Project 3, due on 04/11.

Problem 1 for undergraduate students. Compute Ax+b

Implement a parallel algorithm to compute $\mathbf{A x}+\mathbf{b}$, in which \mathbf{A} is a matrix, \mathbf{x} and \mathbf{b} are vectors. Use the base code saved under directory ~zxu2/Public/ACMS40212/col_decomp_mat_vec_multi to start your implementation.

Generate a 4112×2056 matrix, a vector \mathbf{x} of size 2056 and vector \mathbf{b} of size 4112 respectively to test your result. The base code which needs to be modified to generate the data is at:
~zxu2/Public/ACMS40212-S12/col_decomp_mat_vec_multi/data_gen/myio.c
Use 2,4 , and 8 nodes to run the program respectively. This project must be done individually.

Hints:

1. Modify my_io.c to generate one matrix and two vector data files, respectively.
2. The current parallel matrix-vector multiplication code using column-wise decomposition utilizes point-to-point communication to implement functions reading in the vector data from a file and printing out the result respectively. See C functions read_block_vector() and print_block_vector(). Rewrite these two functions to use proper collective communication to implement the same functionality respectively and compute Ax+b.

The available collective communication functions are: MPI_Scatter(), MPI_Scatterv(), MPI_Gather(),MPI_Gatherv(), etc. Which ones to use?
3. $\mathbf{y}=\mathbf{A x}$ is computed using column-wise decomposition. Matrix \mathbf{A} is read in by function read_col_striped_matrix(); while vector \mathbf{x} is read in by function read_block_vector(). Use the row-wise decomposition of vectors \mathbf{y} and \mathbf{b} to compute the final answer. This requires to implement a new function similar to read_block_vector() to read in the vector \mathbf{b}. Name this new function read_block_vector_b().
4. Validate your result by computing L1 norm of the solution and compare this with the result obtained by a serial code (You can modify myio.c for this purpose).

Hand-In.

1. Send the source code to me by email. Please use the email title: acms40212S14-Proj3-your-ND-ID.
2. A report which contains results and a description of your algorithm using the pseudo code language. You need to explain which MPI collective communication function is used and how it is used.

Problem 2 for graduate students. Compute Ax+b. Using Process Topology to Implement.

Implement a parallel algorithm to compute $\mathbf{A x}+\mathbf{b}$, in which \mathbf{A} is a matrix, \mathbf{x} and \mathbf{b} are vectors. Use 2 D block decomposition and 2D grid topology of the process to implement this computation in parallel.

The base code is at the folder:
~zxu2/Public/ACMS40212-S12/2D_decomp_mat_vec_multi
Generate a 4112×2056 matrix, a vector \mathbf{x} of size 2056 and vector \mathbf{b} of size 4112 respectively to test your result. The base code which needs to be modified to generate the data is at:
~zxu2/Public/ACMS40212-S12/col_decomp_mat_vec_multi/data_gen/myio.c
Use 3×2 and 4×2 nodes to run the program respectively. This project must be done individually.

Hints:

1. When distributing the vector \mathbf{x} among processors, implement the algorithm shown in Figure (b) on page 22 of lecture notes "Parallel matrix algorithms (part 2)".

Use row communicators and column communicators to scatter and broadcast the vector.
2. Gather the result of computing $\mathbf{y}=\mathbf{A x}$ to processes in the first column of the process grid. For example, if we assume a fine-grained 2D decomposition as shown by the picture on page 19 of lecture notes "Parallel matrix algorithms (part 2)", where each entry of the 4×4 matrix is assigned to a process, solution y_{0} is stored on process P_{0}, y_{1} is stored on process P_{4}, y_{2} is stored on process P_{8}, and y_{3} is stored on process P_{12}, respectively.
3. Distributing vector \mathbf{b} only among processes in the first column of the process grid such that only these processes compute $\mathbf{y}+\mathbf{b}$.
4. Validate your result by computing L1 norm of the solution and compare this with the result obtained by a serial code (You can modify myio.c for this purpose).

Hand-In.

1. Send the source code to me by email. Please use the email title: acms40212S14-Proj3-your-ND-ID.
2. A report which contains results and a description of your algorithm using the pseudo code language. You need to explain which MPI collective communication function is used and how it is used.
