

1

Project 2, due on 03/03.

1. Copy code ~zxu2/Public/Demo_pkg/20140216-driver.tar.gz

2. Implement all functions as the member functions of class Compute_1d.

3. Use “mpimkintel” command to compile your code. See README.txt file for details.

4. Modify the script “HPCC_1.sh” to submit your runs.

Problem 1. Parallel Numerical Integration for Undergraduate Students.

Evaluate ∫ √

. Use the Demo_Pkg code to implement a parallel program using

composite Gaussian quadrature rule to approximate this definite integral.

Suppose processes are used and the integration domain [] is partitioned into grid blocks.

Each of the processes is assigned with a sub-region [], which is partitioned into blocks.

Here -1.

We apply the 1D 3-point Gaussian quadrature rule to each of these grid blocks to compute a numerical

quadrature value. The approximation to the given integral is obtained by summing up these numerical

quadrature values.

1. Use point-to-point communication, specifically, non-blocking send and blocking receive to transfer the

partial sum of quadrature values computed by each of the processes to process 0 and let process 0

compute the sum of these quadrature values.

2. Use to do the calculation respectively. For each computation, use 2, 4

and 8 processors respectively. Find the overall the wall clock times spent by the computation, and the

communication respectively. Make a table to list the results.

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and a

description of your implementation on point-to-point communication. Email the source code.

Coding Hints.

1. Defines an assignment of processes to subdomains.

RECT_GRID is used to save this information. This information is initialized in constructor of class

Compute_1d.

2. The workload assigned to each process is estimated in function Compute_1d::estimate_workload(). The

sub-region [] on ith process is saved in L[0] and U[0] of variable rect_grid of RECT_GRID type.

3. Implement a member function Compute_1d::integrate_on_subdomain() to integrate ∫

 √ .

4. Implement a member function Compute_1d::sum_partial_int() to add partial integration values together.

Inside this function, implement the point-to-point communication. The nonblocking send function is

u_pp_isend(). Either pp_test() or pp_wait() could be used to test the completion of the nonblockingsend.

2

Problem 2. Parallel Explicit Finite Difference Scheme for Solving 1D

Heat Equation for Graduate Students.

Consider to solve {

with periodic boundary

condition by the explicit finite difference scheme. Compute the solution for

The exact solution is given by

Assume we use grid points. The grid space then is

. The grid points are

 Let be the time step size. For stability, we should satisfy

Let
) be the approximate solution. The explicit scheme is

 for

Use the Demo_Pkg code to implement a parallel program using the above scheme to solve the above

diffusion equation problem by arbitrary number of grid points using processors. Assume

 Use buffered send and blocking receive for message passing. Use

 respectively to do the mesh refinement study. Compute error with

respect to the mesh refinement. Do each of these calculations with 2, 4, 8 processors respectively. Make a

table to list the wall clock time space on computation and communication respectively.

Let [[] []] be a subdomain assigned to a process. For convenience of computation, a virtual domain

is defined to hold the ghost points for updating solutions defined on grid points within [[] []]. This

virtual domain is defined as [[] []] Here [] [] , and [] [] .

is the number of ghost points.

3

1. Defines an assignment of processes to subdomains.

4

void scatter_states(double *soln)

{

 int myid, side;

 int me[3];

 MPI_Comm_rank(MPI_COMM,&myid);

 for (side = 0; side < 2; ++side)

 {

 MPI_Barrier(MPI_COMM);

 pp_send_interior_states(myid, side,soln);

 pp_receive_interior_states(myid ,(side+1)%2,soln);

 }

}

void pp_send_interior_states(

 int *me,

 int side,

 double *soln)

{

 int myid, dst_id, ntasks;

 MPI_Comm_rank(MPI_COMM,&myid);

 MPI_Comm_size(MPI_COMM_WORLD, & ntasks);

 dst_id = (myid + 2*side - 1);

 if(dst_id < 0)

 dst_id = ntasks-1;

 if(dst_id>= ntasks)

 dst_id = 0;

 /* Next collect soln points to be sent and call MPI_bsend() to send the data

 to the process with rank dst_id */

}

void pp_receive_interior_states(

 int *me,

 int side,

 double *soln)

{

 int myid, src_id, ntasks;

 MPI_Comm_size(MPI_COMM_WORLD, & ntasks);

 MPI_Comm_rank(MPI_COMM,&myid);

 src_id = (myid + 2*side - 1);

 if(src_id < 0)

 src_id = ntasks-1;

 if(src_id>= ntasks)

 src_id = 0;

 /* Next call MPI_Recv() to receive the data

 from the process with rank src_id */

}

5

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and

algorithmic notes on both computation and communication. Email the source code.

