Lecture 5: Parallel Matrix Algorithms (part 3)
A Simple Parallel Dense Matrix-Matrix Multiplication

Let $A = [a_{ij}]_{n \times n}$ and $B = [b_{ij}]_{n \times n}$ be $n \times n$ matrices. Compute $C = AB$

- Computational complexity of sequential algorithm: $O(n^3)$
- Partition A and B into p square blocks $A_{i,j}$ and $B_{i,j}$ $(0 \leq i, j < \sqrt{p})$ of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Use Cartesian topology to set up process grid. Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Remark: Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \leq k < \sqrt{p}$.
• Algorithm:
 – Perform all-to-all broadcast of blocks of A in each row of processes
 – Perform all-to-all broadcast of blocks of B in each column of processes
 – Each process $P_{i,j}$ perform $C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,k} B_{k,j}$
Performance Analysis

• \(\sqrt{p} \) rows of all-to-all broadcasts, each is among a group of \(\sqrt{p} \) processes. A message size is \(\frac{n^2}{p} \), communication time: \(t_s \log \sqrt{p} + t_w \frac{n^2}{p} (\sqrt{p} - 1) \)

• \(\sqrt{p} \) columns of all-to-all broadcasts, communication time: \(t_s \log \sqrt{p} + t_w \frac{n^2}{p} (\sqrt{p} - 1) \)

• Computation time: \(\sqrt{p} \times (n/\sqrt{p})^3 = n^3 / p \)

• Parallel time: \(T_p = \frac{n^3}{p} + 2 \left(t_s \log \sqrt{p} + t_w \frac{n^2}{p} (\sqrt{p} - 1) \right) \)
Memory Efficiency of the Simple Parallel Algorithm

• Not memory efficient
 – Each process $P_{i,j}$ has $2\sqrt{p}$ blocks of $A_{i,k}$ and $B_{k,j}$
 – Each process needs $\Theta(n^2/\sqrt{p})$ memory
 – Total memory over all the processes is $\Theta(n^2 \times \sqrt{p})$, i.e., \sqrt{p} times the memory of the sequential algorithm.
Cannon’s Algorithm of Matrix-Matrix Multiplication

Goal: to improve the memory efficiency.

Let \(A = [a_{ij}]_{n \times n} \) and \(B = [b_{ij}]_{n \times n} \) be \(n \times n \) matrices. Compute \(C = AB \)

- Partition \(A \) and \(B \) into \(p \) square blocks \(A_{i,j} \) and \(B_{i,j} \) \((0 \leq i, j < \sqrt{p})\) of size \((n/\sqrt{p}) \times (n/\sqrt{p})\) each.
- Use Cartesian topology to set up process grid. Process \(P_{i,j} \) initially stores \(A_{i,j} \) and \(B_{i,j} \) and computes block \(C_{i,j} \) of the result matrix.
- Remark: Computing submatrix \(C_{i,j} \) requires all submatrices \(A_{i,k} \) and \(B_{k,j} \) for \(0 \leq k < \sqrt{p} \).
- **The contention-free formula:**

\[
C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,(i+j+k)\%\sqrt{p}} B_{(i+j+k)\%\sqrt{p},j}
\]
Cannon’s Algorithm

// make initial alignment
for $i, j := 0$ to $\sqrt{p} - 1$ do

 Send block $A_{i,j}$ to process $(i, (j - i + \sqrt{p}) \text{mod} \sqrt{p})$ and block $B_{i,j}$ to process $(i - j + \sqrt{p}) \text{mod} \sqrt{p}, j$;

endfor;

Process $P_{i,j}$ multiply received submatrices together and add the result to $C_{i,j}$;

// compute-and-shift. A sequence of one-step shifts pairs up $A_{i,k}$ and $B_{k,j}$

// on process $P_{i,j}$. $C_{i,j} = C_{i,j} + A_{i,k} B_{k,j}$

for step :=1 to $\sqrt{p} - 1$ do

 Shift $A_{i,j}$ one step left (with wraparound) and $B_{i,j}$ one step up (with wraparound);

 Process $P_{i,j}$ multiply received submatrices together and add the result to $C_{i,j}$;

Endfor;

Remark: In the initial alignment, the send operation is to: shift $A_{i,j}$ to the left (with wraparound) by i steps, and shift $B_{i,j}$ to the up (with wraparound) by j steps.
Cannon’s Algorithm for 3×3 Matrices

Initial A, B

A, B initial alignment

A, B after shift step 1

A, B after shift step 2
Performance Analysis

• In the initial alignment step, the maximum distance over which block shifts is $\sqrt{p} - 1$
 – The circular shift operations in row and column directions take time: $t_{\text{comm}} = 2(t_s + \frac{t_w n^2}{p})$

• Each of the \sqrt{p} single-step shifts in the compute-and-shift phase takes time: $t_s + \frac{t_w n^2}{p}$.

• Multiplying \sqrt{p} submatrices of size $(\frac{n}{\sqrt{p}}) \times (\frac{n}{\sqrt{p}})$ takes time: n^3 / p.

• Parallel time: $T_p = \frac{n^3}{p} + 2\sqrt{p} \left(t_s + \frac{t_w n^2}{p} \right) + 2 \left(t_s + \frac{t_w n^2}{p} \right)$
int MPI_Sendrecv_replace(void *buf, int count, MPI_Datatype datatype, int dest, int sendtag, int source, int recvtag, MPI_Comm comm, MPI_Status *status);

• Execute a blocking send and receive. The same buffer is used both for the send and for the receive, so that the message sent is replaced by the message received.

• buf[in/out]: initial address of send and receive buffer
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[]) {
 int myid, numprocs, left, right;
 int buffer[10];
 MPI_Request request;
 MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 right = (myid + 1) % numprocs;
 left = myid - 1;
 if (left < 0)
 left = numprocs - 1;

 MPI_Sendrecv_replace(buffer, 10, MPI_INT, left, 123, right, 123, MPI_COMM_WORLD, &status);

 MPI_Finalize();
 return 0;
}
DNS Algorithm

• The algorithm is named after Dekel, Nassimi and Aahni
• It is based on partitioning intermediate data
• It performs matrix multiplication in time $O(\log n)$ by using $O(n^3 / \log n)$ processes

The sequential algorithm for $C = A \times B$

$$C_{ij} = 0$$

for ($i = 0; i < n; i += +$)

for ($j = 0; j < n; j += +$)

for ($k = 0; k < n; k += +$)

$$C_{ij} = C_{ij} + A_{ik} \times B_{kj}$$

Remark: The algorithm performs n^3 scalar multiplications
• Assume that \(n^3 \) processes are available for multiplying two \(n \times n \) matrices.
• Then each of the \(n^3 \) processes is assigned a single scalar multiplication.
• The additions for all \(C_{ij} \) can be carried out simultaneously in \(\log n \) steps each.
• Arrange \(n^3 \) processes in a three-dimensional \(n \times n \times n \) logical array.
 – The processes are labeled according to their location in the array, and the multiplication \(A_{ik} B_{kj} \) is assigned to process \(P[i,j,k] (0 \leq i, j, k < n) \).
 – After each process performs a single multiplication, the contents of \(P[i,j,0], P[i,j,1], ..., P[i,j,n-1] \) are added to obtain \(C_{ij} \).
(a) Initial distribution of A and B

K=0

\[
\begin{array}{cccc}
[0,0] & [1,0] & [2,0] & [3,0] \\
\end{array}
\]
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) After moving A[i,j] from P[i,j,0] to P[i,j,_]

<table>
<thead>
<tr>
<th>B[3,3]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>B[3,2]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[3,1]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[3,0]</td>
</tr>
</tbody>
</table>

K=3

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>B[2,3]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[2,2]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[2,1]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[2,0]</td>
</tr>
</tbody>
</table>

K=2

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>B[1,3]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[1,2]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[1,1]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[1,0]</td>
</tr>
</tbody>
</table>

K=1

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>B[0,3]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[0,2]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[0,1]</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B[0,0]</td>
</tr>
</tbody>
</table>

K=0

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>B[i,j]</td>
</tr>
</tbody>
</table>

(b) After moving B[i,j] from P[i,j,0] to P[i,j,_]
The vertical column of processes $P[i,j,*]$ computes the dot product of row $A_{i,*}$ and column B_{*j}.
• The DNS algorithm has three main communication steps:
 1. moving the rows of A and the columns of B to their respective places,
 2. performing one-to-all broadcast along the j axis for A and along the i axis for B
 3. all-to-one reduction along the k axis