used to test the completion of the nonblockingsend.

Problem 2. Parallel Explicit Finite Difference Scheme for Solving 1D
Heat Equation for Graduate Students.

U (2, 1) = Uy (x, 1), 0<x<2m t>0
u(x,0) = sin(x) 0<x<2m
condition by the explicit finite difference scheme. Compute the solution for t = 2.0.

Consider to solve { with periodic boundary

The exact solution is given by u(x, t) = e~ sin(x).

Assume we use M + 1 grid points. The grid space then is Ax = zﬁ” The grid points are x, = kAx, k =

0,...., M. Let At be the time step size. For stability, we should satisfy At < 0.5.

Ax?

Let vi} = u(kAx, nAt) be the approximate solution. The explicit scheme is
vttt = vl + AATtZ(v[}H —2vg 4+t)for k=0,...,M.

Use the Demo_Pkg code to implement a parallel program using the above scheme to solve the above
diffusion equation problem by arbitrary number of grid points M + 1 using P processors. Assume
M+1>»P. Use Dbuffered send and blocking receive for message passing. Use
M = 1000,2000,4000,8000 respectively to do the mesh refinement study. Compute L, 5, error with
respect to the mesh refinement. Do each of these calculations with 2, 4, 8 processors respectively. Make a
table to list the wall clock time space on computation and communication respectively.

1[0]+1buf[0] u[0]-ubuf[0]
I I
AV NS

[I R B e -
=
[I R B e -

I I
I I I I
I I I I
I I I I
I I I I
| E I I I
| N | | N |
I I | D I
I I I I
I I I I
I I I I

I I I

I
1[111- I- -1 I
Vi[o] 110] u[0] Vu[o]

Let [1[0],«[0]] be a subdomain assigned to a process. For convenience of computation, a virtual domain
is defined to hold the ghost points for updating solutions defined on grid points within [L[0], u[0]]. This
virtual domain is defined as [vl[0], vu[0]]. Here vi[0] = I[0] — N = Ax, and vu[0] = u[0] + N * Ax. N
is the number of ghost points.

1. Defines an assignment of processes to subdomains.

I | | | I
| g | a | 10 | 11 |
I | | | I
Ioe.2)y 1 (1.2 1 (2.2 | (3.2) |
I | | | I I |
I 4 | 5 | 6 | T I I id |
I | | | I I |
1 (0,1) | (1,1) | (2,1) | (3,1) | | icooxds |
I | | | I
I 0 | 1 | 2 | 3 I
I | | | I
I(g.0y 1 (L,0) 1 (2,0) | (30) 1

void scatter_states(double *soln)

{

int myid, side;
int me[3];

MPI1_Comm_rank(MPI_COMM,&myid);

for (side = 0; side < 2; ++side)

{
MPI1_Barrier(MPI_COMM);
pp_send_interior_states(myid, side,soln);
pp_receive_interior_states(myid ,(side+1)%2,soln);

¥
by

void pp_send_interior_states(
int *me,

int side,

double *s0ln)

int myid, dst_id, ntasks;

MP1_Comm_rank(MPI_COMM,&myid);
MP1_Comm_size(MPI_COMM_WORLD, & ntasks);
dst_id = (myid + 2*side - 1);
if(dst_id < 0)
dst_id = ntasks-1;
if(dst_id>= ntasks)
dst_id = 0;
/* Next collect soln points to be sent and call MPI_bsend() to send the data
to the process with rank dst_id */

}

void pp_receive_interior_states(
int *me,
int side,
double *soln)

int myid, src_id, ntasks;
MP1_Comm_size(MPI_COMM_WORLD, & ntasks);
MPI_Comm_rank(MPI_COMM,&myid);
src_id = (myid + 2*side - 1);
if(src_id < 0)
src_id = ntasks-1;
if(src_id>= ntasks)
src_id =0;

/* Next call MPI_Recv() to receive the data
from the process with rank src_id */

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and
algorithmic notes on both computation and communication. Email the source code.

