Project 4, due on 04/28.

Problem 1 for undergraduate students. Implementing algorithm for solving the following least square problem using QR factorization.

Fit $f(x) = \frac{4x}{1+10x^2}$ with a polynomial of degree 4. $x \in [0,1]$.

Step 1: Let the polynomial be $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$. Randomly generate 100 points $x_0, ..., x_{99}$ between [0, 1]. The least square equation is

$$a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} + a_{3}x_{0}^{3} + a_{4}x_{0}^{4} = f(x_{0})$$

$$\vdots$$

$$a_{0} + a_{1}x_{99} + a_{2}x_{99}^{2} + a_{3}x_{99}^{3} + a_{4}x_{99}^{4} = f(x_{99})$$

Denote it by Ax = b.

Step 2: Use householder transformation approach to do QR factorization on Ax = b. Namely,

$$A\mathbf{x} = \mathbf{b}$$

$$\Rightarrow QR\mathbf{x} = \mathbf{b}$$

$$\Rightarrow Q^T QR\mathbf{x} = Q^T \mathbf{b}$$

$$\Rightarrow R\mathbf{x} = Q^T \mathbf{b}$$

Step 3: Solve the above equation by backward substitution to obtain a_0 , a_1 , a_2 , a_3 and a_4 .

Hand-In.

1. The hardcopy of your source code (Also send the source code to me by email. Please use the email title: acms40212S14-Proj4-your-ND-ID.).

2. A report which contains validation of results by plotting graphs of f(x) and p(x) respectively, and a description of your algorithm using the pseudo code language.

Bonus. Implement the parallel algorithm by using the column decomposition code as the base code.

Problem 2 for graduate students. Implementing Arnoldi algorithm.

Step 1: Generate a 100×100 strictly diagonally dominant matrix A.

Step 2: Implement your stable Arnoldi algorithm for constructing orthnormal bases of $K_{20}(A, \mathbf{r})$. You can simply use unit vector \mathbf{e}_1 as \mathbf{r} .

Step3: Validation. Since now you have the orthonormal basis V_{20} of the Krylov matrix K_{20} and upper Hessenberg matrix H_{20} of A, Compute L1 norms of columns of AV_{20} and $V_{20}H_{20}$ respectively. Check if they agree.

Hand-In.

1. The hardcopy of your source code (Also send the source code to me by email. Please use the email title: acms40212S14-Proj4-your-ND-ID).

3. A report which contains validation of results and a description of your algorithm using the pseudo code language

Remark: for parallel implementation of GMRES method, see

(a) H.F. Walker. Implementation of the GMRES method using Householder transformations, SIAM Journal on Scientific and Statistical Computing, 1988

(b) J. Erhel. A parallel GMRES version for general sparse matrices, Electronic Transactions on Numerical Analysis, 1995

Bonus. Implement the parallel algorithm by using the column decomposition code as the base code.