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To construct the finite element method for (1.25), let K}, be a triangula-
tion of 2 as in the previous subsection. The finite element space V}, is defined
by

Vn = {v : v is a continuous function on §? and

is linear on each triangle K € K3} .

Note that the functions in V}, are not required to satisfy any boundary con-
dition. Now, the finite element solution satisfies

Find py € Vi, such that a(ps,v) = (f,v) + (g,v)r YoeVy. (1.28)

Again, for the pure Neumann boundary condition, V;, needs to be modified
to

Vi = {v : v is a continuous function on  and is linear
.on each triangle K € K}, and / vdx = O} .
: Q

As in the last two subsections, (1.28) can be formulated in matrix form,
and an error estimate can be similarly stated under an appropriate smooth-
ness assumption on the solution p that involves its second partial derivatives.

The Poisson equation has been considered in (1.16) and (1.25). More
general partial differential equations will be treated in subsequent sections
and chapters.

1.1.4 Programming Considerations

The essential features of a typical computer program implementing the finite
element method are included in the following parts:

e Input of data such as the domain 2, the right-hand side function f, the
boundary data v and g (cf. (1.25)), and the coefficients that may appear
in a differential problem:;

¢ Construction of the triangulation Kjy;

e Computation and assembly of the stiffness matrix A and the right-hand
side vector f;

¢ Solution of the linear system of algebraic equations Ap = f;

¢ Output of the computational results.
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The data input can be easily implemented in a smiall subroutine. and the
result output depends on the computer system and software the user has.

Here we briefly discuss the other three parts. As an illustration. we focus on
two dimensions.

1.1.4.1 Construction of the Triangulation Ky

The triangulation K, can be constructed from a successive refinement of an
initial coarse partition of 2: fine triangles can be obtained by connecting the
midpoints of edges of coarse triangles, for example. A sequence of uniform
refinements will lead to quasi-uniform grids where the triangles in K, essen-
tially have the same size in all regions of Q (cf. Fig. 1.9). If the boundary T
of € Is a curve, special care needs to be taken of near T (cf. Sect. 1.5).

Fig. 1.9. Uniform refinement

In practical applications. it is often necessary to use triangles in I that
vary considerably in size in different regions of 2. For example. one utilizes
smaller triangles in regions where the exact solution has a fast variation
or where certain derivatives are large: see Fig. 1.10. where a local refinement
strategy is carried out. In this strategy, proper care is taken of in the transition
zone between regions with triangles of different sizes so that a so-called regular
local refinement results (i.e. no vertex of one triangle lies in the inrerior of
an edge of another triangle; see Chap. 6). Methods that automatically refine
grids where needed are called adaptive methods, and will be studied in detail
in Chap. 6.

Let a triangulation A, have M/ nodes and M triangles. The triangulation
can be represented by two arrays Z(2.M) and Z(3. M), where Z(i.j) (i =
1.2) indicates the coordinates of the Jthnode. j = 1.2...., M. and Z(i. k)
(i = 1.2.3) enwmerates the nodes of the kth triangle, k = 1.2.. ... M. An
example is demonstrated in Fig. 1.11. where the triangle numbers are denoted

in circles. For this example. the array Z(3. M) is of the form. where M/ =
M =11
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Fig. 1.10. Nonuniform refinement
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Fig. 1.11. Node and triangle enumeration

If a direct method (Gaussian elimination) is employed to solve the linear
system Ap = f, the nodes should be enumerated in such a way that the band
width of each row in A is as small as possible. This matter will be studied in
Sect. 1.10, in connection with the discussion of solution methods for linear
systems.

In general, when local refinement is involved in a triangulation K h, 1t is
very difficult to enumerate the nodes and triangles efficiently; some strategies
will be given in Chap. 6. For a simple domain Q (e.g., a convex polygonal
§2), it is rather easy to construct and represent a triangulation that utilizes
uniform refinement in the whole domain.

1.1.4.2 Assembly of the Stiffness Matrix

After the triangulation K is constructed, one computes the element stiffness
matrices with entries af]{ given by (1.23). We recall that afg = 0 unless nodes
x; and x; are both vertices of K € K.

For a kth triangle K, Z(m,k) (m = 1,2,3) are the numbers of the
vertices of K, and the element stiffness matrix A%} = (a,’i,m)fn ey 1S OW
calculated as follows: ’

k

Amn = P VCPmVSOn dxv m, n:172737
k

where the (linear) basis function ¢, on Ky satisfies

Pm (xz<
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f,’;=/K
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1 ifm=n,

Xz p) = {o Hm#n.

The right-hand side on K is computed by

ffl'::l: fem dx, m=12,3.
Ky

Note that m and n are the local numbers of the three vertices of Ky, while i
and j used in (1.23) are the global numbers of vertices in K.
To assemble the global matrix A = (ai;) and the right-hand side f — (f3),

one loops over all triangles K and successively adds the contributions from
different K s:

Fork=1,2 .. » M, compute
AZ(mk). Z(n k) = AZ(m k), Z(nk) + aﬁm )
fzmry = fzima + e omon=1, 2,3.

The approach used is element-oriented: that is, we loop over elements (ie., tri-
angles). Experience shows that this approach is more efficient than the node-

oriented approach (i.e., looping over all nodes); the latter approach wastes
too much time in repeated computations of A and f.

1.1.4.3 Solution of a Linear System

The solution of the linear system Ap = f can be performed via a direct
method (Gaussian elimination) or an iterative method (e.g.. the conjugate
gradient method), which will be discussed in Sect. 1.10. Here we just mention
that in use of these two methods, it is not necessary to exploit an array
A(M. M) to store the stiffness matrix A. Instead, since A is sparse and

usually a band matrix, only the nonzero entries of A need to be stored, say,
in an one-dimensional array.

1.2 Sobolev Spaces

the development of the function spaces that are slightly more general than the

spaces of continuous functions with piecewise continuous derivatives utilized
in the previous section. We establish the small fracti




