Motion in Space

Let $\mathbf{r}(t) = \langle f(t), h(t), g(t) \rangle$. Think of $\mathbf{r}(t)$ the position of a spacecraft at time t.

$$\mathbf{r}'(t) = \langle f'(t), h'(t), g'(t) \rangle = \mathbf{v}(t)$$
 is the velocity of $\mathbf{r}(t)$.

The arc length of $\mathbf{r}(t)$ from time a to t is $\int_a^t |\mathbf{r}'(u)| du$.

Hence speed of the spacecraft is $v(t) = \frac{d}{dt} \int_a^t |\mathbf{r}'(u)| du = |r'(t)|$ which also is the magnitude of the velocity, $\mathbf{v}(t)$.

The acceleration of $\mathbf{r}(t)$ is $\mathbf{r}'(t) = \langle f''(t), h''(t), g''(t) \rangle = \mathbf{v}'(t) = \mathbf{a}(t)$. Force is $m\mathbf{a}$.

The unit tangent of $\mathbf{r}(t)$ is $\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|}$.

Since the unit tangent has length 1, $\mathbf{T}'(t)$ and $\mathbf{T}(t)$ are orthogonal. The *unit normal* is $\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|}$, where $\mathbf{T}'(t) = \frac{1}{|\mathbf{r}'|^3}[|\mathbf{r}'|^2\mathbf{r}'' - (\mathbf{r}'' \cdot \mathbf{r}')\mathbf{r}']$.

The unit binormal $\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)$. Unless forced one never wants to find $\mathbf{B}(t)$ as a function of time. One should determine $\mathbf{T}(a)$ and $\mathbf{N}(a)$ and then take the cross product. But unless you are forced to find $\mathbf{N}(a)$ there is an easier way to find $\mathbf{B}(t)$: I.e., $\mathbf{B} = \frac{\mathbf{v} \times \mathbf{a}}{|\mathbf{v} \times \mathbf{a}|} = \frac{\mathbf{r}' \times \mathbf{r}''}{|\mathbf{r}' \times \mathbf{r}''|}$

The tangent line at $t = t_0$ is the line though $\mathbf{r}(t_0)$ in the direction of $\mathbf{r}'(t_0) = \mathbf{v}(t_0)$ or $\mathbf{T}(t_0)$. So $\mathbf{l}(t) - \mathbf{r}(t_0) = t\mathbf{r}'(t_0)$.

The normal plane at $t = t_0$ is the plane though $\mathbf{r}(t_0)$ with a normal in the direction of $\mathbf{r}'(t_0) = \mathbf{v}(t_0)$ or $\mathbf{T}(t_0)$. So $[\langle x, y, z \rangle - \mathbf{r}(t_0)] \cdot \mathbf{r}'(t_0) = 0$.

The osculating plane at $t = t_0$ is the plane though $\mathbf{r}(t_0)$ containing $\mathbf{T}(t_0)$ and $\mathbf{N}(t_0)$. Hence a normal for this plane is $\mathbf{B}(t_0)$. So $[\langle x, y, z \rangle - \mathbf{r}(t_0)] \cdot \mathbf{B}(t_0) = 0$.

Since $\mathbf{v}(t) = v(t)\mathbf{T}(t)$, $\mathbf{a} = v'(t)\mathbf{T}(t) + v(t)\mathbf{T}'(t)$. So $\mathbf{a}(t_0)$ breaks into two components; one in the direction of the unit tangent and one in the direction of the unit normal, $\mathbf{a}(t_0) = a_T \mathbf{T}(t_0) + a_N \mathbf{N}(t_0)$. The tangential component of acceleration (at time t_0) is a_T . The normal component of acceleration (at time t_0) is n_T . $\mathbf{a}(t_0)$ is orthogonal to $\mathbf{B}(t_0)$.

Note
$$\mathbf{a}(t) \cdot \mathbf{v}(t) = (a_T \mathbf{T}(t) + a_N \mathbf{N}(t)) \cdot v(t) \mathbf{T}(t) = a_T v$$
. So $a_T = \frac{\mathbf{v}(t) \cdot \mathbf{a}(t)}{v(t)}$.

Now $|\mathbf{a}(b)|^2 = a_T^2 + a_N^2$, since $\mathbf{T}(t)$ and $\mathbf{N}(t)$ are orthonormal. Hence $a_N = \sqrt{|\mathbf{a}(t)|^2 - a_T^2}$.

Hence the plane determined by **T** and **N** and the plane determined by **v** and **a** are the same plane, the osculating plane. So the osculating plane is normal to $\mathbf{v} \times \mathbf{a}$ and $\mathbf{B} = \frac{\mathbf{v} \times \mathbf{a}}{|\mathbf{v} \times \mathbf{a}|}$.

1