Project 5 (optional).

Implementing Matrix vector multiplication.

The purpose of this assignment is to implement float type matrix-vector multiplication for matrix and vector of arbitrary sizes. Use the 2D block grid and 2D thread block to implement the algorithm. For graduate students, implement the multiplication algorithm using shared memory.

Use matrix of size $4096 \times 4096,8192 \times 8192$ and 16384×16384 to test the performance. Test your code by using 8×8 and 16×16 thread blocks, respectively.

To measure the performance of the GPU kernel execution, use the following code:

```
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
/// your kernel call here
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float elapseTime;
cudaEventElapseTime(&elapseTime, start, stop);
printf("Time to generate: %f ms\n", elapseTime);
```


Hand-In.

1. The hardcopy of your source code (Also send the source code to me by email. Please use the email title: acms40212S14-Proj5-your-ND-ID).
2. A report which contains performance measure and a description of your algorithm using the pseudo code language.
