
Lecture 4: Principles of Parallel 
Algorithm Design (part 4) 

1 



Mapping Technique for Load Balancing 

Minimize execution time → Reduce overheads of execution 

• Sources of overheads: 
– Inter-process interaction 

– Idling  

– Both interaction and idling are often a function of mapping 

• Goals to achieve: 
– To reduce interaction time 

– To reduce total amount of time some processes being idle 
(goal of load balancing) 

– Remark: these two goals often conflict 

• Classes of mapping: 
– Static 

– Dynamic 
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Two mappings of 12-task decomposition in which the last 4 tasks can be started only 
after the first 8 are finished due to task-dependency. 
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Remark: 
1. Loading balancing is only a necessary but not sufficient condition for reducing 

idling.  
•  Task-dependency graph determines which tasks can execute in parallel and 

which must wait for some others to finish at a given stage. 
2. Good mapping must ensure that computations and interactions among processes 

at each stage of execution are well balanced.   



Schemes for Static Mapping 

Static Mapping:  It distributes the tasks among 
processes prior to the execution of the algorithm.  

 

• Mapping Based on Data Partitioning 

• Task Graph Partitioning 

• Hybrid Strategies 
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Mapping Based on Data Partitioning 

• By owner-computes rule, mapping the relevant 
data onto processes is equivalent to mapping 
tasks onto processes 

• Array or Matrices 
– Block distributions 

– Cyclic and block cyclic distributions 

• Irregular Data 
– Example: data associated with unstructured mesh 

– Graph partitioning 
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1D Block Distribution 
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Example. Distribute rows or columns of matrix to different 
processes 



Multi-D Block Distribution 
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Example. Distribute blocks of matrix to different processes 



Load-Balance for Block Distribution 

Example. 𝑛 × 𝑛 dense matrix multiplication 𝐶 = 𝐴 × 𝐵 
using 𝑝 processes 

– Decomposition based on output data. 

– Each entry of 𝐶 use the same amount of computation. 

– Either 1D or 2D block distribution can be used: 

• 1D distribution: 
𝑛

𝑝
 rows are assigned to a process 

• 2D distribution: 𝑛/ 𝑝 × 𝑛/ 𝑝 size block is assigned to a process 

– Multi-D distribution allows higher degree of concurrency. 

– Multi-D distribution can also help to reduce interactions 
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Suppose the size of matrix is 𝑛 × 𝑛, and 𝑝 processes are used. 

(a):  A process need to access 
𝑛2

𝑝
+ 𝑛2 amount of data 

(b): A process need to access 𝑂(𝑛2/ 𝑝) amount of data 



Cyclic and Block Cyclic Distributions 

• If the amount of work differs for different 
entries of a matrix, a block distribution can 
lead to load imbalances.  

• Example. Doolittle’s method of LU factorization 
of dense matrix 

– The amount of computation increases from the top 
left to the bottom right of the matrix. 
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Doolittle’s method of LU factorization 
 

𝐴 =

𝑎11 𝑎12 … 𝑎1𝑛
𝑎21 𝑎22 … 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 … 𝑎𝑛𝑛

= 𝐿𝑈 =

1 0 … 0
𝑙21 1 … 0
⋮ ⋮ ⋱ ⋮
𝑙𝑛1 𝑙𝑛2 … 1

𝑢11 𝑢12 … 𝑢1𝑛
0 𝑢22 … 𝑢2𝑛
⋮ ⋮ ⋱ ⋮
0 0 … 𝑢𝑛𝑛

 

  
By matrix-matrix multiplication 
 

𝑢1𝑗 = 𝑎1𝑗 ,            𝑗 = 1,2, … , 𝑛 (1𝑠𝑡 row of 𝑈) 

𝑙𝑗1 = 𝑎𝑗1/𝑢11,            𝑗 = 1,2, … , 𝑛 (1𝑠𝑡 column of 𝐿) 

                        For 𝑖 = 2,3, … , 𝑛 − 1  do 

                            𝑢𝑖𝑖 = 𝑎𝑖𝑖 −  𝑙𝑖𝑡𝑢𝑡𝑖
𝑖−1
𝑡=1                       

                                                                                                                                                      

                            𝑢𝑖𝑗 = 𝑎𝑖𝑗 −  𝑙𝑖𝑡𝑢𝑡𝑗
𝑖−1
𝑡=1              for 𝑗 = 𝑖 + 1,… , 𝑛  (𝑖𝑡ℎ row of 𝑈) 

                            𝑙𝑗𝑖 =
𝑎𝑗𝑖− 𝑙𝑗𝑡𝑢𝑡𝑖

𝑖−1
𝑡=1

𝑢𝑖𝑖
                    for 𝑗 = 𝑖 + 1, … , 𝑛  (𝑖𝑡ℎ column of 𝐿)  

  
                        End               
                         𝑢𝑛𝑛 = 𝑎𝑛𝑛 −  𝑙𝑛𝑡𝑢𝑡𝑛

𝑛−1
𝑡=1  



Serial Column-Based LU 
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• Remark: Matrices L and U share space with A 



Work used to compute Entries of L and U 
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• Block distribution of LU factorization tasks 
leads to load imbalance.  
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Block-Cyclic Distribution 

• A variation of block distribution that can be 
used to alleviate the load-imbalance.  

 

• Steps 
1. Partition an array into many more blocks than 

the number of available processes 

2. Assign blocks to processes in a round-robin 
manner so that each process gets several non-
adjacent blocks.  
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(a) The rows of  the array are grouped into blocks each consisting of two rows, 
resulting in eight blocks of rows. These blocks are distributed to four processes 
in a wrap-around fashion. 

(b) The matrix is blocked into 16 blocks each of size 4×4, and it is mapped onto a 
2×2 grid of processes in a wraparound fashion.  

• Cyclic distribution: when the block size =1 



Randomized Block Distribution 
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Sparse-matrix vector multiplication 
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Graph Partitioning 

Work: nodes 
Interaction/communication: edges 
 
Partition the graph: 

Assign roughly same number of nodes to each process 
Minimize edge count of graph partition 



• Assign equal number of nodes (or cells) to each process 
– Random partitioning may lead to high interaction overhead due to data 

sharing 

• Minimize edge count of the graph partition 
– Each process should get roughly the same number of elements and the 

number of edges that cross partition boundaries should be minimized as well.  
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Random Partitioning Partitioning for Minimizing Edge-Count 

Finite element simulation of water contaminant in a lake. 
• Goal of partitioning:  balance work & minimize communication  



Mappings Based on Task Partitioning 

• Mapping based on task partitioning can be used 
when computation is naturally expressed in the 
form of a static task-dependency graph with 
known sizes. 

• Finding optimal mapping minimizing idle time and 
minimizing interaction time  is NP-complete 

• Heuristic solutions exist for many structured 
graphs 
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Mapping a Binary Tree Task-Dependency Graph 

• Finding minimum using hypercube network. 
– Hypercube: node numbers that differ in 1 bit are adjacent. 
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• Mapping the tree graph onto 8 processes 
• Mapping minimizes the interaction overhead by mapping inter-

dependent tasks onto the same process (i.e., process 0) and others on 
processes only one communication link away from each other 

• Idling exists. This is inherent in the graph 



Mapping a Sparse Graph 

Example. Sparse matrix-vector multiplication using 3 
processes 

• Arrow distribution 
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• Partitioning task-interaction graph to reduce 
interaction overhead  
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Schemes for Dynamic Mapping 

• When static mapping results in highly imbalanced 
distribution of work among processes or when 
task-dependency graph is dynamic, use dynamic 
mapping 

• Primary goal is to balance load – dynamic load 
balancing 
– Example: Dynamic load balancing for AMR 

• Types 
– Centralized 

– Distributed 
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Centralized Dynamic Mapping 

• Processes 
– Master: mange a group of available tasks 
– Slave: depend on master to obtain work 

• Idea 
– When a slave process has no work, it takes a portion of available 

work from master  
– When a new task is generated, it is added to the pool of tasks in 

the master process 

• Potential problem 
– When many processes are used, master process may become 

bottleneck 

• Solution 
– Chunk scheduling: every time  a process runs out of work it gets 

a group of tasks.  
 

25 



Distributed Dynamic Mapping 

• All processes are peers. Tasks are distributed 
among processes which exchange tasks at run 
time to balance work  

• Each process can send or receive work from other 
processes 
– How are sending and receiving processes paired 

together 

– Is the work transfer initiated by the sender or the 
receiver? 

– How much work is transferred? 

– When is the work transfer performed? 
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Techniques to Minimize Interaction Overheads 

• Maximize data locality 

– Maximize the reuse of recently accessed data 

– Minimize volume of data-exchange 

• Use high dimensional distribution. Example: 2D block 
distribution for matrix multiplication 

– Minimize frequency of interactions 

• Reconstruct algorithm such that shared data are accessed 
and used in large pieces.  

• Combine messages between the same source-destination 
pair 
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• Minimize contention and hot spots 
– Competition occur when multi-tasks try to access the same 

resources concurrently: multiple processes sending 
message to the same process; multiple simultaneous 
accesses to the same  memory block 
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• Using 𝐶𝑖,𝑗 =  𝐴𝑖,𝑘𝐵𝑘,𝑗
𝑝−1
𝑘=0  causes contention. For example, 𝐶0,0, 

𝐶0,1, 𝐶0, 𝑝−1 attempt to read 𝐴0,0, at the same time.   

• A contention-free manner is to use: 

                  𝐶𝑖,𝑗 =  𝐴𝑖, 𝑖+𝑗+𝑘 % 𝑝𝐵 𝑖+𝑗+𝑘 % 𝑝,𝑗
𝑝−1
𝑘=0  

    All tasks 𝑃∗,𝑗 that work on the same row of C access block  

𝐴𝑖, 𝑖+𝑗+𝑘 % 𝑝, which is different for each task.  



• Overlap computations with interactions 

– Use non-blocking communication 

• Replicate data or computations 

– Some parallel algorithm may have read-only access to 
shared data structure. If local memory is available, 
replicate a copy of shared data on each process if 
possible, so that there is only initial interaction during 
replication. 

• Use collective interaction operations 

• Overlap interactions with other interactions 
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Parallel Algorithm Models 

• Data parallel 
– Each task performs similar operations on different data 
– Typically statically map tasks to processes 

• Task graph 
– Use task dependency graph to promote locality or reduce 

interactions 

• Master-slave 
– One or more master processes generating tasks 
– Allocate tasks to slave processes 
– Allocation may be static or dynamic 

• Pipeline/producer-consumer 
– Pass a stream of data through a sequence of processes 
– Each performs some operation on it 

• Hybrid 
– Apply multiple models hierarchically, or apply multiple models 

in sequence to different phases 
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