
Lecture 4: Principles of Parallel 
Algorithm Design (part 3) 

1 



Exploratory Decomposition 
• Decomposition according to a search of a state space of 

solutions 
• Example: the 15-puzzle problem 

– Determine any sequence or a shortest sequence of moves that 
transforms the initial configuration to the final configuration.  

2 

A B C D 

Huarong Road Game 



• Solution algorithm 
– Subsequent configurations are generated based on current 

configuration. 
– Each configuration is then explored as an independent task.  

3 



• Difference between data-decomposition and exploratory 
decomposition 
– Tasks induced by data-decomposition are performed entirely and each 

task performs useful computation towards the solution of problem.  
– Tasks induced by exploratory can be terminated before finishing as 

soon as desired solution is found. 

• Work induced by exploratory decomposition and performed by 
parallel formulation can be either smaller or greater than that 
performed by serial algorithm 

4 



Speculative Decomposition 

• This decomposition is used when a program may take one of 
many possible computationally significant branches 
depending on the output of other computations that 
precede it. 

 

• While one task is performing the computation whose output 
is used in deciding the next configuration, other tasks can 
concurrently start the computations of the next stage.  
– The scenario is similar to evaluating one or more of the branches 

of a switch statement in C in parallel before the input for the 
switch is available.    

5 



Example: Speculative Decomposition  

• Parallel discrete event simulation  
– The nodes of a directed network have input buffer of jobs. 

After processing the job, the node put results in the input 
buffer of nodes which are connected to it by outgoing edges. A 
node has to wait if the input buffer of one of its outgoing 
neighbors is full. There is a finite number of input job types.   

6 

System 
Inputs 

A 

B 

C 

D 

E 

F 

G 

G 

I 
System 
Outputs 

• Inherently sequential problem 
• Can be improved by starting simulating a subpart of the network, each assume one of 

several possible inputs to that stage (overlapping different computations).  



Hybrid Decomposition 

• Use several decomposition methods together 
• Example: finding the minimum of any array of size 

16 using 4 tasks.  

7 

3 7 2 9 11 4 5 8 7 10 6 13 1 19 3 9 Data 
decomposition 

2 1 

1 

Recursive 
decomposition 



Characteristics of Tasks 

Key characteristics of tasks influencing choice of mapping and 
performance of parallel algorithm: 

1. Task generation  
• Static or dynamic generation 

– Static: all tasks are known before the algorithm starts execution. Data or recursive 
decomposition often leads to static task generation.  

Ex.  Matrix-multiplication. Recursive decomposition in finding min. of a set of 
numbers.  

– Dynamic: the actual tasks and the task-dependency graph are not explicitly 
available a priori. Recursive, exploratory decomposition can generate tasks 
dynamically. 

Ex.  Recursive decomposition in Quicksort, in which tasks are generated 
dynamically.  

2. Task sizes 
• Amount of time required to compute it: uniform, non-uniform 

3. Knowledge of task sizes 
• Ex. Size of task in 15-puzzle problem is unknown.  

4. Size of data associated with tasks 
• Data associated with the task must be available to the process 

performing the task. The size and location of data may determine the 
data-movement overheads.  

 8 



Characteristics of Task Interactions 

1) Static versus dynamic 

– Static: interactions are known prior to execution.  

2) Regular versus irregular 

– Regular: interaction pattern can be exploited for 
efficient implementation. 

3) Read-only versus read-write 

4) One-way versus two-way 

9 



Static vs. Dynamic Interactions 

• Static interaction 
– Tasks and associated interactions are predetermined: task-

interaction graph and times that interactions occur are 
known: matrix multiplication 

– Easy to program 

• Dynamic interaction 
– Timing of interaction or sets of tasks to interact with can 

not be determined prior to the execution.  
Ex. Puzzle game. The tasks has exhausted its work can pick up an 
unexplored state from the queue of another busy task and start 
exploring it.  

– Difficult to program using massage-passing; Shared-
memory space programming may be simple 

10 



Regular vs. Irregular Interactions 

• Regular interactions 

– Interaction has a spatial structure that can be 
exploited for efficient implementation: ring, mesh 

 Example: Explicit finite difference for solving PDEs. Image 
dithering.  

• Irregular Interactions 

– Interactions has no well-defined structure 

Example: Sparse matrix-vector multiplication   

11 



Static regular interaction for image dithering 

12 



13 



Read-Only vs. Read-Write Interactions 

• Read-only interactions 

– Tasks only require read-only interactions 

– Example: matrix-matrix multiplication 

 

 

 

 

• Read-write interactions 

– Multiple tasks need to read and write on some 
shared data 

14 



One-Way vs. Two-Way Interactions 

• One-way interactions 

– One of a pair of communicating tasks initiates the 
interaction and completes it without interrupting the 
other one.  

– Example: read-only can be formulated as one-way 

• Two-way interactions 

– Both tasks involve in interaction 

– Example: read-write can be formulated as two-way 

15 


