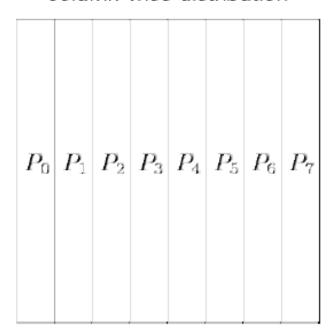
Lecture 6: Parallel Matrix Algorithms (part 2)

Column-wise Block-Striped Decomposition

Summary of algorithm for computing $\mathbf{c} = A\mathbf{b}$

- Column-wise 1D block partition is used to distribute matrix.
- Let $A = [a_1, a_2, ..., a_n]$, $b = [b_1, b_2, ..., b_n]^T$, and $\mathbf{c} = [c_1, c_2, ..., c_n]^T$
- Assume each task i has column a_i , b_i and c_i (Assume a finegrained decomposition for convenience)

column-wise distribution



- 1. Read in matrix stored in row-major manner and distribute by column-wise mapping
- 2. Each task i compute $b_i \mathbf{a}_i$ to result in a vector of partial result.
- 3. An all-to-all communication is used to transfer partial result: every partial result element j on task i must be transferred to task j.
- 4. At the end of computation, task i only has a single element of the result c_i by adding gathered partial results.

$$c_{0} = \begin{bmatrix} a_{0,0} & b_{0} \\ c_{1} = a_{1,0} & b_{0} \\ c_{2} = a_{2,0} & b_{0} \\ c_{3} = a_{3,0} & b_{0} \\ c_{4} = a_{4,0} & b_{0} \end{bmatrix} + \begin{bmatrix} a_{0,1} & b_{1} \\ a_{1,1} & b_{1} \\ a_{2,1} & b_{1} \\ a_{3,1} & b_{1} \\ a_{4,1} & b_{1} \end{bmatrix} + \begin{bmatrix} a_{0,2} & b_{2} \\ a_{1,3} & b_{3} \\ a_{2,3} & b_{3} \\ a_{2,3} & b_{3} \\ a_{3,3} & b_{3} \\ a_{4,3} & b_{3} \end{bmatrix} + \begin{bmatrix} a_{4,4} & b_{4} \\ a_{2,4} & b_{4} \\ a_{3,3} & b_{3} \\ a_{4,3} & b_{3} \\ a_{4,4} & b_{4} \end{bmatrix}$$
Proc 4's init.

Proc 2's init. comput

Processor 1's initial computation

Processor 0's initial computation

After All-to-All Communication

$a_{0,0} b_0$	$a_{1,0} b_0$	$a_{2,0}b_0$	$a_{3,0}b_0$	$a_{4,0} b_0$
$a_{0,1}b_1$	$a_{1,1}b_1$	$a_{2,1}b_1$	$a_{3,1}b_1$	$a_{4,1} b_1$
$a_{0,2}b_2$	$a_{1,2}b_2$	$a_{2,2}b_2$	$a_{3,2}b_2$	$a_{4,2}b_2$
$a_{0,3}b_3$	$a_{1,3}b_3$	$a_{2,3}b_3$	$a_{3,3}b_3$	$a_{4,3}b_3$
$a_{4,4}b_4$	$a_{1,4}b_4$	$a_{2,4}b_4$	b _{3,4} b ₄	$a_{4,4}b_4$
			Drog 2	D 4
Proc 0	Proc 1	Proc 2	Proc 3	Proc 4

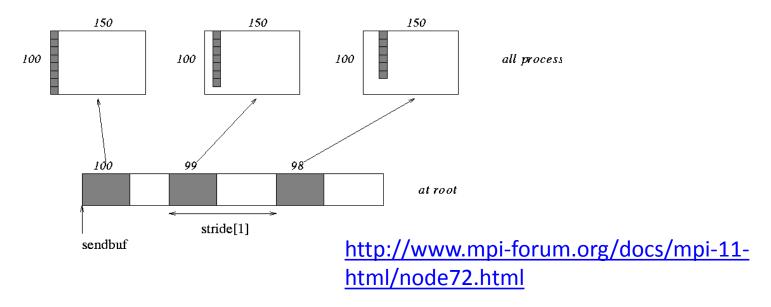
Reading a Column-wise Block-Striped Matrix

read_col_striped_matrix()

- Read from a file a matrix stored in row-major order and distribute it among processes in column-wise fashion.
- Each row of matrix must be scattered among all of processes.

```
read col striped matrix()
  // figure out how a row of the matrix should be distributed
  create mixed xfer arrays(id,p, *n, &send count, &send disp);
  // go through each row of the matrix
  for(i = 0; i < *m; i++)
      if(id == (p-1)) fread(buffer,datum_size, *n, infileptr);
      MPI_Scatterv(...);
```

- int MPI_Scatterv(void *sendbuf, int *sendcnts, int *displs,
 MPI_Datatype sendtype, void *recvbuf, int recvcnt, MPI_Datatype
 recvtype, int root, MPI_Comm comm)
 - MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a varying count of data to be sent to each process.
 - sendbuf: address of send buffer
 - sendcnts: an integer array specifying the number of elements to send to each processor
 - displs: an integer array. Entry i specifies the displacement (relative to sendbuf from which to take the outgoing data to process i



7

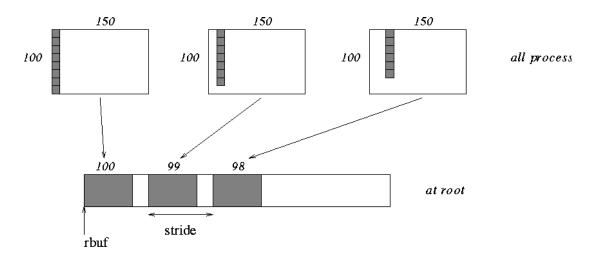
Printing a Colum-wise Block-Striped Matrix

```
print_col_striped_matrix()
```

- A single process print all values
- To print a single row, the process responsible for printing must gather together the elements of that row from entire set of processes

```
print_col_striped_matrix()
  create_mixed_xfer_arrays(id, p, n, &rec_count, &rec_disp);
  // go through rows
  for(i = 0; i < m; i++)
      MPI_Gatherv(a[i], BLOCK_SIZE(id,p,n), dtype, buffer,
       rec count, rec disp, dtype, 0, comm);
```

- int MPI_Gatherv(void *sendbuf, int sendcnt, MPI_Datatype sendtype, void *recvbuf, int *recvcnts, int *displs, MPI_Datatype recvtype, int root, MPI_Comm comm)
 - Gathers into specified locations from all processes in a group.
 - sendbuf: address of send buffer
 - sendcnt: the number of elements in send buffer
 - recvbuf: address of receive buffer (choice, significant only at root)
 - recvcounts: integer array (of length group size) containing the number of elements that are received from each process (significant only atroot)
 - displs: integer array (of length group size). Entry i specifies the displacement relative to recybuf at which to place the incoming data from process i (significant only at root)



Distributing Partial Results

- $c_i = b_0 \mathbf{a}_{i,0} + b_1 \mathbf{a}_{i,1} + b_2 \mathbf{a}_{i,2} + \dots + b_n \mathbf{a}_{i,n}$
- Each process need to distribute n-1 terms to other processes and gather n-1 terms from them (assume fine-grained decomposition).
 - MPI_Alltoallv() is used to do this all-to-all exchange

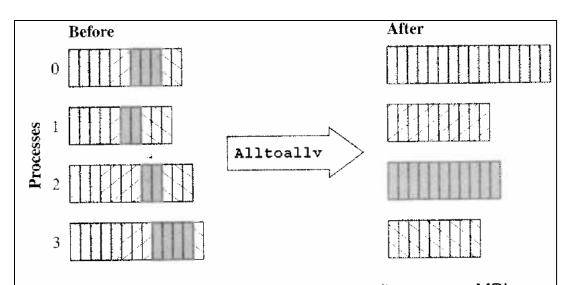


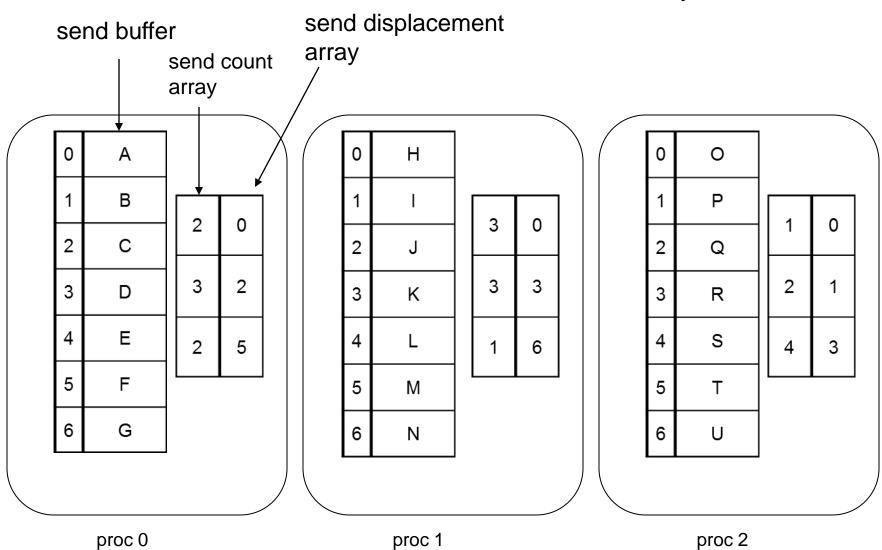
Figure 8.13 Function MPI_Alltoallv allows every MPI process to gather data items from all the processes in the communicator. The simpler function MPI_Alltoall should be used in the case where all of the groups of data items being transferred from one process to another have the same number of elements.

int MPI_Alltoallv(void *sendbuf, int *sendcnts, int *sdispls,
MPI_Datatype sendtype, void *recvbuf, int *recvcnts, int
*rdispls, MPI_Datatype recvtype, MPI_Comm comm);

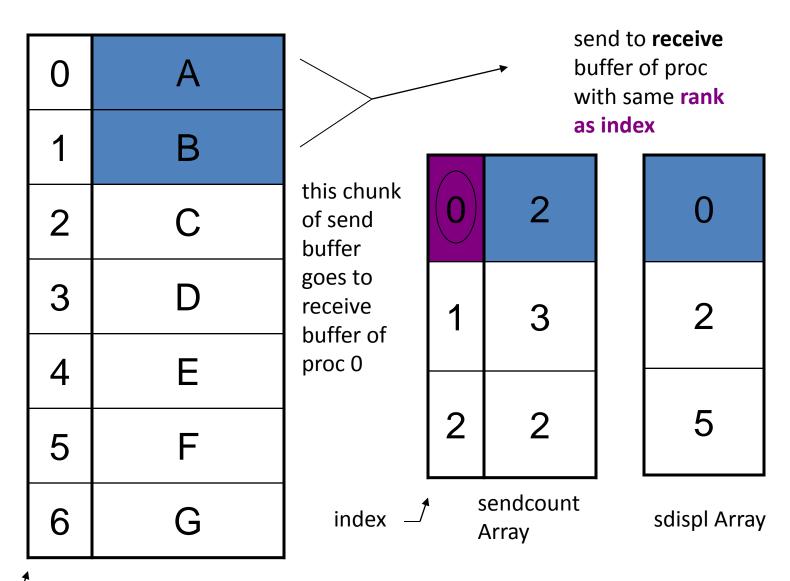
- sendbuf: starting address of send buffer (choice)
- *sendcounts*: integer array equal to the group size specifying the number of elements to send to each processor
- sdispls: integer array (of length group size). Entry j specifies the displacement (relative to sendbuf) from which to take the outgoing data destined for process j
- recvbuf: address of receive buffer (choice)
- recvcounts: integer array equal to the group size specifying the maximum number of elements that can be received from each processor
- Rdispls: integer array (of length group size). Entry i specifies the displacement (relative to recvbuf at which to place the incoming data from process i

Send of MPI_Alltoallv()

Each node in parallel community has



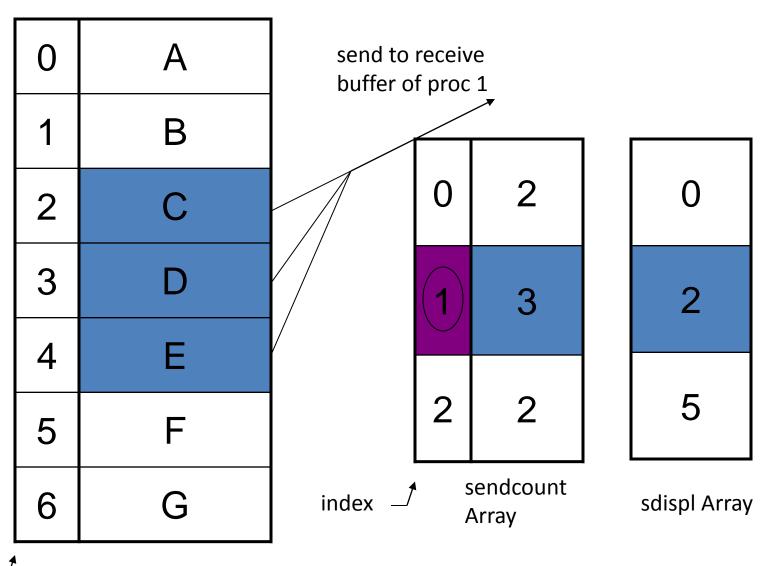
Process 0 Sends to Process 0



index

Proc 0 send buffer

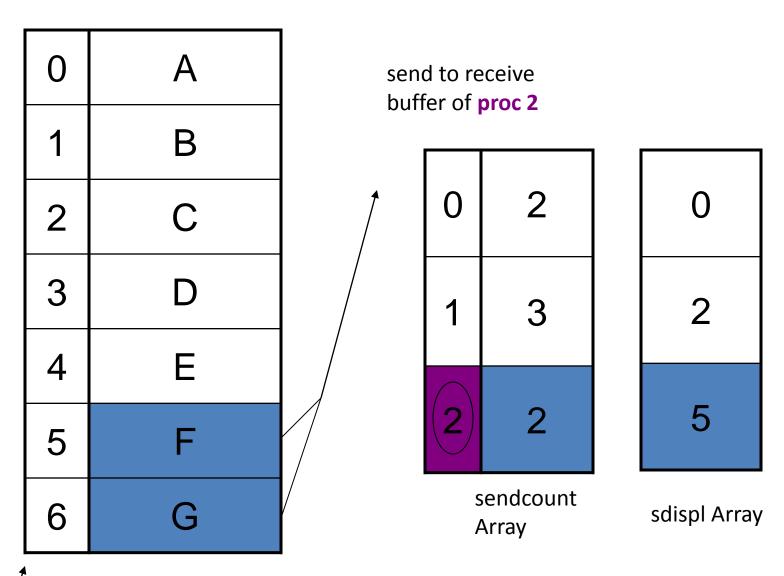
Process 0 Sends to Process 1



index

Proc 0 send buffer

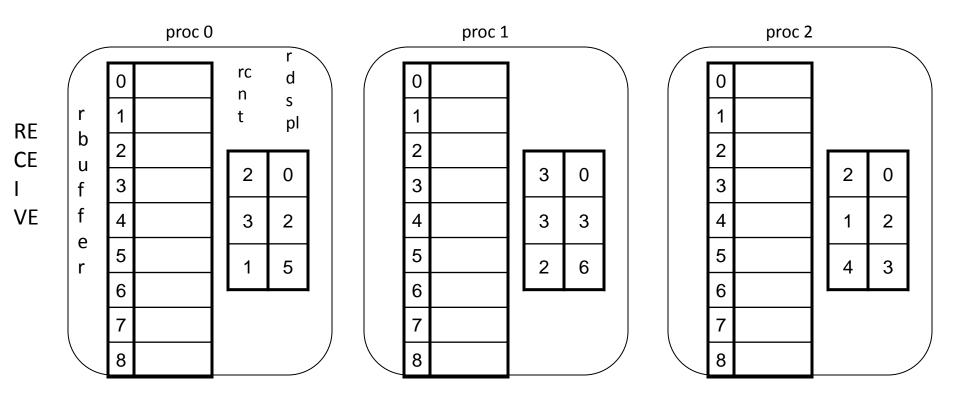
Process 0 Sends to Process 2

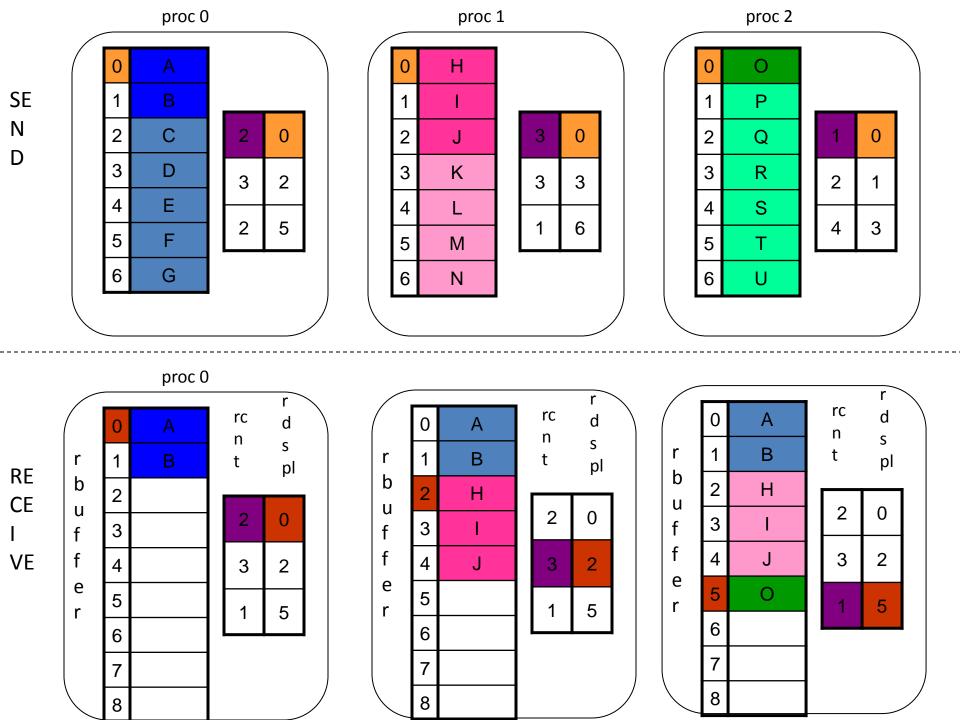


index

Proc 0 send buffer

Receive of MPI_Alltoallv()





Parallel Run Time Analysis (Column-wise)

- Assume that the # of processes p is less than n
- Assume that we run the program on a parallel machine adopting hypercube interconnection network (**Table 4.1** lists communication times of various communication schemes)
- 1. Each process is responsible for n/p columns of matrix. The complexity of the dot production portion of the parallel algorithm is $\Theta(n^2/p)$
- 2. After all-to-all personalized communication, each processor sums the partial vectors. There are p partial vectors, each of size n/p. The complexity of the summation is $\Theta(n)$.
- 3. Parallel communication time for all-to-all *personalized* broadcast communication:
 - Each process needs to send p messages of size n/p each to all processes.

$$t_{comm} = (t_s + t_w \left(\frac{n}{p}\right))(p-1)$$
. Assume p is large, then $t_{comm} = t_s(p-1) + t_w n$.

• The parallel run time: $T_p = \frac{n^2}{p} + n + t_s(p-1) + t_w n$

2D Block Decomposition

Summary of algorithm for computing y = Ab

- 2D block partition is used to distribute matrix.
- Let $A = [a_{ij}]$, $\mathbf{b} = [b_1, b_2, ..., b_n]^T$, and $\mathbf{y} = [y_1, y_2, ..., y_n]^T$
- Assume each task is responsible for computing $d_{ij}=a_{ij}b_j$ (assume a fine-grained decomposition for convenience of analysis).
- Then $y_i = \sum_{j=0}^{n-1} d_{ij}$: for each row i, we add all the d_{ij} to produce the ith element of y.

P_0	P_1	P ₂	P ₃
P_4	P ₅	P_6	P ₇
P ₈	P ₉	P_{10}	P ₁₁
P ₁₂	P ₁₃	P_{14}	P ₁₅

1. Read in matrix stored in row-major manner and distribute by 2D block mapping. Also distribute b so that each task has the correct portion of b.

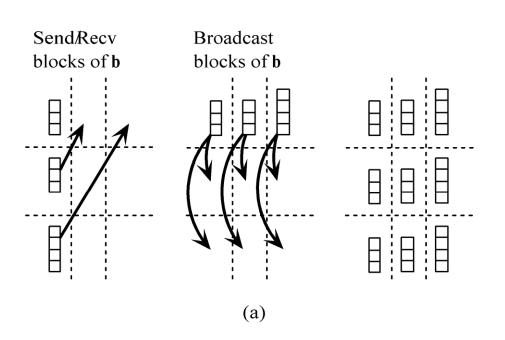
2. Each task computes a matrix-vector multiplication using its portion of A and b.

3. Tasks in each row of the task grid perform a sumreduction on their portion of y.

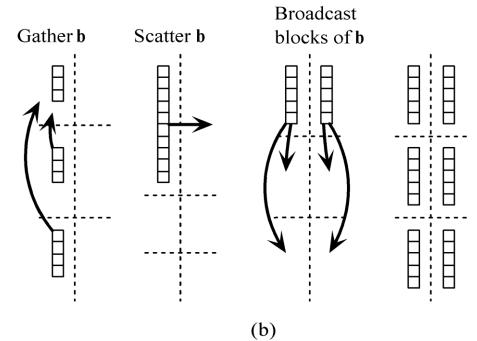
4. After the sum-reduction, y is distributed by blocks among the tasks in the first column of the task grid.

Distributing **b**

- Initially, **b** is divided among tasks in the first column of the task grid.
- Step 1:
 - If p square
 - First column/first row processes send/receive portions of b
 - If p not square
 - Gather **b** on process 0, 0
 - Process 0, 0 broadcasts to first row processes
- Step 2: First row processes scatter b within columns



When p is a square number



When p is not a square number