Motion in Space

Let $\mathbf{r}(t)=\langle f(t), h(t), g(t)\rangle$. Think of $\mathbf{r}(t)$ the position of a spacecraft at time t.
$\mathbf{r}^{\prime}(t)=\left\langle f^{\prime}(t), h^{\prime}(t), g^{\prime}(t)\right\rangle=\mathbf{v}(t)$ is the velocity of $\mathbf{r}(t)$.

The arc length of $\mathbf{r}(t)$ from time a to t is $\int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u$.
Hence speed of the spacecraft is $v(t)=\frac{d}{d t} \int_{a}^{t}\left|\mathbf{r}^{\prime}(u)\right| d u=\left|r^{\prime}(t)\right|$ which also is the magnitude of the velocity, $\mathbf{v}(t)$.

The acceleration of $\mathbf{r}(t)$ is $\mathbf{r}^{\prime}(t)=\left\langle f^{\prime \prime}(t), h^{\prime \prime}(t), g^{\prime \prime}(t)\right\rangle=\mathbf{v}^{\prime}(t)=\mathbf{a}(t)$. Force is ma.
The unit tangent of $\mathbf{r}(t)$ is $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}$.

Since the unit tangent has length $1, \mathbf{T}^{\prime}(t)$ and $\mathbf{T}(t)$ are orthogonal. The unit normal is $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}$, where $\mathbf{T}^{\prime}(t)=\frac{1}{\left|\mathbf{r}^{\prime}\right|^{3}}\left[\left|\mathbf{r}^{\prime}\right|^{2} \mathbf{r}^{\prime \prime}-\left(\mathbf{r}^{\prime \prime} \cdot \mathbf{r}^{\prime}\right) \mathbf{r}^{\prime}\right]$.

The unit binormal $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$. Unless forced one never wants to find $\mathbf{B}(t)$ as a function of time. One should determine $\mathbf{T}(a)$ and $\mathbf{N}(a)$ and then take the cross product. But unless you are forced to find $\mathbf{N}(a)$ there is an easier way to find $\mathbf{B}(t)$: I.e., $\mathbf{B}=\frac{\mathbf{v} \times \mathbf{a}}{|\mathbf{v} \times \mathbf{a}|}=\frac{\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}}{\left|\mathbf{r}^{\prime} \times \mathbf{r}^{\prime \prime}\right|}$

The tangent line at $t=t_{0}$ is the line though $\mathbf{r}\left(t_{0}\right)$ in the direction of $\mathbf{r}^{\prime}\left(t_{0}\right)=\mathbf{v}\left(t_{0}\right)$ or $\mathbf{T}\left(t_{0}\right)$. So $\mathbf{l}(t)-\mathbf{r}\left(t_{0}\right)=t \mathbf{r}^{\prime}\left(t_{0}\right)$.

The normal plane at $t=t_{0}$ is the plane though $\mathbf{r}\left(t_{0}\right)$ with a normal in the direction of $\mathbf{r}^{\prime}\left(t_{0}\right)=\mathbf{v}\left(t_{0}\right)$ or $\mathbf{T}\left(t_{0}\right)$. So $\left[\langle x, y, z\rangle-\mathbf{r}\left(t_{0}\right)\right] \cdot \mathbf{r}^{\prime}\left(t_{0}\right)=0$.

The osculating plane at $t=t_{0}$ is the plane though $\mathbf{r}\left(t_{0}\right)$ containing $\mathbf{T}\left(t_{0}\right)$ and $\mathbf{N}\left(t_{0}\right)$. Hence a normal for this plane is $\mathbf{B}\left(t_{0}\right)$. So $\left[\langle x, y, z\rangle-\mathbf{r}\left(t_{0}\right)\right] \cdot \mathbf{B}\left(t_{0}\right)=0$.

Since $\mathbf{v}(t)=v(t) \mathbf{T}(t), \mathbf{a}=v^{\prime}(t) \mathbf{T}(t)+v(t) \mathbf{T}^{\prime}(t)$. So $\mathbf{a}\left(t_{0}\right)$ breaks into two components; one in the direction of the unit tangent and one in the direction of the unit normal, $\mathbf{a}\left(t_{0}\right)=$ $a_{T} \mathbf{T}\left(t_{0}\right)+a_{N} \mathbf{N}\left(t_{0}\right)$. The tangential component of acceleration (at time t_{0}) is a_{T}. The normal component of acceleration (at time t_{0}) is n_{T}. $\mathbf{a}\left(t_{0}\right)$ is orthogonal to $\mathbf{B}\left(t_{0}\right)$.

Note $\mathbf{a}(t) \cdot \mathbf{v}(t)=\left(a_{T} \mathbf{T}(t)+a_{N} \mathbf{N}(t)\right) \cdot v(t) \mathbf{T}(t)=a_{T} v$. So $a_{T}=\frac{\mathbf{v}(t) \cdot \mathbf{a}(t)}{v(t)}$.

Now $|\mathbf{a}(b)|^{2}=a_{T}^{2}+a_{N}^{2}$, since $\mathbf{T}(t)$ and $\mathbf{N}(t)$ are orthonormal. Hence $a_{N}=\sqrt{|\mathbf{a}(t)|^{2}-a_{T}^{2}}$.
Hence the plane determined by \mathbf{T} and \mathbf{N} and the plane determined by \mathbf{v} and \mathbf{a} are the same plane, the osculating plane. So the osculating plane is normal to $\mathbf{v} \times \mathbf{a}$ and $\mathbf{B}=\frac{\mathbf{v} \times \mathbf{a}}{|\mathbf{v} \times \mathbf{a}|}$.

