
Lecture 1: Single processor 
performance 



Why parallel computing 

• Solving an 𝑛 × 𝑛 linear system Ax=b by using Gaussian 

elimination takes ≈ 
1

3
𝑛3 flops.  

• On Core i7 975 @ 4.0 GHz, which is capable of about 
60-70 Gigaflops 

 

𝑛                      flops                        time 

1000               3.3×108                               0.006 seconds                                        

1000000         3.3×1017                             57.9 days      



Milestones in Computer Architecture 
• Analytic engine (mechanical device),  1833  

– Forerunner of modern digital computer, Charles Babbage (1792-1871) at University of Cambridge  

• Electronic Numerical Integrator and Computer (ENIAC),  1946 
– Presper Eckert and John Mauchly at the University of Pennsylvania  
– The first, completely electronic, operational, general-purpose analytical calculator. 30 tons, 72 square 

meters, 200KW. 
– Read in 120 cards per minute, Addition took 200µs, Division took 6 ms. 

• IAS machine, 1952 
– John von Neumann at Princeton’s Institute of Advanced Studies (IAS) 
– Program could be represented in digit form in the computer memory, along with data. Arithmetic 

could be implemented using binary numbers 
– Most current machines use this design 

• Transistors was invented at Bell Labs in 1948 by J. Bardeen, W. Brattain and W. Shockley.  
• PDP-1, 1960, DEC 

– First minicomputer (transistorized computer) 

• PDP-8, 1965, DEC 
– A single bus (omnibus) connecting  CPU, Memory, Terminal, Paper tape I/O and Other I/O.  

• 7094, 1962, IBM 
– Scientific computing machine in early 1960s.    

• 8080, 1974, Intel  
– First general-purpose 8-bit computer on a chip 

• IBM PC, 1981 
– Started modern personal computer era 

Remark: see also http://www.computerhistory.org/timeline/?year=1946 



www.top500.org 



Over 17 years, 10000-fold increases.    



Motherboard diagram of PC 

http://en.wikipedia.org/wiki/Front-side_bus 

http://education-
portal.com/academy/lesson/what-is-
a-motherboard-definition-function-
diagram.html#lesson 

http://en.wikipedia.org/wiki/Front-side_bus
http://en.wikipedia.org/wiki/Front-side_bus
http://en.wikipedia.org/wiki/Front-side_bus


Intel S2600GZ4 Server Motherboard 

• CPU Type: Dual Intel Xeon E5-2600 Series 
• Maximum Memory Supported: 768GB 
• Intel® C600 Chipset 
http://www.memoryexpress.com/ 



Motherboard diagram of S2600GZ4 

http://www.intel.com/content/www/us/en/chipsets/s
erver-chipsets/server-chipset-c600.html 



von Neumann machine 

• Common machine 
model for many 
years 

• Stored-program 
concept 

• CPU executes a 
stored program 

• Machine is divided 
into a CPU and 
main memory 

Memory 

CPU 

Fetch Store 



Machine Language, Assembly and C 

• CPU understands machine language only 
• Assembly language is easier to understand: 

– Abstraction 
– A unique translation (every CPU has a different set of assembly 

instructions) 
Remark: Nowadays we use Assembly only when: 

1. Processing time is critical and we need optimize the execution 
2. Low level operations, such as operating on registers etc. are needed, but not 

supported by the high level language.  
3. Memory is critical, and optimizing its management is required.  

• C language: 
– The translation is not unique. It depends on Compiler and optimization.  
– It is portable.  

program 

High-level language program 

Compiler Assembler Linker Computer 

Assembly language program 



Structured Machines 

Problem-oriented language 
level 

Assembly language level 

Operating system machine 
level 

Instruction set architecture 
level (ISA) 

Microarchitecture level 

Digital logic level 

Translation (compiler) 

Translation (assembler) 

Partial interpretation (operating system) 

Interpretation (microprogram) or direct execution 

Hardware 



Swap (int v[], int k) 
{ 
    int temp; 
    temp = v[k]; 
    v[k] = v[k+1]; 
    v[k+1] = temp;  
} 

High-level language 
program (in C) 

Assembly language 
program (for  
microprocessor without 
interlocked pipeline 
stages (MIPS), which is an 
instruction set 
architecture (ISA)) 

lw  $15, 0($2) //load word at RAM address ($2+0) into register $15  

lw  $16, 4($2) 
sw      $16, 0($2) // store word in register $16 into RAM at address ($2+0)  

sw               $15, 4($2) 

Binary machine language 
program (for MIPS) 

0000 1001 1100 0110 1010 1111 0101 1000 

1010 1111 0101 1000 0000 1001 1100 0110  

1100 0110 1010 1111 0101 1000 0000 1001  

0101 1000 0000 1001 1100 0110 1010 1111  



Execution Cycle 

Instruction 

Fetch 

Instruction 

Decode 

Operand 

Fetch 

Execute 

Result 

Store 

Next 

Instruction 

Obtain instruction from program storage 

Determine required actions and instruction size 

Locate and obtain operand data 

Compute result value or status 

Deposit results in storage for later use 

Determine successor instruction 



16-bit Intel 8086 processor 

First available in 1978, total three versions: 
8086 (5 MHz), 8086-2 (8 MHz) and 8086-1 (10 MHz). 

It consists of 29,000 transistors.  



• 8086 CPU is divided into two independent functional 
units:  

1. Bus Interface Unit (BIU) 

2. Execution Unit (EU) 

• The 8086 is internally a 16-bit CPU and externally it 
has a 16-bit data bus. It has the ability to address up 
to 1 Mbyte of memory via its 20-bit address bus. 



Control Unit: 
• Generate control/timing signals 
• Controls decoding/execution of instructions 

Registers (very fast memories): 
• General-Purpose Registers (AX, BX, CX, DX):  holds temporary results or addresses 

during execution of instructions. results of ALU operations. Write results to 
memory 

• Instruction Pointer Counter: Holds address of instruction being executed 
• Segment registers (CS, DS, SS, ES): combine with others to generate memory 

address to reference 1Mb memory  
• Instruction register: holds instruction while it’s decoded/executed 

Arithmetic Logic Unit (ALU):  
ALU takes one or two operands  A,B 
Operation: 

1. Addition, Subtraction (integer) 
2. Multiplication, Division (integer) 
3. And, Or, Not (logical operation) 
4. Bitwise operation (shifts, equivalent to multiplication by power of 2) 

Specialized ALUs: 
• Floating Point Unit (FPU) 
• Address ALU 



Memory read transaction (1) 

• Load content of address A into  register eax 

• CPU places address A on the system bus, I/O bridge 
passes it onto the memory bus 

Load operation: movl A, %eax 
Remark: here we use GNU Assembly language 



Memory read transaction (2) 

• Main memory reads A from memory bus, retrieve 
word x, and places x on the bus; I/O bridge passes it 
along to the system bus 

Load operation: movl A, %eax 



Memory read transaction (3) 

• CPU read word x from the bus and copies it into 
register eax 

Load operation: movl A, %eax 



x86 Processor Model 
• The BIU provides hardware functions. Including generation of the memory and 

I/0 addresses for the transfer of data between itself and the outside world. 
• The EU receives program instruction codes and data from the BIU, executes 

these instructions, and stores the results in the general registers. By passing the 
data back to the BIU, data can also be stored In a memory location or written to 
an output device. 
– The main linkage between the two functional blocks is the instruction queue, with the 

BIU looking ahead of the current instruction being executed in order to keep the 
queue filled with instructions for the EU to decode and operate on. 

• The Fetch and Execute Cycle 
1. The BIU outputs the contents of the instruction pointer register (IP) onto the 

address bus, causing the selected byte or word in memory to be read into the BIU. 
2. Register IP is incremented by one to prepare for the next instruction fetch. 
3. Once inside the BIU, the instruction is passed to the queue: a first-in/first-out 

storage register sometimes likened to a pipeline. 
4. Assuming that the queue is initially empty, the EU immediately draws this 

instruction from the queue and begins execution. 
5. While the EU is executing this instruction, the BIU proceeds to fetch a new 

instruction. Depending on the execution time of the first instruction, the BIU may  
fill the queue with several new  instructions before the EU is ready to draw its next 
instruction. 

6. The cycle continues, with the BIU filling the queue with instructions and the EU 
fetching and executing these instructions. 



Memory Segmentation 

Advantages of memory segmentation 
• Allow the memory capacity to be 1Mb 

even though the addresses associated 
with the individual instructions are only 
16 bits wide. 

• Facilitate the use of separate memory 
areas for the program, its data and the 
stack. 

• Permit a program and/or its data to be 
put into different areas of memory each 
time the program is executed. 

• Multitasking becomes easy. 
 
Generation of 20 bit physical address 
20-bit physical address is often represented 
as Segment Base : Offset 
For example,  CS: IP 
  CS   3  4  8  0     
+IP        1  2  3   4 
------------------------ 
          3  5  A  3   4  (H) 

0 



Moore’s law  
• Gordon Moore’s observation in 1965: the number of 

transistors per square inch on integrated circuits had doubled 
every year since the integrated circuit was invented (often 
interpreted as Computer performance doubles every two years (same cost)) 

(Gordon_Moore_ISSCC_021003.pdf) 



Moore’s law  

• Moore’s revised observation in 1975: the pace slowed down a 
bit, but data density had doubled approximately every 18 
months 

• Moore’s law is dead 

Gordon Moore quote from 2005: “in terms of size [of transistor] 
..we’re approaching the size of atoms which is a fundamental 
barrier...” 

Date Intel Transistors 
CPU         (x1000) 

Technology 

1971 4004                 2.3 

1978 8086                  31  2.0 micron 

1982 80286               110 HMOS 

1985 80386                280  0.8 micron CMOS 

1989 80486              1200 

1993 Pentium           3100  0.8 micron biCMOS 

1995 Pentium Pro    5500  0.6 micron – 0.25  



Implicit Parallelism - Pipelining 

• Super instruction pipeline – more stages 
– 20 stage pipeline in Pentium 4 

• Example: 𝑆1 = 𝑠2 + 𝑆3; 
– Stages gone through: 1. Unpack operands; 2. Compare 

exponents; 3. Align significant digits; 4. Add fractions; 5. 
Normalize fraction; 6. Pack operands. 

–   Assembly instructions 
load   R1, @S2 

load   R2, @S3 

add    R1, R2          // (6 stages) 

store   R1, @S1 

– 9 clock cycles to complete one operation 

• Register numbers begin with the 
letter r, like r0, r1, r2. 

• Immediate (scalar) values begin 
with the hash mark #, 
like #100, #200. 

• Memory addresses begin with the 
at sign @, like @1000, @1004. 



Equal exponents  

Add significands 

Normalize result 

FP addition hardware 

– Assume that each stage takes one clock cycles. After s cycles, the pipe is filled, i.e., 
all stages are active. Then an operation is produced at each clock cycle. 

• If each stage takes time t, then, operation with n numbers will take st+(n-1)t 
sec. 

• Instead of nst sec.  

• Improving by (ns)/(n+s-1) 

• Dynamic pipeline scheduling 

– Deal with branch instruction, and change the order of executing instructions to fill 
gaps if possible 



Implicit Parallelism - Superscalar execution 

• Superscalar – performing instructions in 
parallel 

– Performing two instructions simultaneously, which 
means to fetch two instructions together, decode 
them at the same time, execute, i.e..   

 



• Example Superscalar execution  
Consider a processor (or a virtual machine) with two pipelines and the ability to 
simultaneously issue two instructions. These processors are sometimes also 
referred to as super-pipelined processors. The ability of a processor to issue 
multiple instructions in the same cycle is referred to as superscalar execution. 
 • Register numbers begin 

with the letter r, 
like r0, r1, r2. 

• Immediate (scalar) 
values begin with the 
hash mark #, 
like #100, #200. 

• Memory addresses 
begin with the at sign @, 
like @1000, @1004. 



• Data dependency: the result of an instruction is required for subsequent 
instructions. 
– Code fragment (ii): 1. load R1, @1000 
                                        2.  add R1, @1004 

• Resource dependency: Two instructions need same resources.  
– Ex. Co-scheduling of two floating point operations on a dual issue machine with a single 

floating point unit.  

• Dynamic instruction issue: issue instructions out-of-order 
– Code fragment (iii): issue 1. load R1, @1000; and 3. load R2, @1004 together 
 

• Current microprocessors typically support up to four-issue superscalar execution.  



Effect of memory latency on performance (1) 
von Neumann Bottleneck: the transfer of data and instructions 
between memory and the CPU is inherently sequential.  



• Latency of the memory: the time that a CPU 
takes to get a block of data from the memory 
system. 

• Bandwidth of the memory: the rate at which 
data can be pumped from the memory to the 
processor.  



Effect of memory latency on performance (2) 

Example. Assume a CPU operates at 1GHz (1 ns clock) and 
is connected to a DRAM with a latency of 100 ns. Assume 
the CPU has 2 multiply-add units and is capable of 
executing 4 instructions in each cycle of 1 ns. The peak CPU 
rating is 4GFLOPS (floating-point operations per second).  

 

Since the memory latency is 100 cycles, CPU must wait 100 
cycles before it can process data. Therefore, the peak 
speed of computation is 10MFLOPS.  

 

Remark: 10MFLOPS/4GFLOPS = 1/400. 



Source of slowness: CPU and memory speed 

From Hennessy and Patterson,"Computer Architecture: 

A Quantitative Approach,” 3rd Edition, 2003, Morgan Kaufman Publishers. 



Improving effective memory latency using cache 
memories (1) 

• Put a look-up table of recently used data onto the CPU chip. 
• Cache memories are small, fast SRAM-based memories 

(low memory latency) managed automatically in hardware. 
• CPU look first for data in L1, then in L2,…, then in main 

memory 



Hierarchy of increasingly bigger, slower memories 



Organization of a cache memory 



Core i7 cache hierarchies 



Improving effective memory latency using cache 
memories (2) 

Example. Consider to use a 1GHz CPU with a latency of 100 
ns DRAM, and a cache of size 32KB with a latency of 1 ns to 
multiply two matrices A and B of dimensions 32 × 32.   

Fetching A and B into cache corresponds to fetching 2K 
words, taking 200 μs. Multiplying A and B takes 2n3 
operations = 64K operations, which can be performed in 16K 
cycles (or 16 μs) at 4 instructions per cycle.  

The total time for computing = 200 + 16 μs. 

Peak computing rate = 64K/216 μs = 303 MFLOPS.   

Assumptions made here:  
There is repeated reference to the same data item.  
Temporal locality of reference:  repeated reference to a data item in 
a small time window.  



Cache performance measurements (1) 

• Miss rate 
-- Fraction of memory references not found in cache 

• Hit ratio 
– Fraction of data references found in the cache 

• Hit time 
-- Time to deliver a line in the cache to the processor, 
including time to determine whether the line is in the 
cache 

• Missing penalty 
-- Additional time required because of a miss 



Cache performance measurements (2) 

• Big difference between a hit and a miss 

Example. Assume that cache hit time is 1 cycle, and 
miss penalty is 100 cycles. A 99% hit rate is twice as 
good as 97% rate.  

-- Average access time 

1. 97% hit rate: 0.97* 1 + 0.03*(1+100) = 4 cycles 

2. 99% hit rate: 0.99*1 + 0.01*(1+100) = 2 cycles 

Remark: The effective computation rate of many applications is 
bounded not by the processing rate of the CPU, but by the rate at 
which data can be pumped into the CPU.   



• Improving the bandwidth: increase the size of memory blocks per fetch, e.g., 
instead of returning one word per fetch, four words (cache line) are returned.  

 

Example. Consider to use a 1GHz CPU with a latency of 100 ns DRAM, and a cache line of 
1 word with a latency of 1 ns to do dot-product of two vectors. The algorithm performs 
one FLOP every 100 cycles for a peak speed of 10 MFLOPS (assuming the length of a 
component of the vector is a word). 
Now assume that the processor can fetch a four-word cache line every 100 cycles and the 
vectors are laid out linearly in memory. Eight FLOPS (4 multiply-adds) can be performed in 
200 cycles.  This corresponds to a peak speed of 40 MFLOPS. 
 
Cache hit ratio: With 4-word cache line, there are two DRAM accesses for every 8 data 
accesses required by dot-product. This corresponds to 6/8(75%) hit ratio. Thus the 
average memory access time is 25%×100ns + 75%×1ns. 

Impact of Memory Bandwidth 

Remark: This increased in bandwidth of memory system increases the performance 
bounds. 
 
Spatial locality of memory access: Consecutive data words in memory are used by 
successive instructions 



Writing cache-friendly code (1) 

• Principle of locality: 
-- programs tend to reuse/use data items recently used or 
nearby those recently used 
-- Temporal locality:  Recently referenced items are likely to be 
referenced in the near future 
-- Spatial locality: Items with nearby addresses tend to be 
referenced close together in time 

Data 
-- Reference array elements in 
succession: spatial locality 
-- Reference “sum” in each iteration:  
temporal locality  

Instructions 
--  Reference instructions in 
sequence: Spatial locality 
-- Cycle through loop repeatedly: 
Temporal locality 



How caches take advantage of temporal locality 

• The first time the CPU reads from an address in 
main memory, a copy of that data is also stored 
in the cache. 

-- The next time that same address is read, the 
copy of  the data in the cache is used instead of 
accessing the slower DRAM 

• Commonly accessed data is stored in the faster 
cache memory 



How caches take advantage of spatial locality 

• When the CPU reads location i from main 
memory, a copy of that data is placed in the 
cache.  

• Instead of just copying the contents of location 
i,  we can copy several values into the cache at 
once, such as the four words from locations i 
through i+3.  

– If the CPU does need to read from locations 
i+1, i+2 or i+3, it can access that data from 
the cache.   



Writing cache-friendly code (2) 

In C/C++ language, array is stored in row-major order 
in memory 

Assume  that there is a 4-words cache with 4-words 
cache lines. 
Left code has miss  rate = ¼  = 25% 
Right code has miss rate = 100% 
Remark: programming with better spatial locality 



• Example: Compute column sums of a matrix  
1. for(i = 0; i < 1024; i++){ 
2.       c_sum[i]= 0.0; 
3.       for(j = 0; j<1024; j++) 
4.             c_sum[i] += b[j][i]; 
5. } 

• Problems associated with this code:  
– Poor cache utilization (frequent cache misses). The j loop 

accesses entries in b[][]. This corresponds to accessing every 
1024-th entry in the 1D array of b[0][0], 
b[0][1],…,b[0][1023], b[1][0],…. 

– No spatial locality. It’s likely that one word per cache line 
fetched from memory will be used.   

 



• Swapping loop order: 

1. for(i = 0; i < 1024; i++) 

2.       c_sum[i]= 0.0; 

3. for(j = 0; j < 1024; j++){ 

4.       for(i = 0; i<1024; i++) 

5.             c_sum[i] += b[j][i]; 

6. } 

 



Rearranging loops to improve locality 
Miss rate analysis for matrix-matrix multiplication 
• Assume a single matrix row does not fit in L1, each cache block 

holds 4 elements, and compiler stores local variables in 
registers. 
 





• Scan A and C with stride of n 
• 1 more memory operation 





Trade-off: one  memory operation – fewer misses 





Core i7 Matrix-matrix multiplication performance 

From EECS213 Northwestern University 



Sequential Operation 

Double x[100], y[100], z[100]; 

 for (i = 0; i < 100; i++) 

      z[i] = x[i] + y[i];  

Fetch 
operands 

Add Normalize 
results 

Store in 
memory 

Fetch 
operands 

Add Normalize 
results 

Store in 
memory 



Solution: Pipelining 

Divide a computation into stages that can support concurrency.  

Double x[100], y[100], z[100]; 

 for (i = 0; i < 100; i++) 

      z[i] = x[i] + y[i]; 

 
Fetch 
operands 

Add Normalize 
results 

Store in 
memory 

Fetch 
operands 

Add Normalize 
results 

Store in 
memory 

Fetch 
operands 

Add Normalize 
results 

Store in 
memory 

Fetch 
operands 

Add Normalize 
results 

Store in 
memory 

time 

Another improvement: Vector processor pipeline.  
Example: Cray 90 



Loop unrolling:  

for (i = 0; i < 100; i++) 

      do_a(i);   

for (i = 0; i < 50; i+=2) 
{ 
      do_a(i);  
      do_a(i+1);  
} 
Remark: Loop unrolling can 
reduce the number of loop 
maintenance instruction 
executions by the loop unrolling 
factor 

Example: 
for (i = 0; i < 1000; i++) 
{ 
      a[i] = b[i] + c[i];  
} 

for (i = 0; i < 1000; i+=2) 
{ 
      a[i] = b[i] + c[i];   
      a[i+1] = b[i+1] + c[i+1];  
} 

Loop Unrolling 



Software Pipelining 
Software pipeline the C loop: 
    for (i=1000;i>=1;i--) 

           x[i]=x[i]+s; 

   t=x[1000]; 
   g=t+s; 
   t=x[999]; 
                         for (i=1000;i>=2;i--) 
   {  
    x[i]=g;  // i store 
    g=t+s;  // i-1 add 
    t=x[i-2];         // i-2 load 
   } 
   x[2]=g; 
   g=t+s; 
   x[1]=g; 

Load x[i] 

Incr x[i]    Load x[i-1] 

Store x[i]      Incr x[i-1]       Load x[i-2] 

Store x[i-1]      Incr x[i-2]       Load x[i-3] 

time 


