
Lecture 6: Parallel Matrix
Algorithms (part 1)

1

Matrix-Vector Multiplication

• Multiplying a dense 𝑛 × 𝑛 matrix 𝐴 with an 𝑛 × 1
vector 𝑥: 𝑦 = 𝐴𝑥

• Sequential run time: 𝑊 = 𝑂 𝑛2

2

Row-wise Block-Striped Decomposition

Step 1

• Row-wise 1D block partition is used to distribute matrix.

• An all-to-all broadcast is used to distribute the full vector
among all the processes.

3

Step 2
• Each task performs dot product computation using rows

mapped to it and replicated vector 𝑥.

Step 3

• Distribute the result vector 𝑦 to all processes by collective
communication.

• MPI_Allgatherv(void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, MPI_Comm comm)

4

• MPI_Allgatherv(void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int *recvcounts, int *displs, MPI_Datatype
recvtype, MPI_Comm comm)
– Gather data from all tasks and deliver the combined data to all tasks

– The block of data sent from the jth process is received by every process
and placed in the jth block of the buffer recvbuf. These blocks need not all
be the same size.

– recvcounts: element j of this array is the number of elements being
gathered from process j.

– displs: element j of this array is the displacement from the first element of
recvbuf where the first element gathered from process j is to be stored.

5

void create_mixed_xfer_arrays(
 int id,
 int p,
 int n,
 int **count,
 int **disp)
{
 int i;
 *count = my_malloc(id, p*sizeof(int));
 *disp = my_malloc(id, p*sizeof(int));
 (*count)[0] = BLOCK_SIZE(0,p,n);
 (*disp)[0] = 0;

 for(i = 1; i < p; i++)
 {
 (*disp)[i] = (*disp)[i-1] + (*count)[i-1];
 (*count)[i] = BLOCK_SIZE(i,p,n);
 }
}

6

This function creates the count and
displacement arrays by scatter and
gather functions, when the number
of elements send/received to/from
other processes varies

7

void replicate_block_vector(
 void *ablock, /* block-distributed vector */
 int n,
 void *arep, // replicated vector
 MPI_Datatype dtype,
 MPI_Comm comm)
{
 int *cnt; // elements contributed by each process
 int *disp; // displacement in concatenated array
 int id;
 int p;

 MPI_Comm_size(comm, &p);
 MPI_Comm_rank(comm, &id);

 create_mixed_xfer_arrays(id, p, n, &cnt, &disp);
 MPI_Allgatherv(ablock, cnt[id], dtype, arep, cnt, disp, dtype, comm);
 free(cnt);
 free(disp);
}

replicate_block_vector()
is used to transform a

vector from a block
distribution to a

replicated distribution

Parallel Run Time Analysis

Message Passing Costs in Parallel Computers

• Startup time (𝑡𝑠): The startup time is the time required to
handle a message at the sending and receiving nodes. This
include time to prepare the message(put in envelope), the
time to execute routing algorithm, and the time to establish
an interface between the local node and the router.

• Per-word transfer time (𝑡𝑤): If the channel bandwidth is 𝑟

words per second, then 𝑡𝑤 =
1

𝑟
.

• Per-hop time (𝑡ℎ): After a message leaves a node, it takes a
finite amount of time to reach the node in its next path.

• Cost model for communicating messages: Suppose that a
message of size 𝑚 is being transmitted through a network,
Assume it traverses 𝑙 links, the total communication cost is:

𝑡𝑐𝑜𝑚𝑚 = 𝑡𝑠 + 𝑙𝑡ℎ + 𝑡𝑤𝑚
8

• Assume that the # of processes 𝑝 is less than 𝑛

• Assume that we run the program on a parallel machine adopting
hypercube interconnection network (Table 4.1 lists communication
times of various communication schemes)

1. Each process is responsible for 𝑛/𝑝 rows of matrix. The complexity
of the dot production portion of the parallel algorithm is Θ(𝑛2/𝑝)

2. Parallel communication time for all-to-all broadcast communication
to replicate result vector 𝑦:

• Each process needs to send a message of size 𝑛/𝑝 to all processes. This

takes time 𝑡𝑐𝑜𝑚𝑚 = 𝑡𝑠log𝑝 + 𝑡𝑤
𝑛

𝑝
𝑝 − 1 . Assume 𝑝 is large, then

𝑡𝑐𝑜𝑚𝑚 = 𝑡𝑠log𝑝 + 𝑡𝑤𝑛.

3. The parallel run time for this program is:

𝑇𝑝 =
𝑛2

𝑝
+ 𝑡𝑠log𝑝 + 𝑡𝑤𝑛

4. This program is cost-optimal for 𝑝 = 𝑂 𝑛

Remark: This analysis neglect the one-to-all communication to broadcast
vector 𝑏 initially.

9

Scalability Analysis

• Let 𝐾 =
𝜀 𝑛,𝑝

1−𝜀 𝑛,𝑝
, then 𝑇 𝑛, 1 = 𝐾𝑇0 𝑛, 𝑝

• 𝑇0 = (𝑡𝑠log𝑝 + 𝑡𝑤𝑛)𝑝

• Neglecting 𝑡𝑤𝑛𝑝, 𝑇 𝑛, 1 = 𝐾𝑡𝑠𝑝log𝑝. This is the
isoefficiency with respect to message startup time.

• Neglecting 𝑡𝑠𝑝log𝑝, 𝑇 𝑛, 1 = 𝐾𝑡𝑤𝑛𝑝.

Since 𝑇 𝑛, 1 = 𝑛2, 𝑇 𝑛, 1 = 𝐾2𝑡𝑤
2𝑝2.

In order to maintain a fixed efficiency, the problem size must
increase with the rate of Θ(𝑝2).

10

