Lecture 5: Performance Analysis

1. Amdahl’s [aw
— Analyze whether a program merits parallelization

2. Gustafson-Barsis’s law
— Evaluate performance of a parallel program

3. Karp-Flatt metri

— Decide whether the principle barrier to speedup is
due to inherently sequential code or parallel overhead

4. lsoefficiency metric

— Evaluate the scalability of a parallel program executing
on a parallel computer

Typical Time Measurements

— [

([

Processors
Dark grey: time spent on computation, decreasing with # of processors
White: time spent on communication, increasing with # of processors

Execution time
|
]

Operations in a parallel program:
1. Computation that must be performed sequentially
2. Computations that can be performed in parallel

3. Parallel overhead including communication and redundant
computations 3

Basic Units

n problem size

D number of processors

o(n) inherently sequential portion of computation
@(n) portion of parallelizable computation
K(n,p) parallelization overhead

sequential execution time

Speedup ¥(n,p) =

parallel execution time

Efficiency
e(n,p) =

sequential execution time

processors used Xparallel execution time

* Sequential executiontime T(n,1) = o(n) + @(n)

Assume that the parallel portion of the computation that can
be executed in parallel divides up perfectly among p
pProcessors

cp(n)

* Parallel executiontime T(n,p) = o(n) + —+ k(n, p)

o(n)+e(n)

o(n) +%)+K(n 1))

Speedup W¥(n,p) <

ag(n)+e(n)
a(n)+ ¢n)+K(n,p)>

Efficiency e(n,p) < (

Example 5.6 Edge detection on images

Given an n x n pixel image, the problem of detecting edges corresponds to applying a3x 3
template to each pixel. The process of applying the template corresponds to multiplying
pixel values with corresponding template values and summing across the template (a con-
volution operation). This process is illustrated in Figure 5.4(a) along with typical templates
(Figure 5.4(b)). Since we have nine multiply-add operations for each pixel, if each multiply-
add takes time ¢, the entire operation takes time 9¢.7 on a serial computer.

I3

0 |

(a) (b) (c)

Figure 5.4. Example of edge detection: (a) an 8 x 8 image; (b) typical templates for detecting edges, and (c)
partitioning of the image across four processors with shaded regions indicating image data that must be

P ara I I e I p ro g ram: communicated from neighboring processors to processor 1.

1. Exchange a layer of n pixels with each of the two adjoining processing
elements.

Time takes for message passing: 2(ts + t,,n)
2. Apply template on local sub-image.
Time takes for computing: 9t.n?/p

Speed up: Y(n,p) = Stn?

Amdahl’s Law (1)

* |f the parallel overhead k(n, p) is neglected,
then

o(n)+e(n)

p(n)
o(n) +—p

Speedup W¥(n,p) <

Let f be the percentage of inherently sequential
portion of the computation, i.e.,
f =

o(n)
og(n)+e(n)

Amdahl’s Law (3)

o(n) + o(n)
Y(n,p) <
o(n) + (p;n)
¥y < — 2
o) + 07~ D/p
Y(n,p) < 11/f
1+ (]—c -1)/p

1
R RN RO

Amdahl’s Law: Let f be the fraction of operations in a computation
that must be performed sequentially, where 0 < f < 1. The

maximum speedup W(n, p) achieved by a parallel computer with p

1
f ing th tationis ¥Y(n, <
processors performing the computationis W(n,p) FryErys

1
Upper limit: asp — oo, W(n,p) <f —f<f
p

Speedup vs. f

Amdahl’s law assumes that the problem size is fixed. It provides an
upper bound on the speedup achievable by applying a certain
number of processors.

i

— i=0.5
— {=0.4
5P| — =0.3 _—
— {=0.2 "

— §=0.1 "

4 6
processors

Example 1

If 90% of the computation can be parallelized,
what is the max. speedup achievable using 8

processors?

Solution:
f = 10%,
1
Y(n,p) < -1 ~ 4.7

01+ 3

Example 2

Suppose g(n) = 18000 +n
p(n) = —

100
What is the max. speedup achievable on a problem

of sizen = 100007?

o(n)+e(n) < 28000+1000000

o(n)+2% T 28000+1000000/p
p

Solution: W(n,p) <

Remark

Parallelization overhead k(n, p) is ignored by Amdahl’s law
— Optimistic estimate of speedup

The problem size n is constant for various p values
— Amdahl’s law shows how execution time decreases as number of processors increases.

Amdahl effect

— Typically k(n, p) has lower complexity than ¢(n)/p. For a fixed number of processors, speedup is
usually an increasing function of the problem size.

— Asnincreases, @(n)/p is much larger than k(n, p)
— Asnincreases, speedup increases

Speedup n=10,000
~ n=1,000
—~——
n=100
Processors

The inherently sequential portion f may decrease when n increases

— Amdahl’s law (W(n,p) < %) can under estimate speedup for large problems
12

Gustafson-Barsis’s Law

 Amdahl’s law assumes that the problem size is fixed
and show how increasing processors can reduce time.

* Let the problem size increase with the number of
pProcessors.

* Let s be the fraction of time spent by a parallel
computation using p processors on performing
inherently sequential operations.

o(n)
pn)

S =
o(n) ++——=

o(n) = (0(71) + %)

o) = (o0 +22) 1= 3p

a(n) + ¢(n)
(n)

Y(n,p) <
o(n) + 8

| (s+(1- s)p)(a(n)+ 2
pn)

o(n)+——=
=s+(1—-s)p
=p+(1—p)s

Gustafson-Barsis’s law: Given a parallel program of size n using
p processors, let s be the fraction of total execution time spent

in serial code. The maximum speedup W(n, p) achieved by the
program is

Y(n,p)<p+ (1 —-p)s

Remark

Gustafson-Barsis’s law allows to solve larger
problems using more processors. The speedup
is called scaled speedup.

Since parallelization overhead k(n, p) is
ignored, Gustafson-Barsis’s law may over
estimate the speedup.

SinceW(n,p) <p+ (1 —-p)s=p—(p—1Ds,
the best achievable speedup is ¥(n,p) < p.

If s = 1, then there is no speedup.

Example

An application executing on 64 processors using
5% of the total time on non-parallelizable

computations. What is the scaled speedup?

Solution: s = 0.05,

Y(n,p)<p+ (1 —p)s=64+
(1 — 64)0.05 = 60.85

Karp-Flatt Metric

 Both Amdahl’s law and Gustafson-Barsis’s law ignore the
parallelization overhead k(n, p), they overestimate the achievable
speedup.

Recall:

<p()

— Parallel executiontime T(n,p) = o(n) + — + k(n,p)

— Sequential execution time T(n,1) = o(n) + o(n)

 Define experimentally determined serial fraction e of parallel
computation:

o(n)+k(n,p)
o(n)+en)

e(n,p) =

e experimentally determined serial fraction e
— Takes into account parallel overhead
— Detects other sources of overhead or inefficiency ignored in
speedup model

* Process startup time
* Process synchronization time
* Imbalanced workload
* Architectural overhead

* experimentally determined serial fraction e may either stay
constant with respect to p (meaning that the parallelization
overhead is neqgligible) or increase with respect to p (meaning
that parallelization overhead dominates the speedup)

* Given W(n,p) using p processors, how to determine e(n,p)?

Since T(n,p) = T(n,1)e + T(n’lzfl_e) and ¥(n,p) = T'(n,1)

T(n,p)
T(n, 1) 1
Y(n,p) =

— o) 1 —
T e + 1A= oy 28

1 1—e
Therefore, = = e + —
b p

|-

|-

Example 1

Benchmarking a parallel programon 1, 2, ..., 8 processors produces
the following speedup results:

4.38 4.7

Y(n,p) 1.82 4.0

What is the primary reason for the parallel program achieving a
speedup of only 4.71 on 8 processors?

20

Solution: Compute e(n, p) corresponding to each data point:

p | 2 | 3 | 4 | 5 | 6 7 | 8

¥Y(n,p) 1.82 2.50 3.08 3.57 4.00 4.38 4.71
e(n,p) 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Since the experimentally determined serial fraction e(n, p) is not
increasing with p, the primary reason for the poor speedup is
the 10% of the computation that is inherently sequential. Parallel
overhead is not the reason for the poor speedup.

21

Example 2

Benchmarking a parallel programon 1, 2, ..., 8 processors
produces the following speedup results:

o p 2 3 4 | 5 | 6 | 7 | 8

W(n,p) 187 261 323 373 414 446 471
What is the primary reason for the parallel program achieving a
speedup of 4.71 on 8 processors?

Solution:

o p | 2 | 3 4 | 5 | 6 7 | 8

Y(n,p) 187 261 323 373 414 446 471
e 007 0.075 008 0.08 0.09 0095 0.1

Since the experimentally determined serial fraction e is steadily
increasing with p, parallel overhead also contributes to the poor
speedup.

22

The Isoefficiency Metric

Parallel system: A parallel program executing on a parallel
computer

Scalability: the scalability of a parallel system is a measure of its
ability to increase performance as the number of processors
increases.

A scalable system should maintain efficiency as # of processors is
increased.

Isoefficiency: way to measure scalability.

* Let Ty(n,p) be the total amount of time spent by all processes
doing work not done by the sequential algorithm:

To(n,p) = (p — Da(n) + pr(n,p)
— To(n,p) can also be interpreted as:
p X (Parallel execution time) — (Sequential execution time)

 This is the total amount of overhead

Vo) < a(nz o
a(n) + £ 1 k(n,p)
Y p) < (G(n) + @ (n))

o(n) + o) + (p — Do(n) + pk (N, p)
p(a(n) + @(n))
o(n) + ¢(n) + To(n,p)
* LetT(n,1) be the time of the sequential algorithm for solving the
1

To(n,p) = To(n,p)
a(n)+e(n) T(n,1)

e(n,p)
T(n,1) = T —etnp) 0 To(n,p)

= ¥Y(n,p) <

problem. &(n,p) <

Isoefficiency Relation:

Suppose a parallel system has efficiency e(n, p). Define
C = e(n,p)

1_8(nrp) .
In order to maintain the same level of efficiency as the
number of processors increases, n must be increases so

that the following inequality is satisfied: T(n, 1) >
CTO (Tl, p)

Example: Explicit Finite Difference

* The problem is solved on a

n X n grid.
p processors are used.

Each processor is
responsible for a subgrid of

e () (1),

During each time step,
every processor sends
boundary values to its four
neighbors; the time needed
for communication is

0 (%)

26

Find the isoefficiency.

Solution: The time complexity of the serial
algorithm for solving this problem is

T(n,1) = 0(n?).

To(n,p) = O (%)p

The isoefficiency relation is
n
n’ = Cp(—=) = n = C/p
NG VP

Reference

 M.J. Quinn. Parallel Programming in C with
MPI and OpenMP

