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Abstract

Energetic Variational Approach is used to derive a novel thermodynamically
consistent three-phase model of a mixture of Newtonian and visco-elastic flu-
ids. The model which automatically satisfies the energy dissipation law and
is Galilean invariant, consists of coupled Navier-Stokes and Cahn-Hilliard e-
quations. Modified General Navier Boundary Condition with fluid elasticity
taken into account is also introduced for using the model to study moving
contact line problems. Energy stable numerical scheme is developed to solve
system of model equations efficiently. Convergence of the numerical scheme
is verified by simulating a droplet sliding on an inclined plane under gravi-
ty. The model can be applied for studying various biological or biophysical
problems. Predictive abilities of the model are demonstrated by simulat-
ing deformation of venous blood clots with different visco-elastic properties
and experimentally observed internal structures under different biologically
relevant shear blood flow conditions.
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1. Introduction

Phase field models [3, 5, 19, 28, 29, 40, 44, 46, 84, 86, 87] derived using
the energy-based variational formulation, are widely used for studying multi-
phase fluid flow problems. Labeling function or phase function is used in a
phase field model to represent each of the phases. The sharp interface sepa-
rating different species is replaced by narrow transition layer in which species
mix. Free energy density functional of the labeling functions is constructed
for coupling different phases. (See, among others, [3, 47, 41] for reviews of
phase field approach.) A careless design of the free energy density function-
al may lead to meta stable states [11]. For instance, traditional pairwise
combinations of double-well free energy functionals for coupling multiple flu-
id components may give rise to non-physical results, such as growth of one
phase due to the presence of saddle points inside the Gibbs triangle [88].

Additional problems with deriving a phase field model arise when some
fluid components are non-Newtonian. Many existing non-Newtonian flow
phase field models [2, 7, 10] do not satisfy the energy dissipation law. This
implies that numerical schemes designed for solving system of equations of
these models likely do not to satisfy the discrete energy dissipation law ei-
ther, and can result in large numerical errors [50]. These numerical errors
significantly undermine accuracy of numerical model solutions over long time
periods.

While most of the existing models [1, 3, 5, 17, 18, 37, 47, 52, 86, 89]
focus on two-phase or Newtonian fluids, many biological and biophysical ap-
plications require multi-phase or non-Newtonian fluid flow models. There
are only few existing three (or more)-phase field models [20, 45, 46, 79].
In particular, Wu and Xu [79] established the unisolvent property of coeffi-
cient matrix involved in N-phase models based on pairwise surface tensions.
By using obtained matrix, authors derived an N-phase inherently invariant
Cahn-Hillard model from the free energy functional. Important properties of
Wu and Xu models are that the dynamics of concentrations are independent
of the choice of phase variable, and the symmetric positive-definite property
of the coefficient matrix can be proved equivalent to some physical condition
for pairwise surface tensions. Among other multi-phase models, the model in
[45] does not include components representing hydrodynamics, and models
in [20, 46, 79] describe only Newtonian fluids. We use the Energy Variational
Approach (EnVarA) [21, 83] to derive in this paper a novel thermodynami-
cally consistent phase field model of three-phase incompressible fluid system

2



with visco-elastic fluid components. Main novel modeling and numerical con-
tributions of the paper in comparison with existing models, are as follows.

• A systematic approach is introduced to derive phase field model cou-
pling Newtonian and Non-Newtonian fluids with large variations in
densities or viscosities of individual fluid components. The Boussinesq
approximation under the assumption that density ratio between two
fluids is relatively small [51, 50] is not needed in our model. Com-
ponents of the fluid mixture are combined in a binary tree manner
[12, 73]. The feasibility of this approach is demonstrated by deriving
a three-phase fluid flow model, in which two of the fluid components
are visco-elastic. The resulting model can be reduced in a physically
consistent manner to the two-phase model [51].

• The derived model is Galilean invariant and automatically satisfies the
energy dissipation law resulting in straightforward development of an
efficient and energy stable numerical scheme. All model equations are
described in the Eulerian coordinate system which makes computation-
al implementation of the model convenient. This is in contrast with
many computational models coupling Navier-Stokes equations and e-
lastic equations for simulating fluid-structure interaction problems, in
which Navier-Stokes equations are solved on a fixed mesh while elastic
equations are solved on the Lagrangian mesh. Computational imple-
mentation of interpolation between meshes to impose boundary condi-
tion at the fluid-structure interface is not trivial.

• Modified General Navier Boundary Condition (GNBC) [58, 59, 60] with
fluid elasticity taken into account is used for solving the moving contact
line problem [40, 58, 63, 77] which describes movement of an interface
separating visco-elastic and pure Newtonian fluids on the solid wall.

• Efficient and energy stable numerical scheme is developed for solving
the obtained model system with large variations in densities or viscosi-
ties. The model system which couples Navier-Stokes and Cahn-Hilliard
equations, is solved by using combination of the energy splitting method
[22, 23] and the pressure stabilization method [68].

Convergence study of the new energy stable scheme is accomplished by
simulating deformation and motion of visco-elastic droplets on solid surface.
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Creep-relaxation test of complex fluid is used to validate the approach adopt-
ed by the model for representing visco-elasticity of the fluid. Additionally,
simulations of a droplet wetting process are used to demonstrate differences
between fluid visco-elasticity models which give fluid-like and solid-like be-
haviors, respectively.

To demonstrate the feasibility of the new model for studying biologi-
cal and biophysical problems involving non-Newtonian fluids, it is applied
for studying stability of venous blood clots with specific multi-component
structures observed in experiments [43, 82]. Simulations of deformation of
hemophilic and normal blood clots, which consist of platelet aggregates and
fibrin network, under physiologically relevant shear blood flows, are shown
to be in good agreement with experimental observations.

The paper is organized as follows. Section 2 describes derivation of the
three-phase field model with variable densities and viscosities of fluid compo-
nents. Moreover, two of the fluid components in the model are visco-elastic.
An energy stable numerical scheme is introduced in Section 3 for solving mod-
el equations described in Section 2. Section 4 describes simulation results.
Conclusions are provided in Section 5.

2. Derivation of the Three-phase Model using EnVarA

A three-phase model describing mixture of Newtonian and non-Newtonian
fluid components is derived in this section by using binary tree approach and
applying the EnVarA to ensure that the derived model satisfies the energy
dissipation law. We first outline below the general idea of the EnVarA and
then describe in detail steps employed to derive the three-phase model.

The EnVarA is based on the energy dissipation law [21, 26, 60, 66, 83], the
Least Action Principle (LAP), the Maximum Dissipation Principle (MDP)
[25, 30, 39, 53, 54, 76], and Newton’s force balance law.

Under the assumption that the system is isothermal, the model derived
using the EnVarA should obey the energy dissipation law, which states that
the entropy change balances with the energy dissipation

d

dt
Etotal + ∆ = 0 ⇔ d

dt
Etotal = −∆ . (2.1)

Here Etotal = K + U − TS = K +H is the total energy of the system. K is
the kinetic energy, U is the internal energy, T is the temperature, S is the
entropy, and H is the Helmholtz free energy. ∆ is the dissipation functional
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which is usually represented as a quadratic function of certain rates such as
the fluid velocity u. (Other notations used in the paper are explained in
Appendix A.)

The action functional for a Hamiltonian (or conservative) system is de-

fined as follows A =
∫ t∗

0

∫
Ω

(K − H)dxdt. The LAP states that the action
functional can be optimized with respect to the flow map x(t) = x(X, t)
(with x(X, 0) = X(t = 0)) by taking the variation with respect to x. Here
X stands for the Lagrangian coordinate system, which is called the reference
configuration, and x is the Eulerian coordinate, which is called deformed
configuration. This gives rise to the variational derivative δA of the action
functional δA =

∫ t∗
0

∫
Ω0

[Fcon] · δxdXdt, where Fcon is the conservative force,
Ω0 is the Lagrangian reference domain of Ω, and the trajectory x(t) is the
path that particle X moves from position x(X, 0) at time t = 0 to position
x(X, t∗) at time t = t∗ [4].

The MDP states that variation of ∆ with respect to certain rate (e.g.,
velocity u) in the Eulerian coordinate system results in the dissipative force
Fdis, which satisfies δ(1

2
∆) =

∫
Ω

[Fdis] · δudx. Note that the factor 1
2

is due
to the underlying assumption that ∆ is a quadratic function of u. In the
end, the equation of motion is obtained by using the force balance law, i.e.,
Fcon = Fdis.

The rest of this section is devoted to derivation of the three-phase model
describing Newtonian and non-Newtonian fluids mixture by using the En-
VarA. A novel general Navier boundary condition is also introduced for im-
posing the wall boundary condition for studying moving contact line problem
involving visco-elastic fluid. This boundary condition includes contribution
of the elasticity of the non-Newtonian fluid to the contact line slip velocity.

2.1. Three-phase model derivation

We consider in this section a complex fluid mixture consisting of visco-
elastic fluids A and B, and Newtonian fluid C. These three fluid components
of the mixture are separated in two groups: the visco-elastic fluids mixture
AB composed of fluids A and B, and the Newtonian fluid C. The volume
fraction of the visco-elastic fluids mixture AB is denoted by φ2(φ2 ∈ [0, 1]),
while the volume fraction of the fluid C is 1−φ2. Furthermore, φ1(φ1 ∈ [0, 1])
is introduced to represent the volume fraction of fluid A in the mixture AB,
and 1− φ1 is the volume fraction of fluid B in the mixture AB.
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2.1.1. Definition of total energy and dissipation functionals

The total energy functional of the modeled complex fluid is defined as

Etotal = Ekin︸︷︷︸
Macroscale

+Ecoh + Eela + Ew︸ ︷︷ ︸
Microscale

, (2.2)

where Ekin is the kinetic energy, Ecoh is the mixing energy, Eela is the elastic
energy, and Ew is the specific wall energy.

The kinetic energy accounts for the transport of the trinary fluid mixture
and is defined as:

Ekin =

∫
Ω

(
1

2
ρ|u|2

)
dx , (2.3)

where ρ = ρ(x, t) = ρ(φ1, φ2, ρA, ρB, ρC , t) is the mixture density with ρi
being the density of phase i, i = A, B, C, and u the velocity of the fluid
mixture, respectively.

According to the Cahn and Hilliard approach [13], the mixing energy Ecoh
represents competition between a homogeneous bulk mixing energy density
term G(φ) (‘hydrophobic’ part) that establishes total separation of the phases

into pure components, and a gradient distortional term |∇φ|2
2

(‘hydrophilic’
part) that represents the nonlocal interactions between different components
and penalizes spatial heterogeneity. Therefore, the mixing energy is defined
as follows:

Ecoh = Ecoh1 + Ecoh2

=

∫
Ω

λ1φ
2
2

(
G1(φ1) +

γ2
1

2
|∇φ1|2

)
dx

+

∫
Ω

λ2

(
G2(φ2) +

γ2
2

2
|∇φ2|2

)
dx ,

(2.4)

where λi is the mixing energy density, γi is the capillary width of the in-
terface, G1(φ1) = αφ3

1(φ1
4
− β) [73], which has a nonzero minimum, is the

hydrophobic energy of the visco-elastic mixture AB. The choice of this cohe-
sion energy G1(φ1) is for the purpose of using this model to describe complex
fluids such as hydro-gel in which polymer network forms physical links and
entanglements. The double well potential G2(φ2) = 1

4
φ2

2(1 − φ2)2 [86] is the
hydrophobic energy of the Newtonian and visco-elastic fluid mixture. In the
mixing energy Ecoh1, a factor φ2

2 is included because this energy makes sense
only when the volume fraction of the visco-elastic mixture AB is not zero.

6



To account for the visco-elastic property of the fluid mixture AB, we in-
troduce an elastic free energy Eela. In the present paper, the Kelvin-Voigt
model [56] is used to describe the fluid visco-elasticity. Following the re-
sults in [49], the deformation gradient tensor F (X, t) defined by Fij = ∂xi

∂Xj
,

in which x is the current (Eulerian) coordinate and X is the reference (La-
grangian) coordinate, is introduced to write the elastic energy in the Eulerian
framework,

Eela =

∫
Ω

λe1φ
2
2

2
|F |2dx =

∫
Ω

λe1φ
2
2

2
tr(FF T )dx , (2.5)

where λe1 = λe1(φ1, λA, λB) is the elastic energy density of non-Newtonian
fluid mixture AB. λA and λB are the elastic energy density of fluids A and
B, respectively. φ2

2 is used to ensure that only the elasticity of the mixture
AB is considered. tr(FF T ) is the trace of FF T .

If ∇ · F (X, 0) = 0 is satisfied at t = 0, ∇ · F = 0 for t ≥ 0 by the
transport equation of F [49]. Moreover, there exists a vector Ψ = (Ψ1,Ψ2)T

in the two-dimensional space [49], such that

F =

(
−∂x2Ψ1 −∂x2Ψ2

∂x1Ψ1 ∂x1Ψ2

)
.

In the end, the elastic energy can be represented by using Ψ as

Eela =

∫
Ω

λe
2
|F |2dx =

∫
Ω

λe
2

tr(FF T )dx

=

∫
Ω

λe
2

((∂x1Ψ1)2 + (∂x2Ψ1)2 + (∂x1Ψ2)2 + (∂x2Ψ2)2)dx

=

∫
Ω

λe
2
|∇Ψ|2dx ,

where λe = φ2
2λe1.

For numerical study of the moving contact line problem [29, 40, 58, 59,
63, 64] involving the interface of fluids intersecting with the wall, a wall
free energy Ew is introduced into the total energy functional to mimic the
interaction between the fluid interface and the wall. The moving contact line
problem studied in this paper has an interface separating the non-Newtonian
fluids mixture AB from the Newtonian fluid C. The wall free energy Ew in
this case is defined on the wall w and adopts the following form [84]

Ew = σ2

∫
w

fw(φ2)ds , (2.6)
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where fw is as follows:

fw(φ2) = −(2φ2 − 1) (3− (2φ2 − 1)2)

4
cos(θs) . (2.7)

Here σ2 is the surface tension of the visco-elastic mixture and θs is the static
contact angle [63, 64].

For the purpose of using Cahn-Hilliard equations to describe evolution of
φ1 and φ2, the chemical potentials µ1 and µ2 are defined as the variational
derivative of the Helmholtz free energy functional H = Ecoh + Eela and are
as follows:

µ1 =
δH
δφ1

= λ1

(
φ2

2G
′
1(φ1)− γ2

1∇ · (φ2
2∇φ1)

)
+

1

2
(∂1λe)|∇Ψ|2 , (2.8)

and

µ2 =
δH
δφ2

= λ2

(
G′2(φ2)− γ2

24φ2

)
+2λ1φ2

(
G1(φ1) +

γ2
1

2
|∇φ1|2

)
+

1

2
(∂2λe)|∇Ψ|2 . (2.9)

For the sake of simplicity, here and in the rest of the paper, ∂i denotes ∂φi
for i = 1, 2.

Remark 2.1. There exist different definitions of the chemical potential. In
papers [41, 50], the chemical potential is defined as the variational derivative
of the total energy. When the mixed fluids have variable densities, there

is a term ρ′|u|2
2

in the chemical potential, which is not Galilean invariant.
However, as values of the mobility parameters in the Cahn-Hilliard system
approach zero, the whole system converges to a Galilean invariant system.
The chemical potential in [1, 34] is defined as the variational derivative of

the mixing energy, which eliminates the ρ′|u|2
2

term. In our work, we define
the chemical potential as the variational derivative of the sum of the mixing
energy and elastic energy. This introduces the 1

2
(∂iλe)|∇Ψ|2 term in the

chemical potentials. The reason to include the elastic energy is to ensure
that the obtained system satisfies the energy dissipation law. When a complex
fluid with variable elasticities is considered, it is difficult, if not impossible, to
prove that the obtained system satisfies the energy dissipation law in case the
elastic energy is not included in the derivation of the chemical potential. We
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note that, in fact, the Cahn-Hilliard type of dynamics should not be viewed
strictly as a physics law. Rather, it is just a relaxation of the pure transport
equation [41].

The dissipation functional is defined as

∆=

∫
Ω

(η
2
|D|2 +M1|∇µ1|2 +M2|∇µ2|2

)
dx+

∫
w

(κ|φ̇2|2+βs|us|2)ds ,(2.10)

where η = η(φ1, φ2, ηA, ηB, ηc, t) is the viscosity of the mixture,with ηi being
the viscosity of phase i, i = A,B, and C. Mi is the phenomenological mobil-
ity coefficient of the phase i. D = ∇u + (∇u)T . κ is the phenomenological
relaxation time of φ on the wall. βs is the slip friction coefficient, and us is
the slip speed on the wall.

2.1.2. Microscale transport of φ1 and φ2

We assume that φ1 and φ2 satisfy the following conservation laws:

∂tφ1 +∇ · (u∇φ1) = 0 , (2.11)

∂tφ2 +∇ · (u∇φ2) = 0 . (2.12)

Equations (2.11) and (2.12) are approximated in the phase field method
by the following Cahn-Hilliard equations

∂tφ1 +∇ · (u∇φ1) = ∇ · (M1∇µ1) , (2.13)

∂tφ2 +∇ · (u∇φ2) = ∇ · (M2∇µ2) . (2.14)

In addition, φ2 satisfies the following relaxation boundary condition on the
solid wall boundary w:

κφ̇2 + L(φ2) = 0 , (2.15)

where L(φ2) = λ2γ
2
2∇nφ2 + f ′w, and φ̇2 = ∂tφ2 + u · ∇φ2 is the material

derivative of φ2 on the wall.

2.1.3. Macroscale momentum equation

The conservative and dissipative forces are obtained by applying the LAP
to the Hamiltonian part of the system and the MDP to the dissipative part
of the system, respectively.
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Application of the LAP yields that

Fcon = −
(

1

2
[ρ(∂tu+ u · ∇u) + (∂t(ρu) +∇ · (ρu⊗ u))] +

+λ2γ
2
2∇ · (∇φ2 ⊗∇φ2) + λ1γ

2
1∇ · (φ2∇φ1 ⊗∇φ1)

+∇ · (λe(∇Ψ)T∇Ψ) +∇P1

)
. (2.16)

By using the MDP and the flow incompressibility constraint, we obtain
the following dissipative force for deriving the equation of motion in the bulk
flow region

Fdis = −∇ · (ηD) +∇P2 , (2.17)

and the dissipative force on the wall w

Fdis,w = τ · (ηD) · n+ κφ̇2∂τφ2 + βsus . (2.18)

Finally, the Navier-Stokes type of equation of motion for the macroscopic
trinary fluid mixture is obtained as a result of the macroscopic force balance,
i.e., Fcon = Fdis:

1
2

[ρ(∂tu+ u · ∇u) + (∂t(ρu) +∇ · (ρu⊗ u))] = ∇ · (ηD)−∇P̄
−λ2γ

2
2∇ · (∇φ2 ⊗∇φ2)− λ1γ

2
1∇ · (φ2∇φ1 ⊗∇φ1)

−∇ · (λe(∇Ψ)T∇Ψ) (2.19)

where P̄ = P1 + P2.
The following slip boundary condition is used for the equation (2.19),

βsus = −τ · (ηD− λe(∇Ψ)T∇Ψ) · n+ L(φ2)∂τφ2 . (2.20)

If the elastic property of fluid is not considered, i.e., λe = 0, then the
above slip boundary condition is reduced to the General Navier Boundary
Condition (GNBC) [58, 59, 60]. In other words, the boundary condition
(2.20) is a generalized form of the GNBC for the moving contact line problem
involving visco-elastic fluid.

Remark 2.2. Details of using the LAP and MDP to derive the three-phase
fluid model are described in Appendix B.
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After the right hand side of the Navier-Stokes equation (2.19) is simplified
by using the method described in Appendix B, we obtain the following three-
phase Navier-Stokes Cahn-Hilliard model

1
2

[ρ(∂tu+ u · ∇u) + (∂t(ρu) +∇ · (ρu⊗ u))] +∇P = ∇ · (ηD)

−∇µ1φ1 −∇µ2φ2 − (∇Ψ)T∇ · (λe∇Ψ) ,

∇ · u = 0 ,

∂tΨ + u · ∇Ψ = 0 ,

∂tφ1 +∇ · (uφ1) = ∇ · (M1∇µ1) ,

∂tφ2 +∇ · (uφ2) = ∇ · (M2∇µ2) ,

µ1 = λ1 (φ2
2G
′
1(φ1)− γ2

1∇ · (φ2
2∇φ1)) + 1

2
(∂1λe)|∇Ψ|2 ,

µ2 = λ2 (G′2(φ2)− γ2
24φ2) + 2λ1φ2

(
G1(φ1) +

γ21
2
|∇φ1|2

)
+ 1

2
(∂2λe)|∇Ψ|2 .

(2.21)

The initial and the wall boundary conditions are given as follows:

u · n = 0 , ∇nµ1 = ∇nµ2 = 0 , ∂nφ1 = 0 ,

κφ̇2 = −L(φ2) = −(ε∇nφ2 + f ′w) ,

βsus = −τ ·
[
ηD− λe(∇Ψ)T∇Ψ

]
· n+ L(φ2)∂τφ2 ,

φ1(·, 0) = φ10, φ2(·, 0) = φ20, Ψ(·, 0) = Ψ0 .

(2.22)

Remark 2.3. This three-phase model satisfies the following conditions pro-
posed in [11, 88]:

• When a phase does not present in the mixture at the initial time, this
phase should not appear during the time evolution of the system. E.g.,
if φi(·, t = 0) = 0, then φi(·, t) ≡ 0, ∀t > 0, i = 1 or 2. This is to make
sure that each phase does not appear without basis.

• The three-phase model should be reduced to the two-phase model by
setting one of the phase to be equal to zero. For example, if let φ1 ≡
1 and λe = 0, the system (2.21) is reduced to the two-phase model
proposed in [50].
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2.2. Energy dissipation law

The following dimensionless form of the system (2.21)-(2.22) for conve-
nience of discussion is obtained by scaling the density, viscosity, elasticity,
length and velocity by ρA, ηA, λA, L and U , respectively,

Re1
2

[ρ(∂tu+ u · ∇u) + (∂t(ρu) +∇ · (ρu⊗ u))] +∇P

= ∇ · (ηD)− φ1∇µ1 − φ2∇µ2 − αe(∇Ψ)T∇ · (λe∇Ψ) ,

∇ · u = 0 ,

∂tΨ + u · ∇Ψ = 0 ,

∂tφ1 + u · ∇φ1 = ∇ · (M1∇µ1) ,

∂tφ2 + u · ∇φ2 = ∇ · (M2∇µ2) ,

(2.23)

where

µ1 = α1

(
1

ε1

G′1φ
2
2 − ε1∇ · (φ2

2∇φ1)

)
+ αe

|∇Ψ|2

2
∂1λe , (2.24)

and

µ2 = α2

(
1

ε2

G′2 − ε2∆φ2

)
+ 2α1φ2

(
1

ε1

G1 +
ε1

2
|∇φ1|2

)
+αe
|∇Ψ|2

2
∂2λe . (2.25)

The initial and the wall boundary conditions for the system (2.23) are given
by 

u · n = 0 , ∇nµ1 = ∇nµ2 = 0 , ∂nφ1 = 0 ,

κφ̇2 = −L(φ2) ,

l−1
s us = −τ ·

[
ηD− αeλe(∇Ψ)T∇Ψ

]
· n+ α2L(φ2)∂τφ2 ,

φ1(·, 0) = φ10, φ2(·, 0) = φ20, Ψ(·, 0) = Ψ0 ,

(2.26)

where the dimensionless constants are Re = ρALU
ηA

, ε1 = γ1
L

, ε2 = γ2
L

, α1 =
λ1γ1
ηAU

, α2 = λ2γ2
ηAU

, αe = λAL
ηAU

, M1 = M1ηA
L2 , M2 = M2ηA

L2 , and κ = κ
Lλ2γ2/U

.
One advantage of using the EnVarA is that the obtained system automat-

ically satisfies the energy dissipation law. Theorem 2.4 states the energy
dissipation law that the system (2.23)-(2.26) satisfies.

12



Theorem 2.4. If φ1, φ2, Ψ, u and P are smooth solutions of the above
system (2.23)-(2.26), then the following energy law is satisfied:

d

dt
Etotal =

d

dt
(Ekin + Ecoh + Eela + Ew)

= −‖η
1/2D‖2

2
−M1‖∇µ1‖2 −M2‖∇µ2‖2

−κα2‖φ̇2‖2
w − ‖l1/2s us‖2

w , (2.27)

where ζ =
√
ρ, Ekin = Re

2
‖ζu‖2,

Ecoh =

∫
Ω

α1φ
2
2

(
G(φ1)

ε1

+
ε1

2
|∇φ1|2

)
dx+

∫
Ω

α2

(
G(φ2)

ε2

+
ε2

2
|∇φ2|2

)
dx,

Eela = αe

∫
Ω

1

2
λe|∇Ψ|2dx, and Ew=α2

∫
w

fwds.

Proof. The main idea of the proof is to show how the left hand side of the
equation (2.27) can be obtained by multiplying the Navier-Stokes equation
by u, the phase transport equations by µi, the chemical potentials by φi,
i = 1, 2, and the gradient of the equation for Ψi by αeλe∇Ψi, and summing
them up. The dissipation terms on the right hand side of the equation
(2.27) are obtained by using integration by parts and the boundary conditions
specified in equations (2.26).

By using the fact that
∫

Ω
(∇ · (ρu⊗ u) + ρu∇u,u) dx = 0, if we multiply

the first equation of the system (2.23) by u and use integration by parts, the
rate of change of kinetic energy d

dt
Ekin is calculated

d

dt
Ekin =

d

dt

Re

2
‖ζu‖2 = −1

2
‖η1/2D‖2 − (φ1∇µ1,u)− (φ2∇µ2,u)

−αe((∇Ψ)Tω,u) + (ητ ·D · n, us)w , (2.28)

where ω = ∇ · (λe∇Ψ).
By taking the gradient of each component of the third equation of (2.23),

the following equation is obtained

∂k(∂tΨi) + ∂k(uj∂jΨi) = 0 . (2.29)
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Inner product of above equation with αeλe∂kΨi has the form

αe(λe∇Ψ : ∇(∂tΨ))

= αe(λe∂kΨi, ∂k(∂tΨi))

= −αe(λe∂kΨi, ∂k(uj∂jΨi))

= αe(∂k(λe∂kΨi), uj∂jΨi)− αe(λe(∂kΨi∂jΨi)nk, uj)w

= αe((∇Ψ)Tω,u)− αe(τ · (λe(∇Ψ)T∇Ψ) · n, us)w . (2.30)

Adding equation (2.28) to (2.30) and using the third boundary condition
in (2.26) result in the following equation

d

dt
Ekin

= −1

2
‖η1/2D‖2 − (φ1∇µ1,u)− (φ2∇µ2,u)

−αe(λe∇Ψ,∇(∂tΨ))− ‖l−1/2
s us‖2

w + α2(L(φ2)∂τφ2, us)w

= −1

2
‖η1/2D‖2 − (φ1∇µ1,u)− (φ2∇µ2,u) (2.31)

−αe(λe∇Ψ,∇(∂tΨ))− ‖l−1/2
s us‖2

w − α2(κφ̇2, us∂τφ2)w .

Taking inner product of the fourth and fifth equations in system (2.23) with
µ1 and µ2, respectively, results in the following system

(∂tφ1, µ1)− (uφ1,∇µ1) +M1‖∇µ1‖2 = 0 , (2.32)

(∂tφ2, µ2)− (uφ2,∇µ2) +M2‖∇µ2‖2 = 0 . (2.33)

Inner product of the chemical potential (2.24) with −∂tφ1 yields

−(∂tφ1, µ1) = −α1

(
φ2

2

G′1
ε1

, ∂tφ1

)
− α1

(
ε1φ

2
2∇φ1,∇(∂tφ1)

)
−αe

(
|∇Ψ|2

2
∂1λe, ∂tφ1

)
. (2.34)

Inner product of the chemical potential (2.25) with −∂tφ2 and integration
by parts, together with the dynamics boundary condition of φ2 on the wall,
result in the following equation

− (∂tφ2, µ2) = − d

dt
Ecoh2 − α1

(
G1

ε1

+
ε

2
|∇φ1|2, 2φ2∂tφ2

)
−αe

(
∂2λe
|∇Ψ|2

2
, ∂tφ2

)
− α2(κφ̇2 + f ′w, ∂tφ2)w .(2.35)
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Summing up the equations (2.31)-(2.35) gives rise to

d

dt
Etotal =

d

dt
(Ekin + Ecoh + Eela + Ew)

= −‖η
1/2D‖2

2
−M1‖∇µ1‖2 −M2‖∇µ2‖2

−α2(κφ̇2, ∂tφ2)w − α2(κφ̇2, us∂τφ2)w − ‖l1/2s us‖2
w ,

= −‖η
1/2D‖2

2
−M1‖∇µ1‖2 −M2‖∇µ2‖2

−κα2‖φ̇2‖2
w − ‖l1/2s us‖2

w .

�

3. Numerical Scheme for Solving Model Equations

Many techniques were proposed to improve stability and efficiency of
numerical schemes for solving the Cahn-Hilliard equation [24, 35, 44, 73].
Here we use the energy convex splitting method [22, 23, 28, 29, 67, 69], which
discretizes the chemical potentials related to the convex energy implicitly and
the rest explicitly. Traditional projection-like methods [8, 15, 33, 72] for the
variable density Navier-Stokes equations require solving an elliptic equation
with variable coefficient to obtain the pressure or related scalar quantity. This
is time consuming, especially when there is a large variation in fluid density.
To overcome this difficulty, we choose the pressure stabilization method [29,
32, 50, 68] to solve the Navier-Stokes equation, which only involves solving
pressure Poisson equation with constant coefficient and treats the divergence
free condition as a penalty.

In [50], the authors proposed a decoupled scheme by introducing a half-
step velocity when solving the Navier-Stokes Cahn-Hilliard system numeri-
cally. If we ignore the elastic terms in the system (2.23)-(2.26), the decoupled
scheme can also be used for solving the Cahn-Hilliard equations in our model
by setting the half-step velocity u∗ = un− 4t

Reρn+1 (φn1∇µn+1
1 +φn2∇µn+1

2 ). For

solving the system (2.23)-(2.26), the half-step velocity should be set to be
u∗ = un− 4t

Reρn+1 (φn1∇µn+1
1 +φn2∇µn+1

2 −αe(∇Ψn)T∇·(λe∇Ψn+1)). However,

according to the boundary conditions (2.26), it can be found that u∗ · n is
not zero. This means the decoupled scheme developed in [50] might not work
for the system (2.23)-(2.26).
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We propose in this section an efficient and energy stable scheme based on
the convex splitting method [28, 29] for solving the coupled system (2.23)-
(2.26) without using the half-step velocity. The first-order accurate version
of the scheme is described here. Stability analysis of the scheme is described
in Appendix C.

The first-order accurate energy stable scheme is constructed as follows.
Given initial condition (φ0

1, φ
0
2, P

0, u0, Ψ0), numerical solution (φn+1
1 , φn+1

2 ,
un+1, P n+1, Ψn+1) is updated for n ≥ 1 by

φn+1
1 −φn1
4t +∇ · (un+1φn+1

1 ) = ∇ · (M1∇µn+1
1 ) ,

φn+1
2 −φn2
4t +∇ · (un+1φn+1

2 ) = ∇ · (M2∇µn+1
2 ) ,

∂nφ
n+1
1 = 0 ,

κφ̇2
n+1

= κ(
φn+1
2 −φn2
4t + un+1

s ∂τφ
n+1
2 ) = −L(φn+1

2 ) ,

(3.1a)



Re
(
ρn+1un+1−ρnun

24t + 1
2
∇ · (ρn+1un+1 ⊗ un)

)
+Re

(
ρnu

n+1−un

24t + ρn+1

2
un · ∇un+1

)
= −∇(2P n − P n−1) +∇ · (ηn+1D(un+1))−φn+1

1 ∇µn+1
1

−φn+1
2 ∇µn+1

2 − αe(∇Ψn)T∇ · (λn+1
e ∇Ψn+1) ,

l−1
s u

n+1
s = −ηn+1τ · [D(un+1)− αeλn+1

e (∇Ψn)T∇Ψn+1] · n

+α2L(φn+1
2 )∂τφ

n+1
2 ,

Ψn+1−Ψn

4t + un+1 · ∇Ψn = 0 ,

(3.1b)

{
∆(P n+1 − P n) = ρ̄

4tRe∇ · u
n+1 ,

∂nP
n+1 = 0 ,

(3.1c)

where

µn+1
1 = α1µ̄

n+1
1 − α1ε1∇ · ((φn+1

2 )2∇φn+1
1 )

+αe
1

2
((φn+1

2 )2(1− α12))|∇Ψn|2 ,

µn+1
2 = α2µ̄

n+1
2 − α2ε2∆φn+1

2 + α1φ
n+1
2 ε1|∇φn1 |2

+αe(φ
n+1
2 (φn1 + (1− φn1 )α12))|∇Ψn|2 ,
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µ̄n+1
1 =

s1

ε1

φn+1
1 − (

s1

ε1

φn1 − (φn2 )2 1

ε1

G′1(φn1 )) ,

µ̄n+1
2 =

s2

ε2

φn+1
2 − (

s2

ε2

φn2 −
1

ε2

G′2(φn2 )− 2φn2
ε1

G1(φn1 )) ,

ρn+1 = ρ13(1− φn+1
2 ) + φn+1

2 (φn+1
1 + (1− φn+1

1 )ρ12) ,

λn+1
e = (φn+1

2 )2(φn+1
1 + (1− φn+1

1 )α12) ,

L(φn+1
2 ) = ε2∂nφ

n+1
2 + f ′w(φn2 ) + αw(φn+1

2 − φn2 ) ,

with ρ12 = ρ2
ρ1

, ρ13 = ρ3
ρ1

, ρ̄ = min(1, ρ12, ρ13) and α12 = λB
λA

.
The following theorem with proof provided in Appendix C shows that

the above discrete system satisfies discrete energy law.

Theorem 3.1. Let N = maxφn2 (|
√

2
2

(2φn2 − 1) cos(θs)|). If αw ≥ N , and s1

and s2 satisfy the condition in the lemma described in Appendix C.1, then
the solution (φn+1

1 , φn+1
2 , un+1, P n+1, Ψn+1) of the scheme (3.1) satisfies the

following discrete energy law for any 4t > 0:

En+1 +
(4t)2

2ρ̄Re
‖∇P n+1‖2 +4t

(
1

2
‖η1/2D(un+1)‖2

)
+4t

(
‖M1/2

1 ∇µ1‖2 + ‖M1/2
2 ∇µ2‖2

)
+4t

(
‖l−1/2
s un+1

s ‖2
w + κα2‖φ̇n+1

2 ‖2
w

)
≤ En +

(4t)2

2ρ̄Re
‖∇P n‖2 (3.2)

Remark 3.2. In the actual numerical implementation, we use finite element
method to discretize the space. The nonlinear terms ∇ · (uφi) are discretized
in time as ∇ · (unφn+1

i ) to make the resulting numerical equations easy to
solve [29]. Even though this treatment introduces a CFL-like constraint for
choosing the time step size 4t, it decouples the system (3.1) into three inde-
pendent subsystems. This makes the numerical implementation much easier
than implementation which involves solving a large nonlinear system by iter-
ation method. Moreover, (φn+1

2 , µn+1
2 ) is updated by using the nth step infor-

mation on the numerical implementation before computing other unknowns.
Then they are used to update (φn+1

1 , µn+1
1 ). (Ψn+1,un+1, pn+1) are calculated

in the end.
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4. Simulation Results

4.1. Droplet sliding on an inclined plane under gravity

Dynamics of a droplet sliding on an inclined plane under gravity [64,
65, 80] is used in this subsection to demonstrate convergence of the numer-
ical scheme proposed in the previous section. The gravitational force ρG is
added to the right hand side of the Navier-Stokes equation. Initial profile of
the droplet is chosen in the form of a circular cap with contact angle 90◦.
Computational domain is chosen to be [0, 1.5]× [0, 0.5]. (See also Fig. 1.)

Droplet in this study is treated as a two-phase fluid. The droplet and the
ambient fluid surrounding the droplet make the three-phase system. Densi-
ties of the two fluid components of the droplet are ρA = ρB = 103kg/m3, their
viscosities are ηA = ηB = 100cP , and elasticities are λA = 1Pa, λB = 0.5Pa,
respectively. The density ratio of the droplet to the ambient fluid is 1000 and
the viscosity ratio is 10. Values of non-dimensional parameters corresponding
to the characteristic length L = 1 × 10−3m and velocity U = 1 × 10−2m/s,
are listed in Table 1. The static contact angle of the droplet is 90◦, and the

Re ls ε α βg
0.1 0.005 0.01 10 20

Table 1: The parameters used in convergence study. Here Re is the Reynolds number; ls is
the slip length; ε = 0.01 is the capillary width; α = λAL

ηAU
is the mixture energy coefficient;

βg = ρAgL
2

ηAU
= 20 is the gravitational force.

inclination angle of the wall is α = 45◦. Evolution of the advancing contact
point xa and the receding contact point xr of the droplet from the initial
time t = 0 to the time t = 5 was computed using three different meshes with
mesh sizes h = 1/64, 1/128 and 1/256, respectively. Fig. 2 demonstrates
convergence of the numerical solution computed by the proposed numerical
scheme.

4.2. Creep-recovery test

The Kelvin-Voigt model [42, 56] is used to represent behavior of a solid-
like material undergoing reversible, visco-elastic deformation. Namely, the
material described by the Kelvin-Voigt model deforms at a decreasing rate,
and approaches asymptotically the steady-state strain under a constant stress.
When the stress is released, the material gradually relaxes towards it initial
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Figure 1: Diagram of the droplet sliding on an inclined plane under gravitational force.
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Figure 2: Convergence study of the numerical scheme by simulating droplet sliding on
an inclined plane. (a) Motion of the receding contact point xr by using different meshes.
(b) Motion of the advancing contact point xa with different meshes. (c) Velocity of the
receding contact point xr by using different meshes.

un-deformed configuration. However, complete recovery to the initial config-
uration is never achieved in finite time. This is called creep-recovery.

In this section, we use a half circular-shaped droplet on a plane to do
the creep-recovery test numerically. The droplet is surrounded by a constant
shear Newtonian flow. Values of non-dimensional parameters corresponding
to the characteristic length L = 1×10−3m and velocity U = 1×10−2m/s are
the same as ones listed in Table 1. Computational domain is chosen to be
[0, 1.5]× [0, 0.5]. From the time t = 0 to t = 1, a constant inlet flow condition
with velocity v = 20(0.5 − y)y is added on the left of the boundary. After
t = 1, the inlet flow is stopped and the droplet gradually recovers.

In Fig. 3, we show the creep-recovery test result. It shows that before
t = 1, the droplet strain increases monotonically, i.e., the droplet undergoes
creep process. After t = 1, the droplet strain decreases with time to a
constant value, which is called permanent deformation due to dissipation
of the system. Snapshots of the droplet profiles are presented in Fig. 4.
The largest permanent deformation is around the left corner of the droplet.
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This is caused by the dissipation on the boundary with rate κα2|φ̇2|2. See
also Theorem 2.4. This numerical study confirms that our model produces
visco-elastic behavior of the fluid described by the Kelvin-Voigt model.

In the next section, we compare simulations by using the Oldroyd-B and
Kelvin-Voigt models for describing fluid visco-elasticity to reveal their differ-
ences.

0 0.5 1 1.5 2 2.5 3
Time
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tr
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Creep

Figure 3: Creep and Recovery. The inlet flow velocity specified by u = 20(0.5 − y)y is
added until t = 1 on the left boundary of the domain. Then the inlet flow velocity is set
to be zero.

4.3. Droplet spreading test for Oldroyd-B and Kelvin-Voigt models

As we mentioned in the previous section, the Kelvin-Voigt model is used
for describing behavior of solid-like visco-elastic materials. For fluid-like
visco-elastic materials, one of the most popular model is the Oldroyd-B model
[9, 27, 77, 85, 90]. Conceptually, the Oldroy-B model is constructed by con-
necting a spring and a dashpot sequentially. The deformation of the spring
is finite, while the dashpot retains deformation when the load is removed.
Therefore, a material described by the Oldroyd-B model is more like a fluid
than a solid.

In this section, we describe simulations of a droplet spreading on a plane,
with its visco-elastic property described by the Kelvin-Voigt model and the
Oldroy-B model, respectively. We also simulate a pure Newtonian droplet
spreading for comparison. Initial shapes of these droplets are all chosen
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Figure 4: Interface of the droplet at time (a) t = 0.1, (b) t = 1, (c) t = 2, and (d) t = 3 for
creep-recovery test. The Kelvin-Voigt model is used for describing droplet visco-elasticity.

to be a half circle with radius 0.2 and center (0.75, 0). Other parameters
values are the same as those in [77]. Computational domain is chosen to be
[0, 1.5] × [0, 0.5]. For the Oldroyd-B model simulation, we use the equation
(6) in [77] to describe evolution of the visco-elastic tensor, and couple it with
the Cahn-Hilliard Navier-Stokes equations in our model.

Fig. 5 shows the interface profiles of these droplets at different times. It
can be seen that the Oldroyd-B droplet (blue dash line) spreads much faster
than the pure Newtonian droplet (black line) before t = 1.5. After that, the
spreading speed of the pure Newtonian droplet is greater than the Oldroyd-
B droplet as observed in [77]. The Kevin-Voigt droplet (red dash dot line)
spreads slower than the pure Newtonian droplet as expected.

The dynamics of contact angles of different type droplets are shown in
Fig. 6(a). The results shows the contact angles quickly decay from initial 150◦

to 60◦ and then slowly approach equilibrium angle 45◦. Fig. 6(b) describes
evolution of spreading radius, which is defined as the distance between two
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(a) (b)

(c) (d)

Figure 5: Spontaneous plot of interface profiles of the simulated droplets when they spread
on the plane. Due to symmetry, only parts of the interfaces in x > 0 plane are plotted.
(a) t = 0.5; (b) t = 1; (c) t = 1.5; and (d) t = 5. Black line: Pure Newtonian droplet.
Blue dash line: Droplet with the Oldroyd-B model. Red dash dot line: Droplet with the
Kelvin-Voigt model.

contact points. The Oldroyd-B droplet and the pure Newtonian droplet
achieve the same spreading radius (d = 0.8146) when they reach steady
state. While the spreading radius of the Kelvin-Voigt droplet (d = 0.776)
is 5% smaller than the pure Newtonian droplet. This result is consistent
with the findings in [77]. Thus our simulations also showed importance of
including physical properties of fluids when studying its dynamics. Moreover,
when the Weissenberg number Wi = λoU/L , which compares elastic force
to viscous force, where λ0 is the relaxation time in the Oldroyd-B model,
increases from 2 to 5, the Oldroyd-B droplet spreading speed also increases.
For the Kevin-Voigt droplets, the spreading speeds decrease with increasing
shear modulus.
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Figure 6: (a) Contact angles and (b) radius of simulated spreading droplets. Black line cor-
responds to the pure Newtonian droplet. Red, brown and purple dash dot lines correspond
to the Kelvin-Voigt type visco-elastic droplet with different shear modulus, αe = 2, 5, 10,
respectively. Blue and green dash lines indicate data for the Oldroyd-B visco-elastic
droplets with different relaxation times Wi = 2, 5, respectively.

4.4. Deformation of Venous Blood Clot under Shear Flow

To demonstrate applicability and relevance of the novel three-phase mod-
el introduced in this paper for studying variety of problems in science and
engineering, the model has been applied for studying the role of mechanical
properties of a blood clot formed in a vein [82] in determining its stability
under biologically relevant flow conditions. This is an important biomedical
problem for many reasons. For example, fragile blood clot may break to form
several large pieces, or emboli, which can end up in lungs and subsequently
cause fatal outcomes for patients [14]. Also, hemophilia patients suffer from
bleeding disorder, which is partially attributed to the mechanical properties
of the clots. Fibrin networks in a hemophilic clot are more sparse than in a
clot formed in normal blood, and they are less resistent to the shear stress
generated by the blood flow [43]. The three-phase model simulations present-
ed here reveal how changes in bulk properties of blood clots result in different
responses of normal and hemophilic blood clots to the blood flow. Parame-
ter values of elasticities of blood clot components in our simulations used the
experimental data provided in Tables 4 and 5 of Section 3 of reference [43].

For simplicity, we consider stability of small blood clots formed in micron
size blood venules. We assume that a blood clot, which is a porous and
visco-elastic gel type substance, consists of three major components: plasma,
fibrin network and platelet aggregates. (See Fig. 7(a) for an example of
its structure.) Fibrin network is composed of thin fibers [31, 75]. Platelet
aggregates are formed by the activated platelets, which change their shapes
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after activation and tightly adhere with each other [36, 91]. Experimental
image Fig. 7(b) shows that stabilized non-occluding blood clot formed in vein
has a dense core (in yellow color) consisting mainly of aggregates of activated
platelets and fibrin network. A porous shell (in green color) which covers
the core, has high concentration of fibrin network and low concentration
of platelets. This clot structure was used as the initial structure for clot
simulations presented in this section.

Fibrin network and platelet aggregates are treated in the model as visco-
elastic fluids, and plasma is treated as a Newtonian fluid. The initial value
of the volume fraction of the simulated blood clot (φ2) is set to be close to
1 and 0.7 in the core and shell regions, respectively. Initial values of the
volume fraction of platelets (φ1) are 0.7 and 0.5 in the core and shell regions
of the simulated blood clot, respectively. The maximum volume fraction of
the fibrin network is assumed to occur near the surface of the clot (Fig. 7(f))
to mimic the fiber cap observed in the experiments [43, 48]. Fig. 7(d-f)
shows the initial distributions of the volume fractions of components of the
simulated clot, which correspond to the experimental observations described
in [48]. Small spike-like extensions on the surface of the clot, which are
similar to the ones seen in experimental figures (8-9) from [81], are added to
the initial surface of the simulated blood clot to represent its surface in more
realistic way.

Computational domain is chosen to be [0, Lx] × [0, Ly], where Lx =
800× 10−6m and Ly = 320× 10−6m are the length and width of the domain,
respectively. The inlet flow velocity imposed on the left boundary of the do-

main is given by uin =
(

4umax
y(Ly−y)

L2
y

, 0
)

, where umax = 3.2×10−2m/s. (See

also Fig. 7(c).) Based on the experimental results in [57, 74], we assume that
densities of the plasma and the blood clot are both ρ = 1.025 × 103kg/m3.
Adhesion between blood clot and vessel wall [70, 71, 78] prevents the blood
clot from moving on the vessel wall. Therefore, the no-slip boundary condi-
tion is used for the Navier-Stokes equations in the simulations.

The viscosity of the fibrin network ηn in a hemophilia clot is varied in
simulations between 4cP and 40cP [55]. The viscosity of the platelet aggre-
gate ηp is chosen to be 40cP [38]. Also, the viscosity of the fibrin network in
a normal clot is set to be 400cP , and the viscosity of the platelet aggregate
is varied between 40cP and 400cP [38, 62]. The viscosity of the plasma is
assumed to be ηf = 4cP [81]. The elastic modulus λn of the fibrin network
of hemophilia clots is about O(1Pa) [43]. The elastic modulus of the fib-
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Figure 7: Initial structure of the blood clot in a vein. (a) Reconstructed three-dimensional
image of a venule blood clot from in vivo experiments in mice. (Original image was
published in [43, 82].) Platelets are indicated in red, fibrin is in green, yellow indicates
combination of platelets and fibrin, and black is used for other blood cells. Images show
that platelet aggregate in the middle of the clot is covered by the fibrin network and that
the surface of the blood clot consists mainly of the fiber network. (b) yz cross section
of the reconstructed image of the blood clot; (c) Schematic diagram of the clot structure
used in simulations of a blood clot deformation under shear flow. Blood flow enters on the
left side of the simulation domain with a parabolic profile and exits on the right side of
the domain. (d) Initial distribution of the volume fraction of the blood clot represented
by the phase function φ2(t = 0). (e) Initial distribution of the volume fraction of platelets
represented by φ1(t = 0). (f) Initial distribution of the volume fraction of the fibrin
network represented by (1− φ1(t = 0)).
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rin network generated by using normal blood varies between O(10Pa) and
O(100Pa) [43]. Simulations are stopped when no blood clot deformation is
detected.

Panels (a-b) of the Fig. 8 demonstrate that small spike-like extensions,
which mainly consist of fibrin, on the surface of a hemophilia clot develop
into extensively elongated thin structures (emboli) (breakup of the emboli is
not shown); while panels (c-d) of the Fig. 8 show that normal clots deform
only slightly. The simulations reveal a possible novel mechanism of desta-
bilization of a hemophilia clot. Since surfaces of clots in general are not
smooth, emboli can develop by the fibrin network on hemophilia clot surface
even under normal blood flow conditions, and subsequently detach from the
clot. This makes formation of a stable clot in hemophilia blood much harder
than in normal blood. Simulations also predict that size of hemophilia clot
was significantly smaller than normal clot. Volume changes of normal (red
circles) and hemophilia (blue triangles) clots with respect to time are shown
in Fig. 8e. The volume of the hemophilia clot gradually decreases after 0.5s
by flow removal of the emboli and reaches a constant value around 1s, which
is about 28.9% of its initial volume. On the other hand, the volume of the
normal clot almost does not change. This is consistent with the experimen-
tally observed clots [55]. Note that our simulation did not consider blood clot
growth. This is why size of the simulated hemophilia clot reaches a constant
value around 1s.

Simulations were used to study effects of changes in elasticity of the fibrin
network on clot stability. The following values of the elasticity modulus
of the fibrin network [43] are used in simulations: 0.1Pa, 1Pa, 10Pa and
50Pa. Viscosities of the fibrin network and platelet aggregate are fixed at
40cP . Fig. 9 shows that the clot with 0.1Pa elasticity modulus of the fibrin
network is stretched to form a long and thin tail. When value of the elasticity
modulus of the fibrin network increases, the clot becomes less deformable.
This is consistent with the results in [43], and shows how elasticity of fibrin
network affects clot deformation. Note that viscosities of the fibrin network
and platelet aggregate used in these simulations are for hemophilia clots. Our
simulations predicted that compared with viscosities of the fibrin network and
platelet aggregate, the elasticity of the fibrin network played major role in
resisting clot deformation induced by blood flow.

Fig. 10 shows that increase of fibrin network elasticity decreases the av-
erage speed of the intrathrombous flow, which also indicates that clot is less
deformable. Simulations described in this section suggest that clots forming
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Figure 8: Shapes of clots with different values of viscosity described by steady state
solutions of the model system of equations with fixed elasticity modulus λn = 1Pa, λp =
10Pa. (a) ηn = 4cP, ηp = 40cP , (b) ηn = 40cP, ηp = 40cP , (c) ηn = 400cP, ηp = 40cP ,
(d) ηn = 400cP, ηp = 400cP . ηp and ηn are the viscosities of the platelet aggregate and
fibrin network, respectively. (e) Dynamics of total volumes of the clot. Blue triangle:
ηn = 4cP, ηp = 40cP . Red circle: ηn = 400cP, ηp = 400cP .
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in hemophilia patients can develop emboli resulting in them being much less
stable then clots developing in healthy individuals.

5. Conclusions

Novel thermodynamically consistent three-phase Navier-Stokes Cahn-Hilliard
model for simulating complex fluids is presented in the paper. The new mod-
el which is derived by using the EnVarA, is shown to be capable of simu-
lating fluids with large density and viscosity ratios, and satisfy the energy
dissipation law. Energy stable numerical scheme is also developed to solve
obtained system of model equations. Convergence of the numerical scheme
is demonstrated by simulating droplet sliding on an inclined plane. Modified
General Navier Boundary Condition with fluid elasticity taken into account
is introduced for purpose of simulating contact line problems.

Differences between outcomes obtained using Kelvin-Voigt and Oldroyd-
B models representing visco-elasticity of complex fluids are studied by using
creep-recovery test for fluids and droplet spreading. Simulations suggest that
the Kelvin-Voigt model is suitable for modeling complex fluid with reversible,
visco-elastic deformation. While the Oldroyd-B model is more suitable for
modeling complex fluid with fluid-like behavior.

Obtained model was used for studying deformation and stability of mi-
cron size blood clots under physiologically relevant blood flow conditions.
Blood clot simulations showed that hemophilia clots are more deformable
and unstable than blood clots obtained using normal blood [55]. Model sim-
ulations revealed that different responses of hemophilia and normal clots to
blood flow are partially due to different structures and densities of fibrin
networks. Notice that the viscosity and elasticity of platelet aggregates were
varied in simulations as well.

The three-phase model can be generalized to study lysis (disintegration)
of a blood clot due to activity of thrombolytic agents. It has been shown in
[70, 71] that intra-thrombus molecular transport is affected by the structure
of the blood clot. Therefore the model described in this paper can be coupled
with the anti-coagulation transport sub-models to predict conditions of the
gradual resolution of a blood clot [6].

Our model includes three phases. It can be viewed as a special case of
the models described in the reference [79] with additional modification. This
modification was motivated by the fact that for N -phase (N > 3) system,
the surface tension between two phases cannot be uniquely represented by
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Figure 9: Shapes of clots with different values of elasticity modulus described by steady
state solutions of the model system of equations. (a) λn = 0.1Pa, λp = 1Pa. (b)
λn = 1Pa, λp = 10Pa. (c) λn = 10Pa, λp = 10Pa. (d) λn = 50Pa, λp = 10Pa. λp and
λn are elasticity moduli of the platelet aggregates and fibrin networks, respectively.
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Figure 10: Evolution of averaged velocity inside clot
∫

Ω
χClot|u|dx/

∫
Ω
χClotdx. λp and

λn are elasticity moduli of the platelet aggregates and fibrin networks, respectively.

phase specific surface tension. Many previous works let surface tensions
be homogeneous in this situation. In order to include non-homogeneous
surface tensions and ensure no phase appears artificially, we couple phases
hierarchically. Namely, the phase function in our model is treated not in
a pairwise way but by using the binary tree approach. The binary tree
approach is used to avoid deriving complicated algebraic relations between
pairwise surface tension and phase specific surface tension for N ≥ 3 phases.
Note that our model also satisfies Assumptions 2 and 3 in [79]. Moreover, the

mixing energy as Λ =

[
φ2

2 0
0 1

]
described in our paper is a generation of the

case Λ = I described in [79]. Therefore, our binary tree approach provides a
simple alternative for coupling N-phase (N ≥ 3) fluids.
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Appendix A. Mathematical notations used in the paper

Mathematical notations used in this paper are as follows. Suppose a 2-
rank tensor is denoted as F , its l2 norm is |F |2 =

∑
ij=1,2 F

2
ij. If A and B are

two 2-rank tensors, then (AB)ij =
∑

k AikBkj and the double dot product of
these two tensors is A : B =

∑
ij AijBij. If a and b are two vectors, the outer

product a ⊗ b means (a ⊗ b)ij = aibj. L2 norm of the smooth function f
in the domain Ω, (

∫
Ω
|f |2dx)1/2, is denoted by ‖f‖Ω and the L2 norm on the

boundary w, (
∫

Γ
|f |2ds)1/2, is denoted by ‖f‖w. If f and g are two smooth

functions in Ω, (f, g) stands for the inner product of these two functions and
it is defined by (f, g) =

∫
Ω
fgdx.

Appendix B. Derivation of the three-phase model

We first use LAP to derive the conservative force. The action functional
is defined as follows:

A =

∫ t∗

0

∫
Ω

1

2
ρ|u|2 −

∫ t∗

0

∫
Ω

λ1φ
2
2

(
G1(φ1) +

γ2
1

2
|∇φ1|2

)
dx

−
∫ t∗

0

∫
Ω

λ2

(
G2(φ2) +

γ2
2

2
|∇φ2|2

)
dx−

∫ t∗

0

∫
Ω

λe
2
|∇Ψ|2dx .(B.1)

We use 1-parameter family of volume preserving diffeomorphisms to per-

form the variation xε, such that x0 = x and dxε

dε

∣∣∣
ε=0

= y, where y is smooth

function with compact support and satisfies y(X, 0) = y(X, t∗) = 0 for any
X ∈ Ω0. For any ε, xε is required to satisfy det ∂xε

∂X
= 1. This leads to the

divergence free condition for y(X, t) = ỹ(x(X, t), t), i.e. ∇x · ỹ = 0. For
LAP, we use the variations xε of x as described above. The variation of
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action functional A is calculated as follows:

d

dε

∣∣∣
ε=0

A(xε)

=
d

dε

∣∣∣
ε=0

∫ t∗

0

∫
Ω0

(
ρ(φ10(X), φ20(X))

2
|xt|2

)
dXdt

− d

dε

∣∣∣
ε=0

∫ t∗

0

∫
Ω0

(
λ1φ20(X)(G1(φ10) +

γ2
1

2
|F−T∇Xφ10(X)|2)

)
dXdt

− d

dε

∣∣∣
ε=0

∫ t∗

0

∫
Ω0

(
λ2(G2(φ20(X)) +

γ2
2

2
|F−T∇Xφ20(X)|2)

)
dXdt

− d

dε

∣∣∣
ε=0

∫ t∗

0

∫
Ω0

(
1

2
λe(φ0(X))|∇XΨ0F

−1|2
)
dXdt

= I1 + I2 + I3 + I4. (B.2)

Here φi(x) =
φi,0

detF
[83], for i = 1, 2, is used. detF = 1 for the incompressible

fluid.
This yields the following form of the first term of the right hand side of

equation (B.2)

I1 =

∫ t∗

0

∫
Ω0

ρ(φ10, φ20)xtytdXdt

= −
∫ t∗

0

∫
Ω0

ρ(φ10, φ20)(xtty)dXdt

= −
∫ t∗

0

∫
Ω

ρ(φ1, φ2)(∂tu+ u · ∇u, ỹ)dxdt .

(B.3)

At the same time,if we draw back from Lagrangian to Eulerian and then do
the integration by parts, we have

I1 =

∫ t∗

0

∫
Ω0

ρ(φ10, φ20)xtytdXdt

=

∫ t∗

0

∫
Ω

ρ(φ1, φ2)(u, ỹt + u · ỹt)dxdt

= −
∫ t∗

0

∫
Ω

(∂t(ρu) +∇ · (ρu⊗ u), ỹ)dxdt .

(B.4)
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In this work, we combine above two formula as shown in [41]

I1 = −
∫ t∗

0

∫
Ω

(
1

2
ρ(∂tu+ u · ∇u), ỹ

)
dxdt

−
∫ t∗

0

∫
Ω

(
1

2
(∂t(ρu) +∇ · (ρu⊗ u)), ỹ

)
dx (B.5)

dF ε

dε

∣∣∣
ε=0

= −F−1(∇Xy)F−1 [26] results in the following form of the second

and third terms

I2 = −
∫ t∗

0

∫
Ω0

λ1γ
2
1φ20

(
F−T∇Xφ10(X), (−F−T (∇Xy)TF−T∇Xφ10)

)
dXdt

= −
∫ t∗

0

∫
Ω

λ1γ
2
1 (φ2∇φ1, (−∇ỹ∇φ1)) dxdt

= −
∫ t∗

0

∫
Ω

(λ1γ
2
1∇ · (φ2∇φ1 ⊗∇φ1))ỹdxdt . (B.6)

I3 = −
∫ t∗

0

∫
Ω

(λ2γ
2
2∇ · (∇φ2 ⊗∇φ2))ỹdxdt . (B.7)

The fourth term are transformed in a similar way as follows

I4 =−
∫ t∗

0

∫
Ω0

λe(φ10, φ20)
(
(∇XΨ0)F−1 : (−(∇XΨ0)F−1(∇Xy)F−1)

)
dXdt

= −
∫ t∗

0

∫
Ω

λe(φ1, φ2) (∇Ψ : (−∇Ψ∇ỹ)) dxdt

= −
∫ t∗

0

∫
Ω

(∇ · (λe(φ)(∇Ψ)T∇Ψ), ỹ)dxdt . (B.8)

Combining formula from (B.5) to (B.8), and taking into account of the in-
compressibility and the Weyl’s decomposition or Helmholtz’s decomposition,
for some P1 ∈ W 1,2(Ω) yields

Fcon = −
([

1

2
ρ(∂tu+ u · ∇u) +

1

2
(∂t(ρu) +∇ · (ρu⊗ u))

]
+

+λ2γ
2
2∇ · (∇φ2 ⊗∇φ2) + λ1γ

2
1∇ · (φ2∇φ1 ⊗∇φ1)

+∇ · (λe(∇Ψ)T∇Ψ) +∇P1

)
.
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Variation of the dissipation functional with respect to uε = u+ εv with
∇ · v = 0 in Ω and v · n = 0 on the wall w, where n is an outer normal
vector of the wall, in the Eulerian coordinate system is as follows

1

2

δ∆

δu
=

∫
Ω

(−∇ · (ηD))vdx+

∫
w

(τ · (ηD) · n+ κφ̇2∇τφ2 + βsus)vτds ,(B.9)

where vτ = v · τ and τ is a tangential vector to the wall. The following
expressions are also taken into account u · τ = us and φ̇ = ∂tφ2 + us∂τφ2.
The following expression for the dissipative force in the equation of motion
in the bulk region is obtained using MDP and the incompressible constraint

Fdis = −∇ · (ηD) +∇P2 . (B.10)

Finally, after using the force balance in the bulk region, i.e., Fcon = Fdis,
we obtain the equation of motion for the macroscopic fluid mixture

1

2
[ρ(∂tu+ u · ∇u) + (∂t(ρu) +∇ · (ρu⊗ u))]

= ∇ · (ηD)−∇P̄ − λ2γ
2
2∇ · (∇φ2 ⊗∇φ2)

−λ1γ
2
1∇ · (φ2∇φ1 ⊗∇φ1)−∇ · (λe(∇Ψ)T∇Ψ) , (B.11)

where P̄ = P1 − P2. The right hand side terms of the previous equation can
be written

λ1γ
2
1∇ · (φ2(∇φ1 ⊗∇φ1))

=λ1γ
2
1∇ · (φ2∇φ1)∇φ1 +

γ2
1

2
λ1φ2∇|∇φ1|2

=− λ1

(
−γ2

1∇ · (φ2∇φ1) + φ2G
′
1(φ1)

)
∇φ1 + λ1φ2∇

(
G1(φ1) +

γ2
1

2
|∇φ1|2

)
=− µ1∇φ1 + λ1φ2∇

(
G1(φ1) +

γ2
1

2
|∇φ1|2

)
+

(
∂1λe

1

2
|∇Ψ|2

)
∇φ1,
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λ2γ
2
2∇ · (∇φ2 ⊗∇φ2)

=λ2γ
2
24φ2∇φ2 +

γ2
2λ2

2
∇|∇φ2|2

=− λ2(−γ2
24φ2 +G′2(φ2))∇φ2 + λ2∇(

γ2
2

2
|∇φ2|2 +G2(φ2))

=− µ2∇φ2 + λ2∇
(
γ2

2

2
|∇φ2|2 +G2(φ2)

)
+ λ1

(
G1 +

γ2
1

2
|∇φ1|2

)
∇φ2

+

(
∂2λe

1

2
|∇Ψ|2

)
∇φ2

with the form of the elastic force term

∇ · (λe(∇Ψ)T∇Ψ) = (∇Ψ)Tω +
λe
2
∇|∇Ψ|2

where ω = ∇ · (λe∇Ψ). This results in the following form of the equation
(B.11)

∇ · (λe(∇Ψ)T∇Ψ) + λ2γ
2
2∇ · (∇φ2 ⊗∇φ2) + λ1γ

2
1∇ · (φ2∇φ1 ⊗∇φ1)

=− µ1∇φ1 − µ2∇φ2 + (∇Ψ)Tω +∇P̃ ,

with

P̃ =

(
λ2
γ2

2

2
|∇φ2|2 + λ2G2(φ2) + (λ1G1 +

λ1γ
2
1

2
|∇φ1|2)φ2 +

λe
2
|∇Ψ|2

)
.

Finally, this yields the macroscale momentum equation of the three-phase
model

1
2

[ρ(∂tu+ u · ∇u) + (∂t(ρu) +∇ · (ρu⊗ u))]

= ∇ · (ηD)−∇P −∇µ1φ1 −∇µ2φ2 − (∇Ψ)Tω ,

where P = P̃ − µ1φ1 − µ2φ2.

Remark Appendix B.1. Notice that w the variation is taken in the La-
grangian coordinate system when using LAP approach and it is taken in the
Eulerian coordinate system in the MDP method. This is done because the
variation of the action functional is taken with respect to the flow map (or
trajectory x(X, t) ) and it is more convenient to use the LAP in the La-
grangian coordinates.
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Appendix C. Stability analysis of the numerical scheme

We present in this section the stability analysis of the numerical scheme
(3.1). We start by proving the following lemma similar to the one in [29].
This lemma will be used in proving Theorem 3.1.

Lemma Appendix C.1. Let E = Ec − Ee, where Ec =
∫

Ω
( s1

2ε1
|φ1|2 +

s2
2ε2
|φ2|2)dx, Ee =

∫
Ω

( s1
2ε1
|φ1|2 + s2

2ε2
|φ2|2 − 1

ε2
G2(φ2) − φ22

ε1
G1(φ1))dx. If s1 ≥

max(G
′′
1(φn1 )(φn2 )2, G

′′
1(φn1 )(φn2 )2 − 2φ2G

′
1(φn1 )), s2 ≥ max(G

′′
2(φn2 ) + 2ε2

ε1
G1,

G
′′
2(φn2 ) + 2ε2

ε1
(G1 − φ2G

′
1(φn1 ))), and supx∈Ω{|φn1 |, |φn2 |} ≤ C with a constant

C > 0 then for given φn1 and φn2 , we have

E(φn+1
1 , φn+1

2 )− E(φn1 , φ
n
2 ) ≤ (µ̄n+1

1 , φn+1
1 − φn1 ) + (µ̄n+1

2 , φn+1
2 − φn2 ) ,(C.1)

where µ̄1 = s1
ε1
φn+1

1 − (
s1φn1
ε1
− (φn2 )2G

′
1(φn1 )

ε1
), µ̄2 = s2

ε2
φn+1

2 − (
s2φn2
ε2
− G′2(φn2 )

ε2
−

(2φn2 )
G1(φn1 )

ε1
).

Proof. By mean value theorem, we have

Ec(φ
n
1 , φ

n
2 )− Ec(φn+1

1 , φn+1
2 ) ≥ (

δEc
δφ1

, φn1 − φn+1
1 ) + (

δEc
δφ2

, φn2 − φn+1
2 )

+
s1

ε1

|φn1 − φn+1
1 |2 +

s2

ε2

|φn2 − φn+1
2 |2.(C.2)

Similarly, we can get

Ee(φ
n+1
1 , φn+1

2 )− Ee(φn1 , φn2 )

= (
δEe(φ

n
1 , φ

n
2 )

δφ1

, φn+1
1 − φn1 ) + (

δEe(φ
n
1 , φ

n
2 )

δφ2

, φn+1
2 − φn2 )

+(H11, (φ
n+1
1 − φn1 )2) + (2H12, (φ

n+1
1 − φn1 )(φn+1

2 − φn2 ))

+(H22, (φ
n+1
2 − φn2 )2) , (C.3)

where

H =

(
s1
ε1
− φ21

ε1
G′′1(φ1) −2φ2

ε1
G′1(φ1)

−2φ2
ε1
G′1(φ1) s2

ε2
− G′′2 (φ2)

ε2
− 2G1(φ1)

ε1

)
. (C.4)

If s1 ≥ max(G
′′
1(φn1 )(φn2 )2, G

′′
1(φn1 )(φn2 )2−2φ2G

′
1(φn1 )), s2 ≥ max(G

′′
2(φn2 )+

2ε2
ε1
G1, G

′′
2(φn2 ) + 2ε2

ε1
(G1 − φ2G

′
1(φn1 ))), then matrix H is a positive defined

matrix.
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Then, there exist two constants C1 and C2, such that

Ee(φ
n+1
1 , φn+1

2 )− Ee(φn1 , φn2 )

≥ (
δEe(φ

n
1 , φ

n
2 )

δφ1

, φn+1
1 − φn1 ) + (

δEe(φ
n
1 , φ

n
2 )

δφ2

, φn+1
2 − φn2 )

+C1|φn1 − φn+1
1 |2 + C2|φn2 − φn+1

2 |2. (C.5)

Adding (C.2) with (C.5) together gives

E(φn+1
1 , φn+1

2 )− E(φn1 , φ
n
2 ) ≤ (µ̄n+1

1 , φn+1
1 − φn1 ) + (µ̄n+1

2 , φn+1
2 − φn2 ) .

By using above Lemma and multiplying each equation in system (3.1)
with proper function, we can prove the energy stable Theorem (3.1) in Section
3.

Theorem 3.1: Let N = maxφn2 (|
√

2
2

(2φn2 − 1) cos(θs)|). If s1 and s2

satisfy the condition in Lemma Appendix C.1 and αw ≥ N , then the solution
(φn+1

1 , φn+1
2 , un+1, P n+1, Ψn+1) of the scheme (3.1) satisfies the following

discrete energy law for any 4t > 0:

En+1 +
(4t)2

2ρ̄Re
‖∇P n+1‖2 +4t

(
1

2
‖η1/2D(un+1)‖2

)
+4t

(
‖M1/2

1 ∇µ1‖2 + ‖M1/2
2 ∇µ2‖2

)
+4t

(
‖l−1/2
s un+1

s ‖2
w + κα2‖φ̇n+1

2 ‖2
w

)
≤ En +

(4t)2

2ρ̄Re
‖∇P n‖2 (C.6)

Proof of Theorem 3.1. By the definition of λe in Section 3, inner product

of ∂iλ
n+1
e

|∇Ψn|2
2

and φn+1
i − φni , i = 1, 2, respectively, and summing them up,
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result in the following

1

2
((φn+1

2 )2(1− α12)φn+1
1 − φn1 , |∇Ψn|2)

+(φn+1
2 (φn1 + (1− φn1 )α12))φn+1

2 − φn2 , |∇Ψn|2|)

=
1

2
((φn+1

2 )2(φn+1
1 + (1− φn+1

1 )α12), |∇Ψn|2)

−1

2
((φn+1

2 )2(φn1 + (1− φn1 )α12), |∇Ψn|2)

+
1

2
((φn+1

2 )2(φn1 + (1− φn1 )α12), |∇Ψn|2)

−1

2
((φn2 )2(φn1 + (1− φn1 )α12), |∇Ψn|2)

+
1

2
((φn+1

2 − φn2 )2(φn1 + (1− φn1 )α12), |∇Ψn|2)

=
1

2
‖(λn+1

e )1/2∇Ψn‖2 − 1

2
‖(λne )1/2∇Ψn‖2

+
1

2
((φn+1

2 − φn2 )2(φn1 + (1− φn1 )α12), |∇Ψn|2) . (C.7)

And for the hydrophilic term, inner product of ∇ · ((φn+1
2 )2∇φn+1

1 ) and
φn+1

2 |∇φn1 |2 by φn+1
1 − φn1 and φn+1

2 − φn2 , respectively, and summing them
up have the form

−ε1

(
∇ · ((φn+1

2 )2∇φn+1
1 ), φn+1

1 − φn1
)

+ ε1(φn+1
2 |∇φn1 |2, φn+1

2 − φn2 )

= ε1

(
(φn+1

2 )2∇φn+1
1 ,∇φn+1

1 −∇φn1
)

+ ε1(|∇φn1 |2φn+1
2 , φn+1

2 − φn2 )

=
ε1

2
((φn+1

2 )2, |∇φn+1
1 |2 − |∇φn1 |2 + |∇(φn+1

1 −∇φn1 )|2)

+
ε1

2
(|∇φn1 |2, (φn+1

2 )2 − (φn2 )2 + (φn+1
2 − φn2 )2)

=
ε1

2
‖φn+1

2 ∇φn+1
1 ‖2 − ε1

2
‖φn2∇φn1‖2

+
ε1

2
‖(φn+1

2 )∇(φn+1
1 − φn1 )‖2 +

ε1

2
‖(φn+1

2 − φn2 )∇φn1‖2 . (C.8)

Combining equations (C.7)-(C.8) and Lemma Appendix C.1, results in
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the following inequality

En+1
coh + En+1

w − (Encoh + Enw)

+
αe
2

(‖(λn+1
e )1/2∇Ψn‖2 − ‖(λne )1/2∇Ψn‖2)

≤ (µn+1
1 , φn+1

1 − φn1 ) + (µn+1
2 , φn+1

2 − φn2 )

+α2(L(φn+1
2 ), φn+1

2 − φn2 )w . (C.9)

After taking the inner product of the first and second equations in (3.1a)
with 4tµn+1

1 and 4tµn+1
2 , respectively, we have

(φn+1
1 − φn1 , µn+1

1 )−4t(un+1φn+1
1 ,∇µn+1

1 ) +4tM1‖∇µn+1
1 ‖2 = 0 , (C.10)

(φn+1
2 − φn2 , µn+1

2 )−4t(un+1φn+1
2 ,∇µn+1

2 ) +4tM2‖∇µn+1
2 ‖2 = 0 . (C.11)

Taking the inner product of the first equation in (3.1b) with 4tun+1

yields

Re(
ρn+1un+1 − ρnun

24t
+
ρn(un+1 − un)

24t
,un+1) (C.12)

= Re(
1

2
(ρn+1 + ρn)un+1 − ρnun,un+1) (C.13)

=
Re

2

(
‖ζn+1un+1‖2 − ‖ζnun‖2 + ‖ζn(un+1 − un)‖2

)
(C.14)

= −4t
2
‖(η(φn+1))1/2D(un+1)‖2 +4t(∇(−2P n + P n−1),un+1)

−4t(φn+1
1 ∇µn+1

1 ,un+1)−4t(φn+1
2 ∇µn+1

2 ,un+1)

−αe4t((∇Ψn)Tωn+1,un+1) +4t(η(φn+1)τ ·D(φn+1) · n,un+1
s )w ,

where ωn+1 = ∇·(λn+1
e ∇Ψn+1). Here we use the fact that

∫
Ω

(∇·(ρn+1un+1⊗
un) + ρn+1un · ∇un+1,un+1)dx = 0.

By using the same argument as in [29], the pressure can be estimated as
follows

4t(un+1,∇(−2P n+1 + P n)) (C.15)

≤ (4t)2

2ρ̄Re
(−‖∇(P n − P n−1)‖2 − ‖∇P n+1‖2 + ‖∇P n‖2)

+
Re

2
‖ζn(un+1 − un)‖2 .
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Taking gradient of each component of the third equation in (3.1b), yields

∂jΨ
n+1
i − ∂jΨn

i

4t
+ ∂j(u

n+1
k ∂kΨ

n
i ) = 0 . (C.16)

The inner product of above equation with αe4tλn+1
e ∂kΨ

n+1
i results in

αe
2

(‖(λn+1
e )1/2Ψn+1‖2 − ‖(λn+1

e )1/2Ψn‖2)

≤ αe4t((∇Ψn)Tωn+1 ,un+1)

−αe(τ · (φn+1
2 )2(∇Ψn)T∇Ψn+1 · n,un+1

s )w . (C.17)

Adding equation (C.12) to the equation (C.17) yields

Re

2

(
‖ζn+1un+1‖2 − ‖ζnun‖2 + ‖ζn(un+1 − un)‖2

)
+
αe
2

(‖(λn+1
e )1/2Ψn+1‖2 − ‖(λn+1

e )1/2Ψn‖2

≤ −4t
2
‖(η(φn+1))1/2D(un+1)‖2 +4t(∇(−2P n + P n−1),un+1)

−4t(φn+1
1 ∇µn+1

1 ,un+1)−4t(φn+1
2 ∇µn+1

2 ,un+1)

−‖l1/2s un+1
s ‖2

w + α2(L(φn+1
2 )∂τφ

n+1
2 ,un+1

s )w . (C.18)

Combing equations (C.9)-(C.11), (C.18) with pressure estimation (C.15)
results in the equation (3.2). �

Appendix D. Additional Simulation Figures
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(a) (b)

(c) (d)

Figure D.11: Profiles of velocity norm at steady state with different values of elasticity for
fibrin network and platelet aggregate. (a) λn = 0.1Pa, λp = 1Pa. (b) λn = 1Pa, λp =
10Pa. (c) λn = 10Pa, λp = 10Pa. (d) λn = 50Pa, λp = 10Pa.
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