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This paper considers the accuracy of projection method approximations to the
initial-boundary-value problem for the incompressible Navier—Stokes equations. The
issue of how to correctly specify numerical boundary conditions for these methods
has been outstanding since the birth of the second-order methodology a decade and
a half ago. It has been observed that while the velocity can be reliably computed to
second-order accuracy in time and space, the pressure is typically only first-order
accurate in theL.-norm. This paper identifies the source of this problem in the
interplay of the global pressure-update formula with the numerical boundary con-
ditions and presents an improved projection algorithm which is fully second-order
accurate, as demonstrated by a normal mode analysis and numerical experiments. In
addition, a numerical method based on a gauge variable formulation of the incom-
pressible Navier—Stokes equations, which provides another option for obtaining fully
second-order convergence in both velocity and pressure, is discussed. The connec-
tion between the boundary conditions for projection methods and the gauge method
is explained in detail. © 2001 Academic Press
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1. INTRODUCTION

This paper considers the accuracy of projection method approximations to the initi
boundary-value problem for the incompressible Navier—Stokes equations. It is import
to understand the behavior of such schemes since they form the basis not only for app
mations to the equations that describe zero-Mach-number flows, but also for the equat
describing low-Mach-number, possibly chemically reacting flows. Imatimensional
bounded domai®2, we consider the incompressible Navier—Stokes equations, written a

U+ Vp=—(U-Viu+vVvau (1)
V.-u=0 (2)

with boundary conditions
Ulsq = Uy, )

whereu, the fluid velocity, andp, the pressure, are the “primitive variables,” ants the
kinematic viscosity of the fluid.

Nearly all numerical methods for solving these equations in terms of the primitive va
ables use a fractional step approach. Some approximation to the momentum equation
advanced to determine the velocityr a provisional velocity, and then an elliptic equation
is solved that enforces the divergence constraint (2) and determines the pressure. In |
variations, the viscous term in Eqg. (1) is advanced in a separate step from the adve
terms (e.g., [23]). Some methods solve directly for the pressure in the elliptic step (e
[19]); others solve for an auxiliary variable related to the pressure. Methods are often c
gorized as “pressure-Poisson” or “projection” methods based on which form of the ellig
constraint equation is being used. A distinguishing feature of the original projection mett
is that the velocity field is forced to satisfy a discrete divergence constraint at the end of e
time step, while with pressure-Poisson methods, the velocity typically satisfies a discl
divergence constraint only to within the truncation error of the method. In recent yee
projection methods which exactly enforce a discrete divergence constraint, or “exact” f
jection methods, have often been replaced with “approximate” projection methods (e.g.
4, 26, 28]), which are similar to pressure-Poisson methods in that the velocity satisfie
discrete divergence constraint only to within the truncation error of the method. Appro
mate projection methods are used because of observed weak instabilities in exact met
(e.g., [25]) and the desire to use more complicated or adaptive finite difference meshe
which exact projections are difficult or mathematically impossible to implement [3, 2€
As a result, the mathematical differences between approximate projection and press
Poisson methods have become less clear; the practical differences between the two in
the number of fractional steps and the order in which they are taken. Additionally, as w
all fractional step methods, a crucial issue is how boundary conditions are determinec
some or all of the intermediate variables.

The determination of the fractional step equations and the intermediate boundary co
tions in such a way as to obtain second- or higher-order convergence rates has been a si
of considerable discussion and interest over the past 20 years. This paper will focus on t
issues for a particular class of projection methods that includes those introduced by |
et al.[5, 6], Kim and Moin [24], and Van Kan [39]. These are of particular interest becau
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to date no variations of these methods that demonstrate completely second-order-in-
convergence in both the velocity and pressure variables for the viscoudj) case have
been published. Indeed, it has been observed both numerically and analytically that w
second-order convergence in velocity can readily be obtained, the computed pressu
typically only first-order in time [16, 38]. There has even been speculation in the liter
ture that these methods are inherently first-order in the pressure and cannot be impr
to higher-order in the time variable [32, 36]. In this paper, we will demonstrate throug
normal mode analysis and numerical experiments that this class of projection methods
in fact, be made fully second-order in time. The source of the problem lies in the interpl
of the global pressure-update formula with the intermediate variable boundary conditio

Projection methods pioneered by Chorin [9, 10] for numerically integrating (1,2,3) a
based on the observation that the left-hand side of Eq. (1) is a Hodge decomposition. He
an equivalent projection formulation is given by

U = P[—(u- V)u + vV2u], (4)

whereP is the operator which projects a vector field onto the space of divergence-free vec
fields with appropriate boundary conditions.

In the 1980s, several papers appeared in which second-order accurate versions
projection method were proposed. Those of Goda [18], &edl. [5], Kim and Moin [24],
and Van Kan [39] are motivated by the second-order, time-discrete semi-implicit forms
Egs. (1) and (2),

untl _ yn

v
At + Vpn+1/2 — _[(u . V)u]n+1/2 + EvZ(urFHI. + un) (5)

vV .u™l =0, (6)

with boundary conditions

un+l|3§2 — ubn+1’ (7)

where [u - V)u]"¥/? represents a second-order approximation to the convective derivati
term at time levet"*Y/2 which is usually computed explicitly. (The notatiev!' is used

to represent an approximation w(t"), wheret” = nAt.) This formulation is desirable
because, depending on the form@f [ V)u]"*%/2, it can reduce or eliminate the dependence
of the stability of the method on the magnitude of viscosity [27].

Spatially discretized versions of the coupled Egs. (5) and (6) are cumbersome to s
directly. Therefore, a fractional step procedure can be used to approximate the solutio
the coupled system by first solving an analog to Eq. (5) (without regard to the divergel
constraint) for an intermediate quantity, and then projecting this quantity onto the space
of divergence-free fields to yield"+1. In general this procedure is given by

Step 1: Solve for the intermediate fiald

u* —u"
At

+vq = —[u-V)u"2 4+ %Vz(u* +u"), (8)

Bu*) =0, 9)
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whereq represents an approximation p3+%/2 and B(u*) a boundary condition fou*
which must be specified as part of the method.
Step 2: Perform the projection

U* — un+1 + Atv¢n+l (10)
V.u™t =0, (11)

using boundary conditions consistent wBkiu*) = 0 andu™?|;q = up*?.
Step 3: Update the pressure

pHY2 = q + L(p"), (12)

where the functiorl. represents the dependencepdf/? on ¢"*+1. Once the time step is
completed, the predicted velocity is discarded, not to be used again at that or later tim
steps. We will refer to methods of this type genericallyiragemental-pressure projec-
tion methodsince the projection step serves to compute an incremental-pressure grac
correction.

There are three choices that need to be made in the design of such a method. The
the pressure approximatian the boundary conditio®(u*), and the functiorL (¢"*1)
in the pressure-update equation. In this paper we explain the coupling among these t
functions that must be considered for the overall method to be second-order accurat
the process we show that several existing methods fall short of second-order accurac
to the boundary precisely because this coupling was not considered.

Animportant issue is that the boundary conditiondfobmust be consistent with Eq. (10),
although at the time the boundary conditions are applied the funetioh is not yet
known and hence must be approximated. The degree to which the gradient term mu
approximated depends on the choicejofOne may speculate that, in the first step of the
method, ifq is a good approximation tp"*+%/2, the fieldu* may not differ significantly
from the fluid velocity and thus a reasonable choice for the boundary conditish = 0
may be(u* — up) |30 = 0. On the other hand, one may not be interested in computing tl
pressure at every time step and would like to chapse0 and obviate the third step in
the method. In this case* may differ significantly from the fluid velocity, requiring the
boundary conditionB(u*) to include a nontrivial approximation 6¥¢"** in Eq. (10).
Later in the paper we make these statements precise and show the required degree
approximations involved.

Regarding the third step of the method, substituting Eq. (10) into Eq. (8), eliminating
and comparing with Eq. (5) yield a formula for the pressure-update

n+1/2 _ nt1 VAU o g
p =q+¢ — TV ¢, (13)
which appeared (in gradient form) in [40]. The last term of this equation plays an import:
role in computing the correct pressure gradient and allows the pressure to retain second-
accuracy up to the boundary. Without this term, the pressure gradient may have zeroth-c
accuracy at the boundary even if the pressure itself is high-order accurate. The normal n
analysis for the Stokes equations in Section 4 predicts second-order accuracy foabdth
p using Eq. (13). In particular, the analysis shows that spurious modes in the pressure, w
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are present in some methods, are eliminated by the use of this improved pressure-uy
formula. Numerical experiments presented in Section 6 confirm these findings.

To fully understand how boundary conditions for projection methods should be chos
it is helpful to consider an alternative formulation of the incompressible Navier—Stok
equations based on a variable first introduced by Oseledets [30]. This formulation is v
ously known as a “magnetization,” “impulse,” or “gauge” formulation. Numerical method
based on various forms of these variables have been developed by Buttke [8], and r
recently by Cortez [12, 13], E and Liu [15, 17], Recchioni and Russo [34], and Summe
and Chorin [37]. The numerical method based on these variables in this paper is essent
the same as the one proposed by E and Liu [15, 17]; hence we will refer to it as the ga
method.

Two new variablesm andy, are introduced that are related to the fluid velocity by
m=u+ Vy. (14)

The vector fieldn and the potentigy can be chosen to satisfy evolution equations in sucl
a way that the fluid velocity and pressure derived from them satisfy the Navier—Sto}
equations. Givem, one possibility, which is proposed in [17], is to letsatisfy inQ2 the
evolution equation

m; 4+ (u- V)u = vv?m (15)
UlaQ = Up, (16)

where
u=P(@m). a7

Equations (14)—(17) constitute an equivalent formulation of the Navier—Stokes Egs. (
(3). In this formulation, the pressure has been eliminated from the equations; howeve
can be recovered from the potentjaby enforcing the equivalence of Egs. (1) and (15),

giving
p=x—vVx. (18)

Note that the boundary conditions are given in terma,afthich by Eq. (14), implies that
there is a coupling of the boundary conditionswwandV .
A time-discrete form of the Egs. (15) and (17) is given by

mn+l —mn

A =l Vyu]"tz gvz(m"+l +m") (19)

Un+1 — mn+1 _ VXnJrl, (20)

where Eq. (20) is again the Hodge decomposition formulation of the projection. This is't
second-order version of the gauge method presented by E and Liu in [15] and used by tl
authors in their numerical experiments. The pressure is not required in order to advance
velocity, although for some problems an accurate representation of the pressure at €
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time step might be desired. If needed, the pressure can be computeg fitmrmugh the
second-order approximation to Eq. (18)

n+1 n
pny2 — X o X %VZ(XnH-i-Xn)- (1)
Note that this method is very similar to the projection method of Kim and Moin describ
in Section 2.2, except that the varialneis retained as a prognostic variable, rather that
discarded at the end of each time step. The similarity is not superficial, for if initraty u
(and hence’ y = 0), then the first time step of this method is identical to that of Kim an
Moin with u* taking the place o, although of course the methods differ at later times.

The boundary conditions in Eq. (16) are written in terms of the velocity, but solvir
Eq. (19) requires boundary conditions fof*1, which must satisfy Eq. (20) as a compat-
ibility condition. There is some freedom in choosing these boundary conditions and
analysis in Section 4 predicts second-order convergence foukait p when the compat-
ibility condition is satisfied. Numerical experiments indicating second-order accuracy
u appear in [15]. The results in Section 6 show second-order accuragy fipandV p as
well.

In Section 3, a detailed presentation will be provided of the boundary conditions requi
in the momentum and projection equations of the projection and gauge methods desci
before. The relationship between the boundary conditions for projection and gauge mett
will become clear in the course of the presentation. In Section 4, a normal mode analys
the methods as applied to the Stokes equations is performed in order to draw conclus
about the accuracy of the methods. In contrast to similar analyses performed previously
consider general choices@fB(u*), andL (outlined earlier) to deduce the necessary condi
tions for second-order accuracy. In particular, the analysis shows that second-order acct
in both the velocity and the pressure are obtainable with the correct choice of boundary ¢
ditions and pressure-update equations. It also shows that the formula traditionally use
the pressure-update leads to a decrease in the pressure accuracy. Finally, careful num
studies of the methods when applied to the full incompressible Navier—Stokes equat
are presented to substantiate the analysis.

2. COMMENTS ON SOME EXISTING METHODS

In this section we make brief comments about some of the methods mentioned ea
viewed in the context established in the Introduction. The purpose is not to review |
literature but to describe the extent to which these methods are consistent with Eqgs.
(12) and the implications for their accuracy. We also comment on reported results that
contributed to the debate on the topic.

2.1. Bell, Colella, and Glaz

A well-known projection method is that of Bedit al. [5, 6], which has been applied
in various settings and extended to more complicated physical problems such as rea
flows [1, 4, 6, 25, 26, 28]. In the typical implementation of this method [6], the predicte
velocity u* is computed using Egs. (8) and (9) with the choiges p"~%? andB(u*) =
(u* —ud™)|5o = 0. The advection term is computed using a Godunov procedure. T
projection step is performed by solving an elliptic problem ¢ér* with the boundary
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condition
A- V" =0, (22)

which follows from the choice oB(u*) and Eq. (10). We demonstrate later in this paper tha
for this methodyp* differs at most by (At?) from the correct velocity™?, justifying the
use of the velocity boundary condition fat. The method produces solutions that converge
in the maximum norm at a second-order rate for the velocity.

The pressure, however, converges at only a first-order rate. This is due to the pres
gradient update, given by

VY2 — yp-l2 4oyt (23)

which differs from Eg. (13) since the last term of the latter is not included. This omissic
results in lower accuracy fop and an inaccurate pressure gradient at the boundary. Tt
is evident by noting that Eq. (22) and the normal component of Eq. (23) implyfithat
Vp"tY2 = A . vp"1/2, for all n, which cannot be correct in general.

This loss of accuracy in the pressure, which typically manifests itself as a boundary lay
is well known and has been analyzed rigorously by Temam [38], E and Liu [16], Shen [3
and others. It is also asserted in [32, 36] that pressure-increment projection methods
inherently first-order in the pressure variable. This is true if the pressure-update in Eq. (
is used, but the simple modification to the pressure increment equation, given in Eqg. (:
recovers full second-order accuracy in the pressure.

2.2. Kim and Moin

The relationship betwegpand p in Eq. (13) was recognized by Kim and Moin in [24],
although the method they propose does not use a pressure gradient update. Inste
fractional step discretization to Eq. (4) is used resulting in a method in which the press
does notappear atall (i.e.= 0in Eg. (8)). We refer to methods of this typgmaessure-free
projection methods

The absence of the pressure gradient term in the momentum equatioh Has two
consequences. First, it could be considered appealing since it prohibits errors in the pres
gradient, which could accumulate in time, from contributing to errors in the momentu
equation. Second, it implies that is no longer withinO(At?) of u™?, and a nontrivial
approximation of the gradient term in Eq. (10) is required when specifying a bounde
condition foru*. Kim and Moin recognized this fact and argued that applyihg= u"+* +
AtV¢" at the boundary (i.e. approximating the unknown funcgén' with the previous
valueg") is sufficient to obtain second-order accuracy in the velocities. Later, we show usi
normal mode analysis that this is also a necessary condition for second-order accurac
this method.

Although the pressure is not required in order to advance the velocity, the authors in |
mention the relatiorp = ¢ — (vAt/2)V?2¢. This must be interpreted as the time-centerec
pressure

P2 — gl Lﬁtvz¢n+l (24)
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to be consistent with the second-order Crank—Nicolson method. If both the pressure
¢ are evaluated at the same time level (i.e., if the right-hand side of Eq. (24) is set ec
to p"*1), the resulting pressure is only first-order accurate, as reported by Strikwerda
Lee [36]. We demonstrate in Section 4 tipdt ¥/ in Eq. (24) approximates the pressure at
t"*+1/2 with second-order accuracy in time.

2.3. Botella, Perot, Hugues, and Randriamampianina

Although the following three methods are not analyzed in the normal mode analysis
numerical results in this paper, they have similar characteristics to the projection meth
mentioned above. Botella [7] and Perot [32] both propose methods that reduce the trunce
error associated with the computatiordyp in the momentum equation by adding additional
correction terms to the basic method. The second-order method proposed by Perot
g = 0 and replaces the pressure-update formula (12) with

<| n "ZNV2> P2 = gl (25)

This method still only obtains first-order convergence in the pressure 8in®gp = 0 is
the boundary condition used for the elliptic pressure equation.

Botella proposes using a third-order integration formula for the evaluation of the tir
derivative in the momentum equation although this does not affect the truncation el
associated with the pressure term. In the present context, a second-order version of Bot
method would use

q=p"Y24¢n (26)

which is in fact a time extrapolation of the pressure, while the projection-update (10) wo
be

un+1 — u* _ Atv(¢n+l _ ¢n)’ (27)
and the pressure-update equation
pn+l/2 — pn—1/2 + ¢n+1. (28)

Botella is able to demonstrate higher-order convergence for the velocity and the pres
in anL? norm, although it is apparent from the pressure-update formula (28) that with tl
method,fi - V p, must stay constant, and hence inaccurate, on the boundarywi$ = 0

is used as a boundary condition for the projection step.

Hugues and Randriamampianina [22] recognized that using a pressure-update equ
such as Eq. (28) results in an inconsistent normal pressure gradient at boundaries. To
this, they proposed a second-order method using an Adams—Bashforth/BDF semi-imp
method in time in which a Poisson problem is first solved for the provisional presst
gradient appearing in the momentum equation. The right side and boundary condition:s
the Poisson equation are extrapolated in time. Hence, in the present cqnied)d be
found by the solution of an additional Poisson problem. The provisional pressure is tl
updated with an equation analogous to Eq. (28). We speculate that an additional tert
the pressure-update analogous to Eq. (13) would lead to a more accurate pressure fo
method.
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2.4. E and Liu

E and Liu [15] have used the method described in Eqg. (19), in which the bounds
condition form"*! was given by Eg. (20) with the term"** approximated by 2" —
x"L. This idea of extrapolating boundary values was used previously by Karniada
et al. [23] to approximate the pressure boundary condition in the context of a pressu
Poisson method. E and Liu demonstrate that their method is second-ordexnrfdg. Here
we demonstrate second-order convergence in numerical tegtafaV p and demonstrate
that extrapolation in time is in fact necessary for this accuracy; i.e., using only alagged ve
x" leads tofirst-order accuracy. The projection method results reported in [15] were obtail
using the traditional pressure update of Eq. (23), which should lead to a reduced orde
accuracy inp. A loss in accuracy in the velocities is also reported which is attributed to tt
approximate projection employed. Here we demonstrate that full second-order accurac
all variables can be calculated using an approximate projection without any special sps
differencing (at least in the simple geometry considered).

3. BOUNDARY CONDITIONS

The numerical methods presented in the last section require the solution of impl
equations for which boundary conditions must be imposed. Besides the implicit moment
Egs. (8) and (19), the implementation of a projection also requires a boundary conditi
The choice of these boundary conditions will now be discussed. For ease of presenta
the equations will be considered in two dimensions only. Extensions to three dimensi
are straightforward.

The most common way in which a projectiéhis specified is by the solution of a
Poisson equation. Specifically, t= v 4+ V¢ be the Hodge decomposition of where
v is divergence-free and required to satigfy, = vy, (by the divergence theoremy must
satisfy [,, vo = 0). Then to findv from w we let

v=PWwW) =w-— V¢,
where

V)=V -w
R R (29)
N-Velpg = N- (W — Vp).

It is important to note that the projectié¢has defined implies thatautomatically satisfies
the normal boundary condition - v|;o = fi - vy, but the tangential condition -'v|;q =
7 - vp will only be satisfied ifw is such that ™ w|yq = T - (Vy + V@ |3q). This is a critical
observation that impacts the choice of boundary conditions for Egs. (8) and (19), since
each case, the projection of the solution of this equation is expected to satisfy both nor
and tangential boundary conditions.

Consider first the gauge method in Egs. (19) and (20). Suppose we arbitrarily set
boundary conditions for the momentum equation in terms &b be

m** s = mptt, (30)
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for somem’”rl We now consider choosing boundary conditions in the elliptic equation fi

"1 in such a way that the updated velocity will satisfi?* |, = u,. Unfortunately, this
is not possible since the elliptic problem accepts only one boundary condition; e.g.,

A 1 1 1
A-Vx"™ e =0 (mptt —upt).

By the compatibility constraini"! = m™! — v "1, the normal component of the up-
dated velocity will be correct. The tangential componena'sf, on the other hand, will
satisfy

n+1

- 1
TuM g =7 (Mptt — Vi "ag),

which can only be correct 'th*l had been chosen originally to satisfy

7. mg+1 —7. (UB+1 + VXn+1|m)_
This equation involveg "1, which is unknown at the timemj** must be set, and hence
is the discrete manifestation of the coupling between the boundary conditions dad
Vx mentioned in the Introduction. Although unknow¥ix " can be approximated by
extrapolating the values from previous time steps as proposed by E and Liu [15]. In
next section it is shown that this extrapolatiomicessaryor the resulting velocity and
pressure to be second-order accurate in the maximum norm.

Next consider the boundary conditions for the pressure-free projection method in Eq.
with the choiceg = 0. As mentioned before, one step of the pressure-free method is ide
tical to the first time step of the gauge metho®if is initially set to zero withu* taking
the place ofm. Hence it becomes clear how one might treat the boundary conditions
such a projection method. Specifically, in the boundary condiiart), the normal piece
fi - u* appears to be arbitrary since the normal boundary conditiom"dhis implied by
the projection. A convenient choice s u*|yq = fi - ug+l since by Eq. (29), it implies
homogeneous Neumann boundary conditiongfor in the subsequent projection. How-
ever, since the necessity for a boundary conditiorufaarises from the parabolic nature of
Eqg. (8), one can imagine that the choice of boundary condition*faevill affect the nature
of the functionu* near the boundary. Since, by Eq. (24), the pressure is determined frot

pﬂ+1/2 ¢n+1 V . U*, (31)

the behavior of the pressure near the boundary will also be affected by the choice
this boundary condition. Indeed, as discussed in Section 6.4, we observe in numel
experiments that unless the boundary conditiorufas chosen in such a way as to ka€p
smooth up to the boundary, the pressure may not be recovet@t?) by this method.
The situation for the tangential boundary conditionfbis clearer. This boundary condition
must be chosen so that whehis projected to yieldi"1, the tangential boundary condition
onu™1 s satisfied.

In [24] a Taylor series argument is used to show that using a lagged valpénahe
boundary conditionr “u*|yo =7 - (un+1 + AtV¢"|3q) is enough to ensure second-order
accuracy. Itis also possible to estim&tg"1|,, more accurately by extrapolation in time.
The continuity ofV¢ in time is implied by the fact that* satisfies an elliptic equation with
continuous forcing andt Ve is simply (I — Pyu*.
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Finally, consider the momentum equation (8) with the choiee p"~%2. Again there is
some freedom in choosing the boundary valudifou* since the projection will ensure that
A - uMtlyq = A - U™ Since in this case the goal is to havebe a good approximation
to u™?, the correct choice is “u*|yq = 7 - ug“. As before, the tangential piece should
satisfy 7 U*|;o = 7 - (UDT 4+ AtVe™1;0), but if u* is a good approximation ta™?,
then? - V¢"+1|;o may be negligibly small and "u*|; = % - up ™ should suffice. A simple
Taylor series argument along the lines of that in [24] can be used to show"tHais a
second-order accurate approximatiorutoat the boundary [40]. Another possibility is to
use a lagged value 6f¢ as in the Kim and Moin scheme or to extrapolate in time. Thes
choices will be analyzed in detail in the following section.

4. NORMAL MODE ANALYSIS

The original Dirichlet problem as stated in Egs. (1)—(3) requires only a condition on tl
velocity u on the boundary. In two dimensions, this consists of two scalar conditions whi
can be thought of as conditions on the normal and tangential components of the velo
As discussed in the previous section, for the fractional step methods considered in
paper, three boundary conditions are required, two for the implicit momentum equat
and one for the projection. The purpose of this section is to establish the impact of vari
boundary condition possibilities on the overall accuracy of semi-implicit methods for gau
and projection formulations for the incompressible Navier—Stokes equations. In particu
necessary conditions for second-order accuracy are developed.

4.1. Reference Solution

It is most convenient to analyze the accuracy of these methods by using normal m
analysis (see, e.g., [14-16, 20, 21, 23, 29, 36]). Since the essential details we are conce
with result from the interaction of the boundary conditions with the Crank—Nicolson tin
stepping of the viscous terms, the advective derivative term can be neglected, and we
therefore consider the simpler problem of the unsteady Stokes equations in the peri
semiinfinite stripQ = [0, co) x [—m, ], for t > 0. This domain was considered in [36]
and makes the analysis easier than a channel with two boundaries. The unsteady Si
equations in primitive variables are given by

U =—-Vp+vVvau
(32)
V.-u=0
and are considered with boundary conditions
u@©O,y,t) =a, v(0,y,t) =8.

By taking the divergence of the Stokes equation, one derives an elliptic equation for
pressure; the resulting system requires the additional condition that the velocity diverge
is zero on the boundary [9, 21, 29]:

U =—-Vp+vVau inQ

(33)
V2p=0 inQ

u©O,y,t) =, v, y,t) =8, V-u=0 o0noQ. (34)
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Taking the Fourier transform ip and the Laplace transform tHeads to the equivalences
o — s and dy — ik. Denoting transformed variables with hats, the previous equatio
become

V(=32 + p?)a
v(—af + Mz)f)
(—07 +K*)p

—dxP
—ikp (35)
0,

wherek is the wavenumber in theg-direction,s is the Laplace transform variable, ands
the root with positive real part gi? = k? 4+ s/v. Bounded solutions of Eq. (34) take the
form

0= uer 4 K perinx

b =Ver* - —peglkk (36)

The undetermined constantls V, and P are found by applying the boundary conditions
in Eq. (34), which leads to the system

1 0 |[Kk|/s U a
0 1 —ik/s (v>= B, (37)
—n ik 0 P 0
whose solution is given by
U= L:'kD(—WWHkB)
—iv(u + [KDu QRPN
V=——"—"—|—-—— 38
s (wﬂ+m) 9
po YtlkD e ikp).
Ik|
The functional form of the solution is then given by
0= L‘: KD ke +ikpre + 7‘)(“: KD (15 — ik pyehe
- v(u KD ipk, N oux v +IkD) koo A ik
== - k lkix 39
v S <|k| oz—i—u,B)e S |k|(lua+ B)e (39)
oov(p KD s
p= %(Ma —ikp)e ki,

This will be used as the reference or “true” solution in the discussion that follows.



476 BROWN, CORTEZ, AND MINION

4.2. The Gauge Method

In[15], E and Liu present a normal mode analysis for their first-order version of the gat
method. In this section, we consider the second-order-in-time formulation and include
the analysis the extrapolation of the boundary values.afetm = (m;, m,) and consider
a method of the form

m*l—m" oy
X — Evz(mﬂ-HL + ml"l)
V2Xn+l - V. mn+1 (40)

UMl = mtt gL

with boundary conditions at = 0 given by

mtt =y
mytt = B+ dyx (41)
"=y -a,

wheredy ¥ is an approximation téy x "+*. The first two boundary conditions are imposed on
the momentum equation, and the last boundary condition is used with the elliptic equa
for x. If 9y x"** were known before the elliptic problem was solved, then one would expe
to recover the correct solution.

As before, taking the Fourier and Laplace transforms and denotiag®! leads to the
system

(—0Z + i?) iy
(=% + p?)rmy
(-2 + k%) x = —dyihy — ik,

=0
=0 (42)

where 12 = k? + p/v, with p = 2(k — 1)/At(x + 1) = s+ O(sAt?). Note also that
thereforeu = u + O(s?At?). The solution has the form

iy = Ae X
M, = Be ™ (43)
1 _ N
= ,(Pe*“qx — pvmy + |kvm2).
0

For the boundary condition involving éhe could use a lagged valye="x" or the second-
order extrapolation formulg = 2x" — x"~1. In either case one arrives at the system

p?v —ikpy =kl [A Py — @)
ikov kv +Co —ik | [B|l=]| cop |, (44)
1 0 0 P %

whereC =k = 1+ O(sAt) when ¥ = x" andC = «?/(2 — 1) = 1+ O(s?At?) with
the extrapolation formula.



ACCURATE PROJECTION METHODS 477

Solving the system foA, B, andP and settindl = m; — dxx andv = m, — iky yields

v(p + [KI) +V(M+|k|) L

(—|K|& +ikB)e (na —ikpe M L oC — 1)

)
Il

<>

_ 2t k) (ﬁa + uB) g VUTIKD K e kpre Lo — 1),
0 K| o 1N

Observing thaip = s+ O(s*At?), it follows that the reference solution is recovered to
O(At?) as long as the extrapolated boundary condition fois used. Using a lagged
boundary valug; = x" would result in arO(At) approximation. Also note that using the
pressure Eqg. (21) leads to
k A

p= "V ~ ikpre e OC - ).
Thus the gauge method with extrapolated boundary conditions is overall a second-o
accurate method.

4.3. Projection Methods

In order to obtain an accurate solution to the incompressible Navier—Stokes equat
using the projection methods described by Eqgs. (8)—(12), one either must devise a proce
foraccurately approximating the boundary conditiohs- AtV¢ = («, 8)T orreformulate
the problem in such a way that is a sufficiently accurate approximationuoln the latter
case, the boundary condition$ = («, 8)" will then be accurate approximations to the
original conditionsu = («a, 8)7, and one expects to obtain overall accuracy in the metho
Inageneral formulation of the projection methods described before, the momentum eque
is given by

u* —un

At

+ Vg = gvz(u” U, (45)

whereVq is related to the pressure. The velocity satisiesu"* = 0 and is given by
u™t = ur — Atve"tt (46)
and the pressure is updated with
pn-ﬁ-1/2 =q+ L¢n+l’ (47)

wherelL is a linear differential operator.
Referring to Egs. (8), (10), and (12), three combinationg ahdL will be considered:

1. aprojection method similar to that of Bell, Colella, and Glaz, describegbyp"—/2
andL = |. This combination will be referred to as projection method | (Pml),

2. asimilar projection method that uses the improved pressure-update formula Eq. (
This combination corresponds tp= p"Y2 andL = | — 3 V2 and will be referred to
as Pmll,

3. a projection method similar to that of Kim and Moin’s, which corresponag£00
andL =1 — “—gtvz. This method will be referred to as Pmlil.
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For the normal mode analysis, we first eliminate the variabley substituting Eq. (46)
into Eq. (45) to get

untl _gyn

At

At
+ V"4 Vg = SVEUT U + VRV,

After taking Fourier and Laplace transforms, det= €%t and definep by

G =«""Q)4. (48)
whereQ(«x) depends on the choice gfin Eqg. (45) and_ in Eq. (47). This leads to
_ 2QU0) -

_ At “
024+ )0 = ——— (=2 + AV vé, 49
(o)== o (A W) Ve — Ve (49)
whereu anda are defined by
20k — 1) 2

—2 2 2 2

=k , =— AM=k'+—. 50
# AP e D HN: (50)

Taking the divergence of Eq. (49) leads to the equatiorpfor
2Q(x) -

024224+ =2 (=92 4+K)p =0
|: X + + VAt :| ( X + )¢

so thatp can be written ag = ¢1 + ¢, where

+ 2= 0. (51)

(82 +K%)$1 =0, {—85 +22 ZQ(K)] b

We note thatf)l contains the piece of the solution that we expect to have; how&éyer,
represents a spurious mode in the potertjakhich should not appear in the velocities or
the pressure. Itis easy to show tfiatoes not contain this spurious mode. This can be see
by writing ¢ on the right-hand side of Eq. (49) as the sungefaindé, and noticing from
Eq. (51) thatQ(x)¢2 = — 5L (—d2 + 12)¢. All terms with ¢, drop out, resulting in the
equation

2 (14 Qk)) _ -
BN Vo,

o

(~32 + i)

from which we deduce the following form for the solutions:

¢ = Ae X 1 g, (52)
R _ax 214+ Q(x)) _

_ X Ikx
0=Ueg = S kA (53)
5= veix _ XKAF QUL o olkix
1=Vet D) ik Aje™ ", (54)

From Eqgs. (47) and (48) we find that the pressure is given by

p = «¥2(Q) + L)o. (55)
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The last equation and the choicegéletermine the operat@(«x) andés.
For example, in Pml, wherg = p"~¥? andL = |, we have that

K"QU) = § = k" V2P = k"(Qx) + L),

from which we find thaQ(x) = K—fl and¢32 = Aze—ix, wherei? = k2 + In view

of Eq. (55) this implies that the pressure is given by

2%
vAt(k—1) "

which contains the spurious mode.
On the other hand, consider Pmil, whege= p"*/2, L = | — *2'V2 and hence
Lo = 254 (—d2 + 12) . Now we have that

.~ Lo VAt s o
= = —d A ,
QP = 7 = 5o =gy (T +37)9
which implies thath, = A,e** and
32 32
b= Lo = Age KX
P Kk—1 ¢ k—1 e

so that the pressure does not contain the spurious gade

Pmlll usesq =0 andL = | — ”—gtv? In this caseQ(x) = 0 so thatp, = Ae ** and
p = kY2Lp = kY2151 (32 + 42) ¢, which is again the operator that eliminates the spu
rious mode.

Considering Egs. (52)—(54), all of the methods discussed here lead to

qg = Ale"k"‘ + Ae X (56)
_ k

=Ue ™+ R(K)%Ale_lklx (57)
_ ik

b=Ve ™ — R(K);Ale_‘k‘x, (58)

where the variableR(x), y, andF («), related by

2c (14 Q(k)) 5 12 2
Rix) = ————= d =k"+ —F
(x) A+ and y + DAL (),
depend on the method.
4.3.1. The boundary conditionsFor the normal mode analysis of the projection meth.
ods, the following boundary conditions are applied,
U'=a, ¢x=0, v*=p+Atd,, andux+vy =0, (59)

whereg is an approximation t¢"*. Three choices fop are considered:

¢ = 0 < zeroth order
é = ¢" < first order

¢ =2¢" — ¢"* < second order
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After transformation, the boundary conditions in Eq. (59) become
O=&, ¢x=0, D+ikAtB(k)¢ = B, andly+ikd =0, (60)

whereB(k) equals 1(x — 1)/«, or (k — 1)2/x2 depending on the choice ¢f

4.3.2. Solving for the coefficientsSince the boundary conditigh = 0 simply implies
thaty A, = —|k| Ay, andly + ikd = 0 impliesikV = U, we focus on determining the
coefficientdJ andA;. Inserting the boundary conditions into Egs. (56)—(58) and eliminatin
V and A; lead to the equations

R(x) B 2F (k) B(x)

A; = ikB
b o+ kTP

wU + k2

k
U+ RN A =g
o

from which we find that

_ v+ KD(pa — ikp) F(c)B(x)] ™
A= T KR P+C RW)] (61)
(i + KK — &Ik | . Hmbq[ Hmbql
U= C 1+C————~= 62
’ TR T RO (62)
__in
V=--U (63)
Ay = —MAL (64)
14

where

o _ 2IkiGz + kD
y(y + kD)

The accuracy of this solution is considered next.

4.3.3. Results. Sincep = s+ O(s®At?), itis clear that for the solution corresponding
to the coefficients in Egs. (61)—(64) to be witli At?) of the reference solution (38), the
term

F(x)B(x)
R(x)

must be®(At?). This represents the coupling between the pressure gradient approximat
in the momentum equation and the boundary conditions. The chotgarnd the pressure-
update operatot determineF (x) and R(x), while the boundary conditions determine
B(k).

One can use the fact thaty + |k|) > y? = %A'f”“ to show that

C

F(x)B(k) _ AtB(k)F (k)
Rao = 2K+ KD m e e Tk
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Therefore it is sufficient to show that

B(x)F (x) .
R(O[2F (k) + K2vAt] Oan.

First consider the termR(«x) which also appears in the denominatorAf For Pml and
Pmll (wheng = p"~%/?), one would expeap to be at least as small &(At). For Pmill,
whereq = 0, one would expeap to beO(1). (Notice that in Eq. (46)y " appears with
a factorAt.) This is confirmed by recalling th&(x) = 2« (1 + Q(x))/(1 + «), so that

2

~ Ot
p— ( )

q=p""? & Rk) =

2
g=0¢% R(K)=—K+1~O(1).

By examining the size of the remaining terms, the following results are evident:

e Pmluseg) = p"*2andL = |. This leads td~ (v) = *; and

B(x) F (k)
R()[2F (k) + k2v At]

~ B(k) O(AL).

Therefore is is only necessary that«) = O(1), which allows the use of the boundary
conditionv* = B (corresponding tg = 0). However, as explained before, the pressure i
given by

which includes the coefficient of the spurious mc}ﬂéAz ~ O(vAt). Thus, the expected
convergence rate for the velocitiex?At?), while the pressure is only expected to be first
order in time with this method.

e For Pmll, which uses) = p"~%/2 and the improved pressure-update formula=
| — 22'V2, we have thaF (x) = 1 and

B(x) F (x)
R(x)[2F (k) + k2vAt]

~ B(x) O(Al)

as before. Again, it is sufficient to usé = 8 as a boundary condition. In this case the
pressure is given by

which removes the spurious mode. For this method, both the velogjtiesnd the pressure
p are expected to converge to second order in time.
e For Pmlllwithq =0 andL = | — *5'V2 againF = 1, but

B()F(x)
R()[2F (k) + k2v At]

~ B(x) O(1).
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Itis therefore required thd(x) = O(At) for second-order accuracy. Hence the boundar
conditionv* = B 4 Atg, must use at least the lagged vafhie- ¢". This is true regardless
of the choice of the pressure-update operatsimce the pressure is not needed to advanc
the solution. The operatdr only affects the pressure (if one were to compute it) since
p = «Y2L¢. SoifL = | thenp will contain the spurious mode = X resulting inO(vAt)
errors.IfL =1 — VTNVZthenpwill not contain the spurious mode and will be second-orde
accurate in time, as will be the velocity componeamenduv.

5. THE NUMERICAL METHODS

This section describes the numerical methods that will be applied to the full Navie
Stokes equations. Most of the motivation for the form of the numerical methods can
inferred from the earlier sections of the paper; hence only the details are presented he

In the following, all the spatial differential operators with a subsdripte assumed to be
centered second-order discrete approximations to the continuous counterparts. In all the
merical methods, the time-centered advective derivative V)u]"t/2 is computed using
second-order centered differences in space and second-order extrapolation in time [2<

5.1. The Gauge Method

The following method is essentially the second-order gauge method proposed by E
Liu in [15]. Equation (15) is discretized using the second-order, semiimplicit formula

I,nn+1 -m"

T =M - viu™v2 4 vz mn o mt, (65)
At 2

The boundary conditions, consistent with the compatibility condiiohtt — V x"1)|,q =

ultl are

n+1 n+1
-m"™ o =n-up

o>

(¥

Mg =2 Ul + 2 V(2% — X" Dlsa-

The velocity at the end of the time step is defined by

un+1 — mn+1 -V Xn+17 (66)

wherex " is the solution of
VEx" = Vp-m™ inQ (67)
A-Vx" =0 onaQ. (68)

If needed, the pressure is computed with Eq. (21):

n+1 n

2 _ X T X Vgee nl n 69
p Al 5 VO A . (69)
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5.2. Projection Methods with a Lagged Pressure Term

The method first described in this section is referred to as Pml. It is similar to the mett
developed by Belet al. [5, 6], except in the treatment of the advective derivatives whic
are computed as in [24] with a second-order Adams—Bashforth formula.

The first step of the projection method is found by solving

u* —un
At

i Vpn_l/z _ —[(U . Vh)u]n+l/2 + %V§(Un + u*) (70)

for the intermediate field* with boundary conditions

* _ N+l
u =u, .

Next,u™*! is recovered from the projection af by solving
AtVZH"™ = V.U inQ (71)
A- Vit =0 onaQ (72)

and settingi™! = u* — AtVpe"tL,
The new pressure is computed as in [6, 39] by

Vh pn+1/2 — Vh pn—l/2 + vh¢n+1. (73)

As discussed before, this formula is not consistent with a second-order discretizatior
the Navier—Stokes equations since, due to Eq. (72), the normal component of the pres
gradient will remain constant in time at the boundary.

A second implementation of the method just described can be made by utilizing the cor
pressure update given by Eq. (13). Specifically, Egs. (70)—(72) are used in combination

At
Vhp™Y2 = v p" Y2 1 vt — %thﬁqb’”l. (74)

This form of the projection method is projection method Il (Pmll).

5.3. A Projection Method without Pressure Gradient

The method presented in this section is referred to as Pmlll. It is similar to the mett
of Kim and Moin [24], but uses a different spatial discretization and a slightly differel
treatment of the boundary conditions. The momentum equation is discretized by

u* —un

At

Vv
= —[(u- Vhu]" 2 4 Evﬁ(u" +u%) (75)
and we first consider boundary conditions

f - U*|39 =h- UBJrl

(b

Uae =T - (Up™ 4+ AtVig") [,

As before,u™?! = P(u*); i.e., u™! = u* — AtV,¢"1, where ¢! satisfies Egs. (71)
and (72).
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The pressure-update equation is now

At
Vh pn+l/2 — Vh ¢n+l _ VTVh Vﬁ ¢n+l’ (76)

which is Eq. (74) without the terri¥ p"~1/2,

5.4. Additional Numerical Details

The numerical implementation of the projections used in the methods requires the
Poisson problem be solved (see the beginning of Section 3). In these problems, the Laple
is approximated with a standard five-point stencil and the divergence and gradient v
second-order centered differences. This combination produces an approximate rather
an exact projection operator in the sense that projected velocities only satisfy a disc
divergence constraint to truncation error [4]. Approximate projection methods have beca
increasingly popular in recent years, but the ramifications of using approximate projecti
are not well understood, although some work has been done for the case of inviscid f
without boundaries [2].

Since the test problems studied in the next section are all set in a periodic channel,
inversion of the Laplacian in the projection is made efficient by first taking the discre
Fourier transform of the equation in thedirection. This results ilN one-dimensional
linear systems which are solved with a direct method. The system corresponding to
zeroth wave number is singular since the overall solution is determined only up to
arbitrary constant. This system is augmented with an additional constraint on the sun
unknowns (see [19] for details).

In the numerical methods presented above, extrapolation in time is used to compute
time-centered advective derivatives as well as the tangential boundary conditions for
implicit treatment of the momentum equation. Since these terms cannot be extrapolate
the first time step, an iterative procedure is employed. For example, for the gauge met
the iteration can be written in two steps,

ml,kA_t m° ~ [ Vh)U]l/z’k T gvﬁ(mo + ml,k)
A-mt*=h.uf
and
z.m=2. vt 2.ul onaq
followed by

V2 bk = v, - mbk

A-Vhxt =0 oni.

To begin, x1% = x°. The advective derivative term is reset each iteration by taking th
average of the derivatives of andu’X. The iteration for the projection method is done
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in the analogous manner. The number of iterations is arbitrarily set to 5 for the first s
and 2 for the second. This iterative procedure could be used at every time step rather
extrapolation, but at an additional computational cost.

For the projection method wherein the lagged pressure appears in the momentum e
tion, the initial pressure is used for this term in the first time step. It is calculated by solvi
the Poisson problem which results from taking the divergence of the momentum equat

When calculating finite differences near solid wall boundaries, standard stencils car
be used. When calculating - u* in the projection and the correction terms in the pressure
update equations, values of the particular differenced quantity are calculated at boun
points using quadratic extrapolation from the first three interior values. Since the expl
advective and diffusive terms in the momentum equation only appear at interior point:
the right-hand side of the equation fot or (m"*1), these terms are not needed at the
boundary.

A concern relating to the fact that the tangential component of the velocity bound:
condition is not satisfied exactly remains to be addressed. For example, in projection me
l, T - Vho"t1is not constrained at the boundary; hence

2. Un+1|asz —z. (ungl _ Ach¢”+1) ’asz’
which is in error byAt? - Vo™, An analogous error occurs in each of the other method.
One way to address this is to simply reset the tangential component of velocity to the cor
value at the end of each time step (see, e.g., Strikwerda and Lee [36]). Another choic
to simply let the values at the boundary remain as computed. A potential problem w
using the first approach is that it could reduce the smoothnessrafreasing the error
when explicit differences are taken at the points just inside the boundary (especially in
diffusive terms). For this reason a combination of both strategies is used here. When
derivatives which are normal to the boundary are calculated, the nonaltered form of
velocity is used; however, the tangential velocity itself is reset at the boundary after e
time step. In the test problems presented, the alternative strategies produced similar re:
A related discussion can be found in [33].

6. NUMERICAL RESULTS

In this section numerical examples are presented which confirm the validity of the norr
mode analysis presented in Section 4 for the gauge and projection methods. Two prob|
are considered, one which uses an analytical forcing to yield an exact solution and
which is forced only by the motion of one boundary. The test problems are set in a char
with periodic boundary conditions in thedirection and no-flow boundaries yat= 0 and
y = 1. This geometry is the simplest setting in which to consider slip boundary conditiol
A no-slip condition is prescribed gt= 0, while a nontrivial slip condition is specified at
y = 1. Results from more complicated geometries will be reported in subsequent work

In order for the temporal errors predicted in the normal mode analysis to be evident,
numerical experiments must be designed with the following considerations in mind.

1. The temporal errors should not be dominated by spatial error, therefore the probl
considered use fine grids and smooth flows.

2. The pressure should have a nontrivial normal gradient at solid wall boundaries in
test problems chosen (as normally is the case in applications). If the normal pressure gra
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is compelled to remain zero by the application of a forcing term, then the inconsister
in the pressure gradient in projection method | and those in [5, 7, 32] cannot be d
inguished.

3. Since the first-order temporal error terms for the pressure in the normal mode anal
are scaled by the viscosity, it is important that the viscosity be large enough compare!
the grid size so thahx? « vAt.

4. The analysis is applicable to unsteady flow. The problems chosen have nontri
spatial and temporal structure.

6.1. Forced Flow

In the first example, the Navier—Stokes equations are augmented with a forcing tern
order for the solution to be

U = coS2r (X — w(t))(3y* — 2y)

v = 27 sin2r (X — w(t)Y2(y — 1)

p= —wz/f:) sin2r (X — w(t)))(sin2ry) — 2ry + )
—veog2r (X — w (1)) (—2siN2ry) + 2y — 1)

with o (t) = 1 + sin(27t?). In terms of the gauge method variables, this solution corre
sponds to

m; = cog 2w (X — a)(t)))(3y2 —2y) — % sin(2r (X — w(1)))(sin(2ry) — 2y + )
m, = 27 sinr (X — o()))Y*(y — 1) + % cog2r (X — w(t)))(cos2ry) — 1)

1
¢=-— co2n (X — w(t)))(sin2ry) — 2wy + 7).
4

The viscosity is set to = 1, which corresponds to a Reynolds number of 1 since th
velocity is of unit magnitude. A uniform time step aft = h/2 is used corresponding to
a CFL number of 12. Errors are calculated at time 0.5 in the bathand L, norms
for N x N grids with N equal to 192, 256, and 384. The errors for theomponent of
velocity are displayed in Table | which confirms that each method is producing second-or
accurate solutions farin both thel. ; andL ., norm. The results for are similar and are not
shown.

Next, the accuracy of the pressure is investigated. The normal mode analysis predicts
projection method | should display only first-order convergence in the pressure. The res
the methods should be second-order accurate. Table Il shows this to be the case. Nott
the L, norm of the error for projection method | is much larger thanlth@orm. Figure 1
shows three profiles of the pressure error for projection method | from the 25®% and
384 x 384 runs corresponding to valuesof& 3/16, 6/16, and 916. These profiles shows
that the first-order error appears as boundary layer. The graphs show the error nea
bottom boundary where no flow and no slip conditions are specified. Another bound
layer of similar shape and magnitude appears at the top of the domain.
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TABLE |
Errors in the u-Component of Velocity for the Forced Flow Test Problem

Errors in theu velocity

192 x 192 256x 256 384x 384 Rate
Gauge L, 1.46e-4 8.25e-5 3.68e-5 1.99
Lo 7.73e-4 4.44e-4 2.02e-4 1.94
Pml Lq 7.53e-5 4.28e-5 1.91e-5 1.99
Lo 3.63e-4 2.13e-4 9.83e-5 1.90
Pmil [ 7.25e-5 4.15e-5 1.87e-5 1.97
Lo 3.38¢e-4 2.0le-4 9.46e-5 1.86
Pmlll [ 8.28e-5 4.67e-5 2.08e-5 1.99
Lo 3.38e-4 2.0le-4 9.46e-5 1.86

Note.The rates were computed from the errors in the 53856 and 384x 384 grids.

6.2. Necessity for Accurate Boundary Conditions foru*

One of the important results from the normal mode analysis is the required accuracy in
approximation of the tangential boundary conditiond or m"** for the gauge method).
To illustrate this, the forced flow problem was recomputed using a different tangen
boundary condition foa* (or m™+1) for each method. The specific choices for the boundar
conditions, as well as a summary of the errors which appear in Tables Il and IV are contai
in the points below.

e For the impulse method, the normal mode analysis predictg ti@t** must be ap-
proximated with extrapolation to yield second-order accuracy. For this test, the lagged ve
7. Vx"isusedinstead, which resultsin aloss of accuracy in both the velocities and press

e For projection method I, the usual boundary condition i&* = 0. For this test, the
more accurate lagged valae V¢" is used. Although this choice decreases the size of th
errors somewhat, the order of the method is not changed. In particular, since the pres
is still updated using the inconsistent Eq. (23), the pressure is only first-order accurate |
the boundary.

TABLE Il
Errors the Pressure for the Forced Flow Test Problem

Errors in the pressure

192x 192 256x 256 384x 384 Rate

Gauge L, 2.57e-3 1.44e-3 6.40e-4 2.00
Lo 1.50e-2 8.47e-3 3.78e-3 1.99
Pml Li 2.91e-3 1.70e-3 7.83e-4 1.91
Lo 2.55e-2 1.73e-2 1.04e-2 1.26
Pmil [ 1.55e-3 8.94e-4 4.07e-4 1.94
Lo 9.65e-3 5.56e-3 2.53e-3 1.94
Pmlll [ 1.58e-3 9.15e-4 4.16e-4 1.94
Lo 1.09e-2 6.33e-3 2.94e-3 1.89

Note.The rates were computed from the errors in the 25856 and
384 x 384 grids.
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Boundary layer errors in pressure
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FIG. 1. First-order boundary layer error for projection method I. The three graphs correspond to profiles ¢
locations 316, 6/16, and 916. Each graph shows the error from the 25856 () and 384x 384 (0) runs.

e The same lagged boundary condition as above can also be used for projection me
II. Again this choice decreases the size of the errors somewhat, but the order of the me
is not changed.

e For projection method Ill, the normal mode analysis indicates that using the lagg
valuet - V" is necessary for second-order accuracy. For this test, the less accurate boun
conditiont - u* = 0 was used (as is done normally done for Pmll) which results in a loss
accuracy in both the velocities and the pressure. If the original boundary condition is m:
more accurate by extrapolation (as in the gauge method), the result is a reduction in the
but not the order of the errors, much the same as that observed for Pmll above.

6.3. Unforced Flow

A second numerical experiment is now presented in which no forcing term is used. 1
same periodic channel geometry is used with zero boundary conditions at the bottom v



ACCURATE PROJECTION METHODS 489

TABLE 11l
Errors in the u-Component of Velocity for the Forced Flow Test Problem When
Different Boundary Extrapolations Are Used

Errors in theu velocity

192 x 192 256x 256 384x 384 Rate
Gauge L, 3.67e-4 2.58e-4 1.61e-4 1.16
Lo 1.43e-3 9.76e-4 5.92e-4 1.23
Pml Ly 4.84e-5 2.70e-5 1.19e-5 2.02
Lo 1.61le-4 9.09e-5 4.05e-5 1.99
Pmil [ 4.70e-5 2.63e-5 1.16e-5 2.01
Lo 1.59e-4 8.97e-5 3.99e-5 2.00
Pmlll [ 2.43e-3 1.87e-3 1.29e-3 0.92
Lo 2.26e-2 1.76e-2 1.22e-2 0.90

Note.The rates were computed from the errors in the 53856 and 384x 384 grids.

while no-flow and the slip condition-u, = el _1js imposed on the top wall. The initial
conditions for the flow are given by

u = sin(2ry) sirf(rx)
—sin(27X) Sirt(y).

<
I

For the gauge method, the initial conditiom= u is used and the boundary condition
m - i = 0 is specified at both top and bottom boundaries throughout the computation.
Since no exact solution is known, a reference solution was computed on a111BE2
grid, and errors are estimated by the difference from this solution. To assure that the re
ence solution being used is valid, both the impulse method and Pmll were used to com
the solution; it was observed that the maximum difference between the two solutions
1.31 x 10-%inthe velocity, 223 x 10-®in the pressure, and® x 10~°in py. Since thisis

TABLE IV
Errors in the Pressure for the Forced Flow Test Problem When
Different Boundary Extrapolations Are Used

Errors in the pressure

192x 192 256x 256 384x 384 Rate
Gauge Ly 1.80e-3 1.88e-3 1.63e-3 0.35
Lo 1.18e-2 1.14e-2 9.44e-3 0.47
PmlI L, 1.96e-3 1.13e-3 5.21e-4 1.91
Lo 2.09e-2 1.46e-2 9.11e-3 1.16
Pmil L, 6.43e-4 3.47e-4 1.48e-4 2.10
Lo 4.92e-3 2.69e-3 1.17e-3 2.05
Pmlll Ly 5.69e-2 4.33e-2 2.92e-2 0.97
Lo 3.0le-1 2.30e-1 1.56e-1 0.96

Note.The rates were computed from the errors in the 25386 and 384« 384
grids.
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TABLE V
Errors in the u-Component of Velocity for the Unforced
Flow Test Problem

Errors in theu velocity

96 x 96 128x 128 192x 192 Rate

Gauge L, 1.06e-4 5.96e-5 2.64e-5 2.02
L 3.67e-4 2.06e-4 9.05e-5 2.03
Pml Ly 6.91e-5 3.88e-5 1.71e-5 2.03
L 3.38e-4 1.90e-4 8.31e-5 2.04
Pmil Ly 6.90e-5 3.88e-5 1.70e-5 2.03
L 3.34e-4 1.87e-4 8.19%e-5 2.04
Pmlll Ly 9.33e-5 5.48e-5 2.56e-5 1.88
L 3.59e-4 2.08e-4 9.53e-5 1.93

significantly smaller than the estimated errors used to compute the convergence rates, (
the reference solution is justified. It should be noted that the standard Richardson ext
olation techniques commonly employed to estimate convergence rates can be mislea
in this context. In particular, the pressure gradient computed with projection method | w
appear to converge quite nicely at the boundary if only a Richardson procedure is usec
this case, the pressure gradient is converging to the solution of a different equation.

For each method, a solution is computed on986, 128x 128, and 192 192 grids,
and convergence rates are again computed ittrendL ., norms using the 96 96 and
192 x 192 grids. The viscosity is setto= 1/16. Since the flow is not forced except by the
motion of the top wall, the magnitude of thecomponent of the velocity decays rapidly
while that of theu-component increases throughout the run at the top wall. The errc
are estimated at time 0.25 in tilecomponent of the velocity and the pressure when the
maximum value ofi is about 0.86, while the maximum etas dropped to about 0.39. The
time step used iat = 0.5h.

Table V shows the estimated error and convergence rates fenlecity in this problem
while the values for the pressure appear in Table VI.

e The gauge method displays fully second-order accuracy in both the velocity and
pressure as in the first example.

TABLE VI
Errors in the Pressure for the Unforced Flow Test Problem

Errors in the pressure

96 x 96 128x 128 192x 192 Rate

Gauge L, 6.89e-5 3.87e-5 1.72e-5 2.02
Lo 3.37e-4 1.82e-4 7.77e-5 2.13
PmlI Ly 3.82e-5 2.17e-5 9.65e-6 2.00
Lo 1.91e-4 1.53e-4 1.16e-4 0.73
Pmll L, 3.92e-5 2.18e-5 9.47e-6 2.07
Lo 1.83e-4 1.01le-4 4.34e-5 2.09
Pmlll L, 7.43e-5 4.35e-5 2.03e-5 1.88

Lo 1.55e-3 1.10e-3 6.67e-4 1.23
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e Projection method | displays second-order accuracy in the velocity but only first-orc
accuracy in the pressure. As in the first example, the error in the pressure is in the forr
a boundary layer.

e Projection method Il displays fully second-order accuracy in both the velocity and t
pressure as in the first example.

e Unlike the first example, projection method 11l shows a decrease in the convergel
rate for the pressure when measured inlthgnorm. The cause of this is investigated in
the following section.

6.4. A Different Boundary Condition for Projection Method I

It is somewhat surprising that projection method Il does not obtain full second-orc
accuracy for the unforced problem. Some understanding of the cause of the lack of accu
can be gained by considering the discrete divergence of the computed velocity. Sinc
approximate projection is being used, the discrete divergencé wfill not be zero for
any of the methods. Thie; andL ,, norm of the discrete divergence wf computed with
centered differences at time 0.25 is shown for each method in Table VII. Two pertin
points can be made based on the data. First, projection method Il has substantially less
in the divergence ofi"” than the other methods, and this error appears to be converging
zero at a higher rate than the other methods. On the other hand, projection method Il
a first-order error in the divergence af.

The cause of this problem can be traced to the normal boundary condition Adthough
the normal mode analysis indicates that this boundary condition can be chosen arbitr:
subject to the constraint (10), the choice of boundary condition will certainly affect tl
character ofi* near the boundary. Given the evolution equationdfom Pmlll, u* is not
a close approximation to"+?, so choosingi-u* = f- ug“ = 0 for this problem causes
V - u* to be large near the boundary. A surface plovofu* from the 96x 96 run at time
0.125 is displayed in Fig. 2 and clearly shows a pronounced boundary layer.

Recall the relationship betweerand p given in Eq. (76). Using the definition gffrom
Egs. (71) and (72), this can be written as

Vh¢n+l v
Vh pn+l/2 == T - EVh Vh . U*. (77)
TABLE VII

Errors in the Divergence of U for the Unforced Flow Test Problem

Divergence errors

96 x 96 128x 128 192x 192 Rate
Gauge L, 1.11e-3 6.22e-4 2.75e-4 2.01
Lo 3.64e-3 2.05e-3 9.12e-4 2.00
PmlI L, 2.30e-5 1.26e-5 5.52e-6 2.05
Lo 7.99e-4 5.96e-4 3.95e-4 1.01
Pmll L, 9.38e-6 4.30e-6 1.42e-6 2.72
Leo 2.25e-4 1.33e-4 6.10e-5 1.88
Pmlll L, 5.20e-4 3.20e-4 1.58e-4 1.71

Lo 1.19e-2 9.28e-3 5.30e-3 1.16
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FIG. 2. Surface plot oV - u* for projection method IIl at time 0.125. Note the pronounced boundary layer.

Hence, the accuracy of the pressure depends on the behawgr. af. For this problem,
the sharp boundary layer W, - u* directly affects the accuracy of the pressure.

Following this reasoning, it should be the case that a boundary conditidn érwhich
eliminates the boundary layer M, - u* should also eliminate the error in the pressure
To test this hypothesis, the unforced problem was run again using a different bounc
condition. Instead of restricting* at the boundary with a Dirichlet condition, values at the
boundaries are required to satisfy an extrapolation condition. Specifically, the value at
lower wall, vy, must satisfy the “free” boundary condition

O—3Uﬁl+3vi2—vﬁ3zo,

with the obvious counterpart at the top wall. This condition can also be interpreted as
approximation tog%v* =0.

Figure 3 displaysv - u* at time 0.125 using the free boundary condition. The size ©
the boundary layer has decreased an order of magnitude to the size of that in the inte
Convergence results using this new boundary condition are shown in Table VIII. It
clear from the results that the divergencaubthas also been reduced dramatically and is
converging to zero at a rate higher than expected (as in Pmll for this problem). Also,
first-order error in the pressure has been improved to second-order as expected.

The above boundary condition would certainly be more complicated to implement in t
presence of complex geometries and hence may be less desirable in practice. The po
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FIG. 3. Surface plot oV - u* for projection method Il with the free boundary condition. The boundary layer
has been dramatically reduced.

be made is that although the normal boundary conditiomfas mathematically arbitrary,
the choice can affect the accuracy of the numerical solution.

6.5. Smoothness of the Pressure Error

Despite the fact that projection methods Il and Il display optimal convergence rates
the pressure, the pressure error is not a completely smooth function near the solid
boundaries. Figure 4 displays profiles of the pressure error near the top boundary. De:

TABLE VI
Errors in the Unforced Flow Test Problem for Projection Method Il
Using the Free Boundary Condition

Errors for Pmlll with modified boundary value

96 x 96 128x 128 192x 192 Rate
u [ 6.96e-5 3.91e-5 1.72e-5 2.03
Lo 3.21e-4 1.81e-4 8.01e-5 2.02
p L, 3.75e-5 2.12e-5 9.37e-6 2.02
Lo 1.58e-4 9.17e-5 4.22e-5 1.92
div L, 9.31e-5 4.32e-5 1.46e-5 2.67

Lo 1.80e-3 1.08e-3 5.10e-4 1.82
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x10°° Errors in p at top boundary
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FIG. 4. Error in the pressure for the projection method Il on the unforced problem. The three grap
correspond to profiles at locations 316, 6/16, and 916. Each graph shows the error from the 066 (0)
and 192x 192 ¢«) runs.

the slightly irregular shape of the error, the overall size is still converging to zero at
second-order rate.

The lack of smoothness in the pressure can be better observed by examining the «
in py, the component of the pressure gradient normal to the boundary-at. Figure 5
displays profiles of the error ip, near the top boundary. The slight irregularities in the
pressure error create noticeable irregularities in the errpy of

Table IX displays the errors and convergence ratepfdor the unforced flow problem.
Several comments can be made based on the data.
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4 Errors in P, at top boundary
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x=9/16

FIG. 5. Errorin thep, for the projection method Il on the unforced problem. The three graphs correspo

to profiles atx locations 316, 6/16, and 916. Each graph shows the error from thex866 (0) and 192x 192
() runs.

¢ The gauge method displays fully second-order convergenpg.in

¢ Projection method | displays zeroth-order convergenqg, dr the L . norm sincepy
at the boundaries is not allowed to change by the pressure-update equation.

e Both projection methods Il and 11l show fully second-order accuracy for the presst
gradient measured in thie; norm. (Note that Pmlll was computed using the modifiec
boundary condition fof - u*.)

e Both projection methods Il and Ill show a decrease in the observed convergence
for the pressure gradient measured inthgnorm.
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TABLE IX
Errors in py for the Unforced Flow Test Problem

Errorsinp,

96 x 96 128x 128 192x 192 Rate

Gauge Ly 7.06e-4 3.86e-4 1.66e-4 2.10
Ly 8.79%e-3 4.86e-3 2.12e-3 2.07
Pml Ly 9.76e-4 7.32e-4 4.85e-4 1.02
Lo 4.37e-2 4.65e-2 4.90e-2 -0.17
Pmli Ly 3.43e-4 1.87e-4 8.06e-5 2.10
Lo 2.01le-3 1.29e-3 6.90e-4 1.55
Pmlil L, 4.47e-4 2.44e-4 1.05e-4 2.10
Ly 5.52e-3 3.83e-3 2.26e-3 1.30

The cause of the slightly lower convergence rates forghean again be traced to the
lack of smoothness of the Laplacian term in the pressure-update Eq. (74). The fact
the pressure itself is converging at the optimal rate indicates that the drop in converge
rates for the gradient is caused by spatial rather than temporal error. Depending on
implementation, the error in the pressure gradient due to a lack of smoothness in the pres
correction terms could potentially be exacerbated by the presence of complex geomet

7. CONCLUSIONS

The class of incremental pressure projection methods discussed in this paper is che
terized by the choice of three ingredients: the approximation to the pressure gradient t
in the momentum equation, the formula used for the global pressure update during the 1
step, and the boundary conditions. We have shown how the three ingredients are cou
and how they can be combined to yield a fully second-order numerical method.

The boundary conditions one chooses for the intermediate dielchust result in a
second-order approximation 8|, = uﬂ*l. If the conditions fou* are separated into
normal and tangential components, there is apparently some freedom in choosing the no
component since the required boundary condition for the potefirathe projection step
can be adjusted to ensure tifatu™ |, = f - uB*l. However, as demonstrated by the
numerical experiments with Pmlll, the choice of the normal boundary condition can affe
the smoothness af* near the boundary and therefore can also play a role in the accure
with which the pressure is recovered. On the other hand, the tangential componént o
at the boundary cannot be set to an arbitrary value. Instead, it must be chosen in a ma
which ensures that “(U* — Vo™ ) [3o = T - uB*l is approximately satisfied. This can be
accomplished by approximatirige"*, and the accuracy necessary in this approximatiol
differs from method to method.

The methods of Bell, Colella, and Glaz and PmI approximate the pressure gradi
in the momentum equation with a lagged value from the previous time step and us
pressure-update formula which is clearly not consistent with a high-order discretizat
of the Navier—Stokes equations. Despite this inconsistency, the time-discrete normal v
analysis of the unsteady Stokes equations shows these methods are second-order ac
in the velocities even if the approximation Yap"+! in the tangential boundary condition
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for u* is neglected. However, the inconsistency in the pressure-update formula results
first-order error in the pressure which appears as a boundary layer in the numerical re:
presented.

The analysis demonstrates that a simple modification to the pressure-update forn
given by Eq. (13), yields a method which is second-order accurate in both the velocities
the pressure (Pmll). This becomes critically important in applications in which stresse:
other pressure-dependent quantities must be computed at solid walls. In addition, the te
displaying numerical results for the velocities and the pressure indicated that the error:
Pmll are smaller than the errors of the other methods.

Methods similar to Pmlll and that of Kim and Moin completely eliminate the pressu
gradient term from the momentum equation. As a resiilis only a first-order approxima-
tion to the velocity at the end of the time step. Consequen#ly** is O(At), which cannot
be neglected in the tangential boundary conditioruforThe normal mode analysis shows
that using a lagged value ¢, i.e.,7- (U* — VM |yo =T - uE*l, is sufficient to achieve
second-order accuracy. Despite the apparent freedom in choosing the normal boundary
dition for u*, the numerical results performed on the full Navier-Stokes equations rev
that Pmlll suffers from a decrease in accuracy of the pressure near the boundary w
A-u* = A-ulttis used as a boundary condition. Because the computation of the press
in this method depends indirectly on- u*, the choice of boundary condition for* is
important in obtaining an accurate approximation foiNumerical tests suggest that the
boundary condition fou* should be chosen to keép- u* from developing large gradi-
ents near the boundary. One such boundary condition is suggested and shown to re
second-order accuracy in the pressure.

A gauge method that also eliminates the pressure gradient term from the momen
equation was analyzed as well. The gauge method variablequivalent tou* during
the first time step) is not discarded but used throughout the computation. This usu
implies that the difference between' and the fluid velocityu" becomes)(1), requiring
extrapolation in time of in the tangential boundary condition fo"** in order to achieve
second-order accuracy. All numerical tests confirm this result. One can think of the ga
method as a generalization of the projection method. If the varialiekept throughout
the computation, the result is the gauge method. However,iff reset tau at the end of
each time step, the result is a projection method. More generally, one coulchréset
after a number of time steps. It is still an open and interesting question whether there
any significant advantages in using gauge method variables in finite difference method:
incompressible flow.

Several comments should be made concerning the accuracy of the pressure in nume
computations. Quite often, semi-implicit projection methods are applied to problems
which the viscosity is small. Since the predicted first-order errors in the pressure are sc
by v, it is not clear whether the improved pressure-update formula is beneficial in st
situations. Also, the numerical examples presented here were set in a simple computat
domain, and it is possible that there are additional issues to be addressed in cases \
solid wall boundaries contain corners or other features. Finally, in some applications
projection methods, second-order accuracy in the pressure may not be relevant or in <
cases even possible due to the treatment of other terms in the equations (e.g., [11, 31]

The major contributions of this paper are a better understanding of the order of con
gence of certain projection methods, simple modifications to existing methods that elimir
first-order errors in the computed pressure near solid boundaries, and an explanation ¢
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re

lationship between boundary conditions for intermediate quantities and the accurac

the pressure. In applications where an accurate representation of the pressure near
wall boundaries is required, the results in this paper provide an important improvemen
accuracy for a popular class of projection methods.
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