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New schemes are developed on triangular grids for solving ideal magnetohydrodynamic 
equations while preserving globally divergence-free magnetic field. These schemes incorpo-
rate the constrained transport (CT) scheme of Evans and Hawley [34] with central schemes 
and central discontinuous Galerkin methods on overlapping cells which have no need for 
solving Riemann problems across cell edges where there are discontinuities of the numer-
ical solution. These schemes are formally second-order accurate with major development 
on the reconstruction of globally divergence-free magnetic field on polygonal dual mesh. 
Moreover, the computational cost is reduced by solving the complete set of governing 
equations on the primal grid while only solving the magnetic induction equation on the 
polygonal dual mesh. Various numerical experiments are provided to validate the new 
schemes.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The ideal magnetohydrodynamic (MHD) equations describe the dynamics of electrically conducting fluids and have wide 
applications in fields like astrophysics and laboratory plasmas. In two-dimensional (2D) space, the ideal MHD equations 
written in the conservative form are
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∂t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρux

ρu y

ρuz

ε

Bx

B y

Bz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∂x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρux

ρu2
x + p − B2

x

ρuxu y − Bx B y

ρuxuz − Bx Bz

(ε + p)ux − Bx(u · B)

0

(ux B y − u y Bx)

−(uz Bx − ux Bz)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ∂y

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu y

ρuxu y − Bx B y

ρu2
y + p − B2

y

ρu yuz − B y Bz

(ε + p)u y − B y(u · B)

−(ux B y − u y Bx)

0

(u y Bz − uz B y)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 . (1.1)

Here ρ is the fluid density, u = (ux, u y, uz)
t is the velocity, B = (Bx, B y, Bz)

t is the magnetic field, ε is the total energy 
density, p = pgas + B · B/2 is the total pressure and pgas is the hydrodynamic gas pressure. In this paper, pgas is assumed to 
satisfy the following equation of state

pgas = (γ − 1)(ε − 1

2
ρu · u − 1

2
B · B) ,

where γ is the adiabatic index. The electric field E is given by E = −u × B. We also use the notation x ≡ (x, y) for spatial 
variables in 2D.

The magnetic field B is supposed to be divergence-free at any time

∇ · B = 0 . (1.2)

However the divergence-free constraint (1.2) introduces additional difficulty in solving Eq. (1.1) numerically. If ∇ · B is not 
exactly zero and increases with time, unphysical solutions in which magnetic field lines have wrong topologies leading to 
plasma transport orthogonal to the magnetic field could occur. See also references [2,5,29,20] for related discussions.

To design schemes for solving the ideal MHD equations, many efforts have been devoted to developing techniques to 
ensure the divergence-free evolution of the magnetic field. To name a few, these include Hodge projection approach [2], 
Powell’s source term formulation [4], constrained transport (CT) methods [34,18,19], locally divergence-free discontinuous 
Galerkin (DG) [10,11], central scheme [8,9] and central DG on overlapping cells of Cartesian grid [12,13], and many others 
[20,23,1,38,37,39,40,42,25–28]. We apologize in advance to the many important contributors whose work could not be 
explicitly mentioned in this paper.

The central scheme on overlapping cells [14] eliminates excessive numerical dissipation for small time steps of the 
central scheme of Nessyahu and Tadmor [22] by taking staggered meshes as a collection of overlapping cells and computing 
solutions by overlapping cell averages. This scheme is used along with the CT method by Li [8,9] to solve the MHD equations 
without having to deal with Riemann problems, in particular for the electric field because of the use of overlapping cells. 
In [15] the central DG scheme on overlapping cells has been developed, extending the work [14] to finite element methods. 
General schemes with arbitrary orders of accuracy, which combine ideas of the CT approach and central DG schemes on 
overlapping cells to solve ideal MHD equations, have been developed for rectangular grids in [12,13] in which the numerical 
magnetic field is evolved in an exactly divergence-free manner.

In this paper, we develop second-order accurate central and central DG schemes for solving ideal MHD equations on 
triangular grids. The essential ingredients of these two schemes consist of ideas of central schemes or central DG finite ele-
ment schemes on overlapping cells, a non-staggered central scheme [7], the TVD Runge–Kutta (RK) time discretization [24,
6], and new exactly divergence-free reconstruction of the numerical magnetic field on both grids.

Several new ideas are introduced in this paper: 1) A new non-staggered central scheme combining strategies of [7]

and [14] is presented. This scheme removes O  
(

1
�tn

)
dependency of numerical dissipation associated with the non-staggered 

central scheme [7]. 2) Although a triangular grid (or primal grid) and its dual grid are utilized complying the basic ideas 
of the central schemes on overlapping cells [14,15], on the dual grid only the magnetic induction equation of system (1.1)
is defined on the grid edges using the CT formulation; while the full set of governing equations (1.1) is only solved on 
the triangular grid. This setup reduces the computational cost by almost one half compared with the central or central 
DG schemes on overlapping cells [8,9,12,13] for solving the ideal MHD equations in which the full set of governing equa-
tions (1.1) is solved on both grids. 3) The globally divergence-free magnetic field supported on the dual grid on the next 
time level is computed using the CT approach and reconstructed by using a new reconstruction procedure. Another new re-
construction procedure developed in the paper and the new non-staggered central scheme combining ideas of [7] and [14]
are used to reconstruct the globally divergence-free magnetic field supported on the triangular mesh from the one defined 
on the dual grid. 4) Using our method, there is no need to solve the multi-dimensional Riemann problem [1,38,37,39,40]
for computing the electric field defined on grid nodes when using the CT formulation.

The rest of the paper is organized as follows: Section 2 describes the new non-staggered central scheme approach 
combining [7] and [14] for solving conservation laws. Section 3 describes implementation of the new central DG scheme 
for solving the ideal MHD equations. Section 4 is devoted to presenting the new central scheme for solving the ideal MHD 
equations. Section 5 outlines the limiting algorithm. Numerical tests are presented in Section 6. Finally, conclusions are 
discussed in Section 7.
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2. New non-staggered central scheme formation

2.1. Review of central schemes

We first review the basic ideas of the non-staggered central scheme [7] and the central scheme on overlapping cells [14]. 
Consider a one-dimensional scalar conservation law ∂t u + ∂x f (u) = 0 and a grid · · · < xi < xi+1 < xi+2 < · · · . Let xi+1/2 =
1
2 (xi + xi+1), and denote cells Ki+1/2 = (xi, xi+1) and Di = (xi−1/2, xi+1/2) for any i.

A forward Euler step of the non-staggered central scheme [7] can be described as follows. Suppose at the time tn , the 
approximate cell average of u on cell Ki+1/2 is given as U

n
i+1/2 for any i. A reconstruction procedure can be applied to 

obtain a piecewise polynomial function Ũ (x) approximating u(x, tn). Ũ (x) restricted on cell Ki+1/2 is a polynomial for any i. 
The cell average V

n+1
i on cell Di at the time tn+1 is computed as

V
n+1
i = 1

xi+1/2 − xi−1/2

xi+1/2∫
xi−1/2

Ũ (x)dx − �tn

xi+1/2 − xi−1/2

[
f (Ũ (xi+1/2)) − f (Ũ (xi−1/2))

]
, ∀i , (2.1)

where �tn = tn+1 − tn . Another reconstruction procedure can be applied to the cell averages {V
n+1
i } to obtain a piecewise 

polynomial function Ṽ (x), of which the restriction on cell Di is a polynomial for any i. Finally the new cell average U
n+1
i+1/2

on cell Ki+1/2 at the time tn+1 is obtained by averaging Ṽ (x) over cell Ki+1/2, for any i.
The central scheme on overlapping cells [14] begins with the approximate cell averages of u(x, t) at the time tn , U

n
i+1/2

and V
n
i , on cell Ki+1/2 and Di , respectively, for any i. A reconstruction procedure can be applied to these cell averages 

to obtain a piecewise polynomial function Ũ (x) approximating u(x, tn), which restricted on cell Ki+1/2 is a polynomial for 
any i; and another piecewise polynomial function Ṽ (x) approximating u(x, tn), which restricted on cell Di is a polynomial 
for any i. Note that we are describing a different scheme in this paragraph, though we still use notations similar to those in 
the above description of the non-staggered central scheme [7] for convenience. The new cell averages at the time tn+1 on 
overlapping cells can be computed as

V
n+1
i = θ

xi+1/2 − xi−1/2

xi+1/2∫
xi−1/2

Ũ (x)dx + (1 − θ)V
n
i − �tn

xi+1/2 − xi−1/2

[
f (Ũ (xi+1/2)) − f (Ũ (xi−1/2))

]
, ∀i ,

and

U
n+1
i+1/2 = θ

xi+1 − xi

xi+1∫
xi

Ṽ (x)dx + (1 − θ)U
n
i+1/2 − �tn

xi+1 − xi

[
f (Ṽ (xi+1)) − f (Ṽ (xi))

]
, ∀i ,

where θ = (tn+1 − tn)/�τn , �τn is the largest possible time step size determined by the CFL condition. The semi-discrete 
form can be easily obtained as follows (to which a Runge–Kutta or other time discretization methods can be applied)

d

dt
V i

∣∣∣
t=tn

= 1

�τn

⎡
⎢⎣ 1

xi+1/2 − xi−1/2

xi+1/2∫
xi−1/2

Ũ (x)dx − V
n
i

⎤
⎥⎦ − 1

xi+1/2 − xi−1/2

[
f (Ũ (xi+1/2)) − f (Ũ (xi−1/2))

]
, ∀i ,

and

d

dt
U i+1/2

∣∣∣
t=tn

= 1

�τn

⎡
⎣ 1

xi+1 − xi

xi+1∫
xi

Ṽ (x)dx − U
n
i+1/2

⎤
⎦ − 1

xi+1 − xi

[
f (Ṽ (xi+1)) − f (Ṽ (xi))

]
, ∀i .

The semi-discrete form demonstrates that there is no O  
(

1
�tn

)
error commonly associated with the staggered averaging. 

In the following new scheme, this idea is applied to the previous non-staggered central scheme [7] to remove its O  
(

1
�tn

)
error.

2.2. New non-staggered central scheme

Suppose at the time tn , the approximate cell average of u(x, tn) on cell Ki+1/2 is given as U
n
i+1/2 for any i, and the 

approximate cell average of u(x, tn) on cell Di is given as V
n
i for any i. A reconstruction procedure can be applied to obtain 
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a piecewise polynomial function Ũ (x) approximating u(x, tn). Ũ (x) restricted on cell Ki+1/2 is a polynomial for any i. The 
cell average V

n+1
i on cell Di at the time tn+1 is computed as

V
n+1
i = θ

xi+1/2 − xi−1/2

xi+1/2∫
xi−1/2

Ũ (x)dx + (1 − θ)V
n
i − �tn

xi+1/2 − xi−1/2

[
f (Ũ (xi+1/2)) − f (Ũ (xi−1/2))

]
, ∀i , (2.2)

where θ = (tn+1 − tn)/�τn ∈ [0, 1], �τn is the largest possible time step size determined by the CFL condition. The semi-
discrete form is described as follows

d

dt
V i

∣∣∣
t=tn

= 1

�τn

⎡
⎢⎣ 1

xi+1/2 − xi−1/2

xi+1/2∫
xi−1/2

Ũ (x)dx − V
n
i

⎤
⎥⎦ − 1

xi+1/2 − xi−1/2

[
f (Ũ (xi+1/2)) − f (Ũ (xi−1/2))

]
, ∀i .

After obtaining the cell average V
n+1
i for every i, another reconstruction procedure can be applied to these averages to 

obtain a piecewise polynomial function Ṽ (x), which restricted on cell Di is a polynomial for any i. Finally the new cell 
average U

n+1
i+1/2 on cell Ki+1/2 at the time tn+1 is obtained by averaging Ṽ (x) over cell Ki+1/2, for any i. Note that the 

forward Euler component step (2.2) can be reformulated as a convex combination of the non-staggered central scheme [7]
and the solution at the previous time V n

i

V
n+1
i = (1 − θ)V

n
i +

θ

⎧⎪⎨
⎪⎩

1

xi+1/2 − xi−1/2

xi+1/2∫
xi−1/2

Ũ (x)dx − �τn

xi+1/2 − xi−1/2

[
f (Ũ (xi+1/2)) − f (Ũ (xi−1/2))

]⎫⎪⎬
⎪⎭ , ∀i .

(2.3)

Therefore we have the following theorem.

Theorem. If the forward Euler step (2.1) of the non-staggered central scheme [7] is TVD (with a suitable nonlinear reconstruction 
procedure) with the time step size �τn, then the new scheme (2.2) is also TVD for any time step size �tn satisfying 0 ≤ �tn ≤ �τn.

3. Central DG scheme formulation for solving ideal MHD equations

In this section, we present the new central DG scheme on overlapping cells for solving the ideal MHD equations. For 
simplicity, we use the forward Euler method as the time discretization method during the discussion. Higher-order accuracy 
in time can be achieved by using the TVD RK method [24,6] or the strong stability preserving method [21].

The physical domain 	 ⊂ R2 is partitioned into a collection of triangular cells

Th = {Ki, i = 1, ...,NT } (3.1)

so that 	 = ⋃NT
i=1 Ki . Th is the primal mesh. For simplicity, we assume that no vertex of one triangle lies on the interior of 

an edge of another triangle.
Let the dual grid of Th be Wh = {D j, j = 1, ..., NW }. D j is formed by joining centroids of triangles meeting at a common 

grid node of Th . Each dual grid cell is further partitioned into a set of partial cells. See Fig. 1 for example. Dual cell 
D1 is partitioned into a collection of partial cells denoted as T1,1, T2,1, . . . , T6,1 formed by connecting individual vertices 
V 1, V 2, . . . , V 6 of D1 with the node O of grid Th , respectively. Vertices V 1, V 2, . . . , V 6 are centroids of triangular cells 
K1, K2, . . . , K6 of the primal mesh. These partial cells will be used when the globally divergence-free magnetic field on Wh
is reconstructed.

For the convenience of discussion, we introduce two vectors U = (ρ, ρux, ρu y, ρuz, ε, Bz)
t and BB = (Bx, B y)

t , and 
rewrite Eq. (1.1) as a combination of two sub-systems, namely, Eq. (3.2) and Eq. (3.4), respectively.

Here

∂tU + ∂xF(U,BB) + ∂yG(U,BB) = 0 , (3.2)

where

F(U,BB) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρux

ρu2
x + p − B2

x

ρuxu y − Bx B y

ρuxuz − Bx Bz

(ε + p)ux − Bx(u · B)

−(u B − u B )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, G(U,BB) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu y

ρuxu y − Bx B y

ρu2
y + p − B2

y

ρu yuz − B y Bz

(ε + p)u y − B y(u · B)

(u B − u B )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.3)
z x x z y z z y



Z. Xu, Y. Liu / Journal of Computational Physics 327 (2016) 203–224 207
Fig. 1. Schematic of overlapping grid. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

And

∂tBB + ∂xFB(U,BB) + ∂yGB(U,BB) = 0 , (3.4)

where

FB(U,BB) =
(

0

ux B y − u y Bx

)
, GB(U,BB) =

(
−ux B y + u y Bx

0

)
. (3.5)

The numerical solutions to U and BB on grid Th are denoted as Un
Th

≡ UTh (x, tn) and Bn
Th

≡ BTh (x, tn) at the time t = tn

respectively, where x = (x, y). On grid Wh , only the x- and y-component of the magnetic induction equation, namely, 
Eq. (3.4) is solved. The approximate solution to BB on Wh is denoted as Bn

Wh
≡ BWh (x, tn).

The following discrete space is used for approximating U on the grid Th:

UTh =
{

v ∈
[

L2(	)
]6 : v|Ki ∈ [

P q(Ki)
]6

,∀Ki ∈ Th

}
, (3.6)

where P q(Ki) represents the space of polynomials of degrees no more than q supported on cell Ki .
We introduce the following divergence-free vector space for approximating BB on both Th and Wh:

BTh =
{

v ∈ H(div0;	) : v|Ki ∈ [
P q(Ki)

]2
,∀Ki ∈ Th

}
=

{
v : v|Ki ∈ �q(Ki), and the normal component of v is continuous across ∂Ki,∀Ki ∈ Th

}
,

BWh =
{

v ∈ H(div0;	) : v|Ts,i ∈ [
P q(Ts,i)

]2
,∀partial cell Ts,i ∈ Di,∀Di ∈ Wh

}
,

(3.7)

H(div0;	) =
{

v ∈ H(div;	) : ∇ · v = 0
}

,

H(div;	) =
{

v ∈
[

L2(	)
]2 : ∇ · v ∈ L2(	)

}
,

�q(C) =
{

v ∈ [
P q(C)

]2
,∇ · v|C = 0,C is a cell in Th or a partial cell in Wh

}
.

(3.8)

The numerical solutions Bn
Wh

∈BWh and Bn
Th

∈BTh at the time t = tn .
We also define the following locally divergence-free vector space on grid Th :

BTh,loc =
{

v : v|Ki ∈ �q(Ki),∀Ki ∈ Th

}
. (3.9)

In each time step, the new central DG scheme uses a computation and a reconstruction sub-step to compute the 
approximate solutions to Eqs. (3.2) and (3.4), and they are detailed in Algorithm 1.

bn+1
Wh

is the numerical solution of the normal component of the magnetic field supported on grid edges of Wh at time 
t = tn+1.

Implementation of these sub-steps is described in the following subsections.
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Algorithm 1: Numerical Algorithm of the Central DG Scheme.
• Computation sub-step: suppose Un

Th
, Bn

Wh
and Bn

Th
are given.

1. Compute Un+1
Th

∈UTh and Bn+1
Th ,loc ∈BTh ,loc supported on grid cells of Th .

2. Compute bn+1
Wh

supported on grid edges of Wh .

• Reconstruction sub-step: suppose bn+1
Wh

, Un+1
Th

and Bn+1
Th ,loc are given.

1. Limit Un+1
Th

and Bn+1
Th ,loc if necessary when solving shock wave problems.

2. Limit bn+1
Wh

if necessary when solving shock wave problems.

3. Reconstruct Bn+1
Wh

∈BWh on grid cells of Wh by using bn+1
Wh

and Bn+1
Th ,loc .

4. Reconstruct Bn+1
Th

∈BWh on grid cells of Th by using Bn+1
Wh

.

3.1. Updating Un+1
Th

on Th

Given the approximate solution Un
Th

supported on grid Th , and Bn
Wh

supported on grid Wh , we proceed to compute the 
approximate solution Un+1

Th
∈UTh of Eq. (3.2) at the next time level, tn+1 = 	tn + tn by using a DG scheme with a numerical 

flux function utilizing information from solutions defined on both grids.
Let U (i)

h,k(x, t) denote the kth (k = 1, . . . , 6) component of the approximate solution UTh (x, t) to Eq. (3.2) restricted on 
cell Ki . We use the following basis function set for representing U (i)

h,k(x, t):

{
φ

(i)
m (x) : m = 0, . . . , r

}
≡

{
1,

(x − xi)√|Ki| ,
(y − yi)√|Ki| ,

(x − xi)
2

(
√|Ki|)2

,
(x − xi)(y − yi)

(
√|Ki|)2

,
(y − yi)

2

(
√|Ki|)2

, . . . ,
(y − yi)

q

(
√|Ki|)q

}
, (3.10)

where xi ≡ (xi, yi) is the centroid of Ki , r = (q + 1)(q + 2)/2 − 1 and |Ki | is the area of cell Ki . These are monomials of the 
2D Taylor expansion about the cell centroid (xi , yi), scaled by the area of the cell raised to proper powers. In this paper, we 
only consider the case of q = 1.

U (i)
h,k(x, t) then is represented by

U (i)
h,k(x, t) =

r∑
m=0

Û (i)
m,k(t)φ

(i)
m (x) . (3.11)

The semi-discrete DG scheme for solving each component of Eq. (3.2) to obtain Un+1
Th

is formulated as: For each k =
1, . . . , 6 and ∀Ki ∈ Th , find U (i)

h,k(x, t) such that for every φ(i)
m , m = 0, . . . , r,

d

dt

∫
Ki

U (i)
h,k(x, t)φ(i)

m dx = −
∑

e∈∂Ki

∫
e

he,k(x, t)φ(i)
m d� +

∫
Ki

(
Fk(UTh ,BWh ), Gk(UTh ,BWh )

) · ∇φ
(i)
m dx , (3.12)

where Fk and Gk are the kth component of fluxes F and G, respectively, e is any edge of Ki . It is important to note that 
BWh is the magnetic field solution defined on grid Wh (the idea of the central DG scheme on overlapping cells is adopted 
here). Let νe,i be the outward unit normal of edge e of cell Ki , and he,k be the numerical flux function. In this paper, he,k is 
the Lax–Friedrich flux function which reads:

he,k(x, t) = 1

2

[ (
Fk

(
UTh,in,BWh

)
, Gk

(
UTh,in,BWh

)) + (
Fk

(
UTh,out,BWh

)
, Gk

(
UTh,out,BWh

)) ] · νe,i

+ α

2

(
Uh,k,in − Uh,k,out

)
,

(3.13)

where α = max(|u| + c). c is the speed of the fast magneto-acoustic wave [4]. The kth components of UTh ,in and UTh,out are 
defined by

Uh,k,in(x, t) = lim
y→x,y∈Kint

i

U (i)
h,k(y, t) , (3.14)

Uh,k,out(x, t) = lim
y→x,y/∈Ki

U (i)
h,k(y, t) , (3.15)

and Kint
i indicates the interior of cell Ki .

The forward Euler time discretization for discretizing Eq. (3.12) is: For each k = 1, . . . , 6 and ∀Ki ∈ Th , find U (i)
h,k(x, tn+1)

such that for every φ(i)
m , m = 0, . . . , r,
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∫
Ki

U (i)
h,k(x, tn+1)φ

(i)
m dx −

∫
Ki

U (i)
h,k(x, tn)φ

(i)
m dx =

− 	tn
∑

e∈∂Ki

∫
e

he,k(x, tn)φ
(i)
m d� + 	tn

∫
Ki

(
Fk(Un

Th
,Bn

Wh
), Gk(Un

Th
,Bn

Wh
)
)

· ∇φ
(i)
m dx .

(3.16)

Integrals in Eq. (3.16) are evaluated by appropriate Gaussian quadrature rules [3].
The divergence-free BTh could also be used in (3.12) as in conventional CT schemes on non-staggered grids. In this paper 

the divergence free BWh is firstly computed through a central scheme followed by a CT reconstruction on the dual mesh, 
then the divergence-free BTh is computed on the triangular mesh from BWh . Therefore BTh should contain larger error than 
BWh . Also BWh is continuous across cell edges of a triangular cell while BTh isn’t (only its normal component is), which 
makes the computation of fluxes in Eq. (3.12) easier. Numerical tests also show that U (i)

h,k(x, tn+1) computed with using BTh

in flux evaluation has error larger than that computed with using BWh in flux evaluation.

3.2. Updating Bn+1
Th,loc on Th

Given Bn
Th

and Un
Th

supported on grid Th and Bn
Wh

supported on grid Wh , the approximate solution Bn+1
Th,loc ∈ BTh,loc

to Eq. (3.4) at the next time level tn+1 = 	tn + tn is computed. This solution will be used to help reconstruct globally 
divergence-free magnetic field Bn+1

Wh
on the dual grid Wh .

We modify the central DG scheme on overlapping cells to compute Bn+1
Th,loc . Details of the modification are given as 

follows.
When q = 1, the following basis is used to span the local space �q(Ki) for BTh,loc(x, t) restricted on cell Ki :

{
ψ

(i)
s (x), s = 0, . . . ,4

}
≡

⎧⎨
⎩

(
1

0

)
,

(
0

1

)
,

⎛
⎝ x−xi√|Ki |

− y−yi√|Ki |

⎞
⎠ ,

( y−yi√|Ki |
0

)
,

(
0

x−xi√|Ki |

)⎫⎬
⎭ . (3.17)

Let’s use B(i)
Th,loc(x, t) to denote the locally divergence-free solution to Eq. (3.4) supported on Ki . B(i)

Th,loc(x, t) is repre-
sented by:

B(i)
Th,loc(x, t) =

4∑
s=0

B̂(i)
s (t)ψ (i)

s (x) . (3.18)

The semi-discrete modified central DG scheme to solve Eq. (3.4) to obtain Bn+1
Th,loc is formulated as: ∀Ki ∈ Th , find 

B(i)
Th,loc(x, t) ∈ �q(Ki) such that for every ψ (i)

s , s = 0, . . . , 4,

d

dt

∫
Ki

B(i)
Th,loc(x, t) · ψ (i)

s dx
∣∣∣
t=tn

= 1

�τn

∫
Ki

(
Bn
Wh

− Bn
Th

)
· ψ (i)

s dx

−
∑

e∈∂Ki

∫
e

ψ
(i)
s ·

((
FB(Un

Th
,Bn

Wh
),GB(Un

Th
,Bn

Wh
)
)

· νe,i

)
d�

+
∫
Ki

(
FB(Un

Th
,Bn

Wh
),GB(Un

Th
,Bn

Wh
)
)

· ∇ψ
(i)
s dx ,

(3.19)

where �τn is the upper bound for the time step size due to the CFL restriction at tn . Notice that the initial value used to 
solve Eq. (3.19) is Bn

Th
, which is globally divergence-free.

For example, when the forward Euler time discretization is employed to discretize Eq. (3.19), the fully discrete scheme 
reads as: ∀Ki ∈ Th , find B(i)

Th,loc(x, tn+1) ∈ �q(Ki) such that for every ψ (i)
s , s = 0, . . . , 4,∫

Ki

B(i)
Th,loc(x, tn+1) · ψ (i)

s dx −
∫
Ki

B(i)
Th

(x, tn) · ψ (i)
s dx = 	tn

�τn

∫
Ki

(
Bn
Wh

− Bn
Th

)
· ψ (i)

s dx

− 	tn
∑

e∈∂Ki

∫
e

ψ
(i)
s ·

((
FB(Un

Th
,Bn

Wh
),GB(Un

Th
,Bn

Wh
)
)

· νe,i

)
d�

+ 	tn
∫ (

FB(Un
Th

,Bn
Wh

),GB(Un
Th

,Bn
Wh

)
)

· ∇ψ
(i)
s dx .

(3.20)
Ki
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Eq. (3.19) is a central DG scheme on overlapping cells ([14,15]) taking advantage of the presence of Bn
Wh

on the dual 
mesh. The role of the term with Bn

Wh
− Bn

Th
is to provide sufficient amount of diffusion to stabilize the computation of 

B(i)
Th,loc , similar to the role of the diffusive term in a Lax–Friedrichs flux (see e.g. [38]). One could also update the magnetic 

field on the triangular mesh directly without using Bn
Wh

, see [10]. Note that in Eqs. (3.19) and (3.20), Un
Th

defined on the 
primal grid is used to evaluate the flux function because Un

Th
is only supported on grid Th . Since Un

Th
is not continuous 

across cell edges, an arithmetic average of the jump values of the fluxes is used (which is also the Lax–Friedrichs flux 
because Bn

Wh
is continuous here).

3.3. Updating bn+1
Wh

on Wh

In this subsection, the central DG scheme in combination with the CT framework is designated to compute the approx-
imate solution bn+1

Wh
, the normal component of the magnetic field defined on each of the grid edges of Wh at the time 

level tn+1. Note that the numerical magnetic field is globally divergence-free if and only if the normal component of the 
numerical magnetic field is continuous across the element interfaces. Therefore, we first compute bn+1

Wh
, and then recon-

struct Bn+1
Wh

element-by-element on all D j ∈ Wh so that ∇ · Bn+1
Wh

= 0 in the interior of partial cells of D j and the normal 
component of Bn+1

Wh
defined on the interfaces of D j matches with bn+1

Wh
supported on D j interfaces exactly. Moreover, the 

normal component of Bn+1
Wh

is continuous across interfaces of partial cells.

Denote Lh = {eWj , j = 1, . . . , Ne} the set of grid edges of the dual grid Wh . eWj connects centroids of triangular cells 
of Th . Let the unit edge normal of the edge eWj be νWj and tangent be ζW

j . ζW
j is obtained by rotating νWj 90 degrees in 

the counterclockwise direction.
On each eWj , we rewrite Eq. (3.4) by contributions of BB in the directions of νWj and ζW

j to obtain

∂t

(
bνWj

bζWj

)
+ ∂νj

(
0

uνj bζWj
− uζj bνWj

)
+ ∂ζj

(−uνj bζWj
+ uζj bνWj

0

)
= 0 , (3.21)

where bνW
j

= BB ·νWj , bζW
j

= BB · ζW
j , and uνj and uζj are the components of the velocity u in the νWj and ζW

j directions, 

respectively. (νj , ζj ) is the coordinate in the 
(
νWj , ζW

j

)
coordinate system.

Along the ζW
j direction, let x0,j and x1,j be the starting and ending points of edge eWj which is parametrized by

x(ζ̂j ) = x0,j + x1,j

2
+ x1,j − x0,j

2
ζ̂j , ζ̂j ∈ [−1,1] . (3.22)

With this affine mapping we can consider the first equation of (3.21) on a reference spatial coordinate of ζ̂j ∈ [−1, 1]. 
Denote b(j)

h (·, t) the numerical approximation to bνW
j

(·, t) supported on edge eWj . The basis used to span the polynomial 

space P q
(
ζ̂j

)
(q = 1) for representing b(j)

h is

{
ϕs(ζ̂j ), s = 0,1

}
≡

{
1, ζ̂j

}
. (3.23)

Let

b(j)

h (ζ̂j , t) =
1∑

s=0

b̂(j)
s (t)ϕs(ζ̂j ) . (3.24)

The first equation of (3.21) is solved by the central DG scheme on overlapping cells. Computations are performed using 
an affine transformation which maps integrals over eWj to integrals with respect to ζ̂j ∈ [−1, 1] on which the basis functions 
are defined. The semi-discrete central DG method for computing b(j)

h,
(ζ̂j , tn+1) is formulated as follows:

∀eWj ∈Lh , find b(j)

h,
(ζ̂j , t), a linear polynomial in ζ̂j ∈ [−1, 1], such that for any ϕs(ζ̂j ), s = 0, 1,

d

dt

1∫
−1

b(j)

h ϕsdζ̂j

∣∣∣
t=tn

= 1

�τn

1∫
−1

(
b(j)
Th

(tn) − b(j)

h (tn)
)
ϕsdζ̂j

− 2

| eWj |

⎡
⎣Ez,Th (ζ̂j )ϕs

∣∣∣1

−1
−

1∫
Ez,Th (ζ̂j )

dϕs

dζ̂j

dζ̂j

⎤
⎦ ,

(3.25)
−1
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where b(j)

Th
(tn) is Bn

Th
· νj restricted on edge eWj , Ez,Th is the z-component of the electric field E defined on Th , and | eWj |

is the length of edge eWj . As before, Eq. (3.25) can be discretized by the forward Euler time discretization as a component 
of the TVD Runge–Kutta method.

By letting ϕs = 1 in Eq. (3.25), it is easy to verify that b(j)

h,
(ζ̂j , tn+1) satisfies the following compatibility condition∫

∂D j

b(j)

h (tn+1)dζ̂ = 0 , ∀D j ∈ Wh and b(j)

h (tn+1) is supported on ∂D j , (3.26)

provided Bn
Th

and Bn
Wh

is globally divergence-free.

With this compatibility condition, we proceed to do element-by-element divergence-free reconstruction to obtain Bn+1
Wh

. 
The reconstruction algorithm is described in the following subsection.

3.4. Reconstructing exactly divergence-free Bn+1
Wh

on Wh

An algorithm to reconstruct a piecewise linear and globally divergence-free magnetic field Bn+1
Wh

on Wh is discussed 
in this section. The reconstructed Bn+1

Wh
satisfies the divergence-free condition in the interior of any partial cell. The nor-

mal component of the reconstructed Bn+1
Wh

is continuous across cell edges of partial cells and dual cells, and also retains 

consistency at the boundary of a dual cell, namely, 
(

Bn+1
Wh

· νWj
) ∣∣∣

eWj
= b(j)

h

(·, tn+1
)
.

The reconstruction is a local process and proceeds dual cell-by-dual cell. Consider to reconstruct Bn+1
Wh

on dual cell D1, 
as shown in Fig. 1. On each of its partial cell T�,1, � = 1, . . . , 6, let (Bx,T�,1 , B y,T�,1)

t denote the reconstructed magnetic field 
restricted on T�,1 at time tn+1, i.e.,

(Bx,T�,1 , B y,T�,1)
t = Bn+1

Wh
χT�,1(x, y) . (3.27)

Note that D1 = ⋃6
�=1 T�,1, and χT�,1(x, y) is the characteristic function supported on partial cell T�,1. (Bx,T�,1 , B y,T�,1)

t is 
represented by the following form in the present paper{

Bx,T�,1(x, y) = a0,T�,1 + a1,T�,1 x + a2,T�,1 y

B y,T�,1(x, y) = b0,T�,1 + b1,T�,1 x + b2,T�,1 y
, (3.28)

and 36 conditions are needed to determine uniquely (Bx,T�,1 , B y,T�,1)
t for � = 1, . . . , 6.

The divergence-free condition, namely, ∇ · (Bx,T�,1 , B y,T�,1) = 0, leads to the following equation:

a1,T�,1 = −b2,T�,1 , � = 1, . . . ,6. (3.29)

This eliminates six unknown coefficients, or reduces one degree of freedom in reconstructing each (Bx,T�,1 , B y,T�,1)
t .

Let the edge of partial cell T�,1 connecting two adjacent vertices of D1 be eWj . eWj is actually in the edge set Lh of the 
dual grid Wh . See Fig. 1 for example. T1,1’s edge connecting V 1 and V 2, T2,1’s edge connecting V 2 and V 3 and so on are 
this type of edges. On eWj , (Bx,T�

, B y,T�
)t needs to satisfy

(Bx,T�,1 , B y,T�,1) · νW
j = b(j)

h

(
x, tn+1

)
, � = 1, . . . ,6. (3.30)

Notice that b(j)

h

(
x, tn+1

)
is computed by the scheme presented in subsection 3.3.

Let T�,1 and T�+1,1 be two partial cells belonging to the same dual cell D1 and be edge adjacent neighbors. Use eD1
� to 

denote the edge shared by partial cells T�,1 and T�+1,1. See Fig. 1 for example. eD1
� consists of edges connecting O and V 1, 

O and V 2, . . . , and O and V 6. Let the unit edge normal of eD1
� be νD1

� . On each eD1
� for � = 1, . . . , 6, the magnetic field 

(Bx,T�,1 , B y,T�,1)
t needs to satisfy:

(Bx,T�,1 , B y,T�,1) · νD1
� = (Bx,T(�+1,1) mod 6 , B y,T(�+1,1) mod 6) · νD1

� , � = 1, . . . ,6. (3.31)

Here “mod” is the modulus operator.
Eqs. (3.30) and (3.31) give 24 conditions in which only 23 of them are linearly independent, which is easy to understand. 

In fact, conditions (3.29) and (3.31) already imply that the reconstructed magnetic field in dual cell D1 is divergence-free, 
which then implies that the net influx of the magnetic field across the boundary of cell D1 is zero. Therefore one equation 
of the condition (3.30), which is that the first moment of b(j)

h

(
x, tn+1

)
is equal to the constant part of (Bx,T1,1 , B y,T1,1) · νWj

is redundant and can be removed from the constraints.
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To reconstruct (Bx,T�,1 , B y,T�,1)
t for � = 1, . . . , 6, yet 36 conditions are needed. The rest conditions are given in the least-

squares sense as follows. The reconstructed (Bx,T�,1 , B y,T�,1)
t is required to be equal to Bn+1

Th ,loc at certain locations on Th in 
the least-squares sense. In this paper, 4 values of Bn+1

Th ,loc at 4 different locations are used for determining (Bx,T�,1 , B y,T�,1)
t . 

Take (Bx,T1,1 , B y,T1,1)
t supported on T1,1 of D1 in Fig. 1 for example. Bn+1

Th,loc(V 1) and Bn+1
Th,loc(V 2) are used. They are Bn+1

Th,loc
evaluated at vertices V 1 and V 2, respectively. Denote the midpoint of the edge connecting O and V 1 as M1 and the 
midpoint of the edge connecting O and V 2 as M2. (Bx,T1,1 , B y,T1,1)

t also equals to Bn+1
Th ,loc(M1) and Bn+1

Th,loc(M2) in the 
least-squares sense, respectively.

Eqs. (3.29), (3.30) and (3.31), together with these least-squares constraints are solved by the linearly constrained least-
squares method to determine (Bx,T�,1 , B y,T�,1)

t , for � = 1, . . . , 6.

On each dual cell, this reconstruction procedure is applied. Thus a piecewise linear Bn+1
Wh

restricted on dual cell D j is 
given by

Bn+1
Wh

∣∣∣
x∈T�, j

= (Bx,T�, j , B y,T�, j )
t , T�, j ∈ D j, j = 1, . . . ,NW .

3.5. Reconstructing exactly divergence-free Bn+1
Th

on Th

Bn+1
Th

is constructed on the primal triangular mesh out of Bn+1
Wh

which is defined on the dual mesh, following a CT strategy. 

The first step is to obtain a linear polynomial b(ı̂),n+1
T on each primal cell edge which is a second order approximation to 

the normal component of Bn+1
Wh

on the same edge, and ensure that the average of the linear polynomial is equal to that of 
the normal component of Bn+1

Wh
on the cell edge (therefore, the net flux across edges of a primal triangular cell will be zero). 

Using the computed linear polynomial b(ı̂),n+1
T on each primal cell edge as the common normal component (for the two 

cells sharing the same edge) to construct a piecewise linear Bn+1
Th

on the primal triangular mesh, which is divergence-free 
wherever it’s smooth, Bn+1

Th
will be a second order approximation to Bn+1

Wh
and have zero net flux across the boundary of 

any simply connected sub-domain.
Two steps are taken to reconstruct exactly divergence-free Bn+1

Th
. In the first step, Bn+1

Wh
is projected onto grid edges of 

the grid Th . Denote LT
h = {eT

ı̂
, ̂ı = 1, . . . , NT

e } the set of grid edges of Th . Let the unit edge normal and tangent of edge eT
ı̂

be νT
ı̂

and ζT
ı̂

respectively. ζT
ı̂

is obtained by rotating νT
ı̂

90 degrees in the counterclockwise direction.

Let xT0,ı̂
and xT1,ı̂

be the starting and ending points of edge eT
ı̂

in the ζT
ı̂

direction. eT
ı̂

is parametrized by

xT (η̂ı̂ ) = xT0,ı̂
+ xT1,ı̂

2
+ xT1,ı̂

− xT0,ı̂

2
η̂ı̂ , η̂ı̂ ∈ [−1,1] . (3.32)

For convenience in discussion, we also use the notation eTl,i , l = 1, 2, 3 to denote edges of Ki .

Denote b(ı̂),n+1
T the approximate solution to the normal component of BB on edge eT

ı̂
at the time level tn+1, b(ı̂),n+1

T is 
obtained by L2 projection of Bn+1

Wh
onto eT

ı̂
as follows:

1∫
−1

b(ı̂),n+1
T ψ

∣∣∣∣∂xT (η̂ı̂ )

∂η̂ı̂

∣∣∣∣dη̂ı̂ =
1∫

−1

Bn+1
Wh

(
x(η̂ı̂ ), y(η̂ı̂ )

) · νT
ı̂

ψ

∣∣∣∣∂xT (η̂ı̂ )

∂η̂ı̂

∣∣∣∣dη̂ı̂ ,∀ψ ∈ P 1(η̂ı̂ ). (3.33)

A simpler implementation could also be used to obtain b(ı̂),n+1
T . Note that edge eT

ı̂
passes through two dual cells. See 

Fig. 1 for example. The first moment of b(ı̂),n+1
T which is a linear polynomial in the paper is then set to be equal to the 

average of Bn+1
Wh

(
x(η̂ı̂ ), y(η̂ı̂ )

) · νT
ı̂

over edge eT
ı̂

to conserve the flux, and the second moment of b(ı̂),n+1
T can be obtained 

by averaging the second moments of the Bn+1
Wh

(
x(η̂ı̂ ), y(η̂ı̂ )

) · νT
ı̂

on the two dual cells crossed by eT
ı̂

.

Let (Bx,i, B y,i)
t be Bn+1

Th
restricted on triangular cell Ki , and be represented by

{
Bx,i(x, y) = a0,i + a1,i x + a2,i y ,

B y,i(x, y) = b0,i + b1,i x + b2,i y .
(3.34)

The divergence-free condition ∇ · (Bx,i, B y,i)
t = 0 gives the equation:

a1,i = −b2,i . (3.35)

On each edge eT of Ki , (Bx,i, B y,i)
t is required to satisfy:
l,i
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(
(Bx,i, B y,i)

t · νT
l,i

)
(η̂ı̂ ) = b(ı̂),n+1

T (η̂ı̂ ) , l = 1,2,3 . (3.36)

Note that one equation of the condition (3.36), namely, the first moment of 
(
(Bx,i, B y,i)

t · νT1,i

)
(η̂ı̂ ) is equal to the first 

moment of b(ı̂),n+1
T (η̂ı̂ ) on eT1,i , is redundant because condition (3.35) already implies that the net influx across the boundary 

of Ki is zero. Solving Eqs. (3.35)–(3.36) for a0,i, . . . , a2,i and b0,i, . . . , b2,i uniquely determines (Bx,i, B y,i)
t on Ki at time level 

tn+1.
On each cell of Th , the above procedure is applied to reconstruct a divergence-free magnetic field. Bn+1

Th
is defined as

Bn+1
Th

∣∣∣
x∈Ki

= (Bx,i, B y,i)
t , i = 1, . . . ,NT .

Moreover, for any two cells Ki and Ki′ sharing a common edge eT
ı̂

, (Bx,i, B y,i)
t and (Bx,i′ , B y,i′)t defined on the two cells 

have the same normal component of the magnetic field on eT
ı̂

. Therefore Bn+1
Th

is exactly divergence-free.
When the solution contains discontinuities, a limiting procedure is needed. The limiting algorithm for reconstructing the 

central DG solution is outlined in Sec. 5.

4. Central scheme formulation for solving ideal MHD equations

The central DG formulation discussed in the previous section can also be done similarly with a finite volume version.

Let U
(i)
h,k(t) be the cell average of the kth (k = 1, . . . , 6) component of the approximate solution of U(x, t) on Ki . The 

semi-discrete finite volume scheme for solving U
(i),n+1
h,k ≡ U

(i)
h,k(t = tn+1) on cell Ki is

d

dt
U

(i)
h,k(t) = − 1

|Ki|
∑

e∈∂Ki

∫
e

he,k(x, t)d� , ∀Ki ∈ Th , (4.1)

where he,k(x, t) is defined in Eq. (3.13).

Let B
(i)
Th,�(t) be the cell average of the x- or y-component (indicated by �) of the approximate solution of BB (x, t) on Ki . 

The semi-discrete central scheme for solving B
n+1
Th,� ≡ B

(i)
Th,�(t = tn+1) on cell Ki is

d

dt
B

(i)
Th,�(t)

∣∣∣
t=tn

= 1

	τn

⎛
⎜⎝ 1

|Ki|
∫
Ki

BWh,�(x, tn)dx − B
(i)
Th,�(tn)

⎞
⎟⎠

− 1

|Ki|
∑

e∈∂Ki

∫
e

(
F B

�(UTh ,BWh ), G B
�(UTh ,BWh )

)
· νe,id� ∀Ki ∈ Th .

(4.2)

Note that

B
(i)
Th,�(tn) = 1

|Ki|
∫
Ki

BTh,�(x, tn)dx

with 
(

BTh,x(x, tn), BTh,y(x, tn)
)t ≡ Bn

Th
. And 

(
BWh,x(x, tn), BWh,y(x, tn)

)t ≡ Bn
Wh

.

Let b(j)

Wh
(·, t) be the approximation to the edge average of the normal component of the magnetic field (in νj direction) 

on edge eWj of grid Wh . b(j)

Wh
(·, t) is obtained by solving the first equation of (3.21).

The semi-discrete central scheme for solving b(j)

Wh
(·, tn+1) is

d

dt
b

(j)

Wh
(t)

∣∣∣
t=tn

= 1

	τn

(
b

(j)

Th
(tn) − b

(j)

Wh
(tn)

)
− 2

| eWj |
(

Ez,Th (ζ̂j )

∣∣∣1

−1

)
, ∀eWj ∈ Lh , (4.3)

where b
(j)

Th
(tn) is the edge average of the normal component of Bn

Th
(in νj direction) on eWj . A closed form of the central 

scheme is outlined in Algorithm 2.

4.1. Finite volume reconstruction

In Algorithm 2, we need to reconstruct piecewise linear functions from given cell averages or edge averages. In this 
subsection, we solve the following two reconstruction problems for this purpose:
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Algorithm 2: Numerical Algorithm of Central Scheme.
• Computation sub-step: suppose Un

Th
, Bn

Wh
and Bn

Th
are given.

1. Compute cell averages {U
(i)
h,k(t

n+1)} and {B
(i)
Th ,�(tn+1)} supported on grid cells of Th .

2. Compute edge averages {b(j)

Wh
(tn+1)} supported on grid edges of Wh .

• Reconstruction sub-step: suppose {U
(i)
h,k(t

n+1)}, {B
(i)
Th ,�(tn+1)} and {b(j)

Wh
(tn+1)} are given.

1. Reconstruct piecewise linear Un+1
Th

and Bn+1
Th ,loc ∈ BTh ,loc on grid Th by using cell averages {U

(i)
h,k(t

n+1)} and 
{B

(i)
Th ,�(tn+1)} respectively.

2. Reconstruct piecewise linear bn+1
Wh

by using {b(j)

Wh
(tn+1)} and Bn+1

Th ,loc .

3. Reconstruct Bn+1
Wh

∈BWh on grid cells of Wh by using bn+1
Wh

and Bn+1
Th ,loc .

4. Reconstruct Bn+1
Th

∈BTh on grid cells of Th by using Bn+1
Wh

.

Reconstruction problem 1. Given cell average values vi of a function v(x, y) on each cell Ki , reconstruct an essentially 
non-oscillatory (ENO) polynomial vi(x, y) of degree at most 1 on each cell Ki which has its mean value vi and is a 
second-order accurate approximation to v(x, y) on Ki (where v(x, y) is smooth). This is a classical MUSCL or second order 
ENO reconstruction. The following expression of a first degree polynomial vi(x, y) supported on Ki is used:

vi(x, y) = a0,i + a1,i
x − xi

|Ki| + a2,i
y − yi

|Ki| , (4.4)

where (xi, yi) is the centroid of Ki .
For the ideal MHD problem, at the end of every Runge–Kutta stage, this reconstruction is used to obtain each component 

of UTh (x, t) and BTh,loc(x, t).

Reconstruction problem 2. For each grid edge eWj of Wh , reconstruct a b(j)

Wh
∈ P 1(ζ̂j ) supported on eWj such that

1

2

1∫
−1

b(j)
Wh

∣∣∣∣∣∂eWj (x)

∂ζ̂j

∣∣∣∣∣dζ̂j = b
(j)

Wh
.

After these two reconstruction problems are solved, the algorithm described in Sec. 3.4 is used to reconstruct exactly 
divergence-free Bn+1

Wh
on Wh . Then the algorithm described in Sec. 3.5 is used to reconstruct exactly divergence-free Bn+1

Th
on Th .

4.1.1. Reconstructing UTh (x, tn+1) and BTh,loc(x, tn+1) on cells of Th

Reconstruction problem 1 is solved as follows. Denote U (i)
h,k(x, t) ∈ P 1(Ki), the reconstructed kth component of 

UTh (x, t) on Ki and B(i)
Th ,loc(x, t) ∈ �1(Ki) the reconstructed locally divergence-free magnetic field on Ki , B(i)

Th,loc(x, t) ≡(
B(i)
Th,loc,x(x, t), B(i)

Th,loc,y(x, t)
)t

. And BTh,loc(x, t) 
∣∣∣
x∈Ki

= B(i)
Th,loc(x, t).

Let vi(x, y) be either U (i)
h,k(x, t) or the x- or y-component of 

(
B(i)
Th,loc,x(x, t), B(i)

Th,loc,y(x, t)
)t

. Its approximate cell average 
vi is computed by either Eq. (4.1) or Eq. (4.2). The procedure for reconstructing vi(x, y) is summarized as follows:

Step 1. For every grid cell Ki , we identify a set of admissible reconstruction stencils ST = {T(m) : m = 1, . . . 10}. See Fig. 2
for example. Consider to reconstruct v0(x, y) on cell K0. The following T(m) are constructed. T(1) = {K0, K1, K10}; 
T(2) = {K0, K20, K2}; T(3) = {K0, K2, K21}; T(4) = {K0, K3, K30}; T(5) = {K0, K3, K31}; T(6) = {K0, K1, K11}; T(7) =
{K0, K10, K20}; T(8) = {K0, K21, K30}; T(9) = {K0, K11, K31}; and T(10) = {K0, K1, K2, K3}. Other choices of stencils 
are also acceptable. See discussions in [31–33] for criterion for choosing these stencils. ST is used in the paper for 
easy implementation. Also note that when K0 is on the boundary of the domain, some of T(m) may not exist.

Step 2. For each stencil T(m) m = 1, . . . , 9, we use cell averages defined on cells contained in the stencil to reconstruct 
preliminarily a P 1(x, y) function v(m)

i (x, y). This is implemented by solving the following system of linear equations 
for coefficients a0,i , a1,i and a2,i of v(m)

i (x, y):∫
K(m),s

v(m)
i (x, y)dxdy = |K(m),s|v(m),s , s = 1,2,3 .

Here K(m),s stands for a cell in T(m) and v(m),s is its given cell average.
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Fig. 2. Cells used for reconstructing the second-order accurate polynomial approximations for cell centered variables on cell K0.

For stencil T(10) , v(10)
i (x, y) is constructed by constrained least-squares fitting so that∫

Ki

v(10)
i (x, y)dxdy = |Ki|vi .

Step 3. For each preliminarily reconstructed v(m)
i (x, y), a smoothness indicator ωm is computed with 

∑10
m=1 ωm = 1 using the 

method introduced in [35]. The nonlinearly stabilized reconstruction vi(x, y) is defined by a weighted combination ∑10
m=1 ωm v(m)

i .

The following correction is used to make (B(i)
Th,loc,x(x, t), B(i)

Th,loc,y(x, t))t locally divergence-free, namely

∇ · (B(i)
Th,loc,x(x, t), B(i)

Th,loc,y(x, t))t = 0. Let

B(i)
Th,loc,x(x, t) = ax

0,i + ax
1,i

x − xi

|Ki| + ax
2,i

y − yi

|Ki|
and

B(i)
Th,loc,y(x, t) = ay

0,i + ay
1,i

x − xi

|Ki| + ay
2,i

y − yi

|Ki|
before the correction.

Denote a = min(|ax
1,i |, |ay

2,i|). If a = |ax
1,i|, then B(i)

Th,loc,x(x, t) and B(i)
Th,loc,y(x, t) are modified to be

B(i)
Th,loc,x(x, t) = ax

0,i + ax
1,i

x − xi

|Ki| + ax
2,i

y − yi

|Ki| ,

B(i)
Th,loc,y(x, t) = ay

0,i + ay
1,i

x − xi

|Ki| − ax
1,i

y − yi

|Ki| ;

otherwise, B(i)
Th,loc,x(x, t) and B(i)

Th,loc,y(x, t) are modified to be

B(i)
Th,loc,x(x, t) = ax

0,i − ay
2,i

x − xi

|Ki| + ax
2,i

y − yi

|Ki| ,

B(i)
Th,loc,y(x, t) = ay

0,i + ay
1,i

x − xi

|Ki| + ay
2,i

y − yi

|Ki| .

This reconstruction is now complete.
We then proceed to solve the Reconstruction problem 2.

4.1.2. Reconstructing b(j)

Wh
(tn+1) on grid edges of Wh

Consider an edge eWj of grid Wh which crosses two triangle cells Ki and Ki′ of Th . See Fig. 1 for example. The grid edge 
connecting points V 1 and V 2 crosses cells K1 and K2. Let the unit edge normal of eWj be νWj and the parametric form of 
eWj be given by Eq. (3.22).
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The normal component of BTh ,loc(x, tn+1) (in νWj direction) on part of the edge eWj which is on cell Ki is

bi(ζ̂j , tn+1) = νW
j · B(i)

Th,loc

(
x(ζ̂j ), y(ζ̂j ), tn+1

)
. (4.5)

bi(ζ̂j , tn+1) is a linear polynomial with respect to parameter ζ̂j . Here eWj is parametrized by x(ζ̂j ).

Similarly the normal component of BTh ,loc(x, tn+1) on part of the edge eWj which is on cell Ki′ along x(ζ̂j ) is

bi′(ζ̂j , tn+1) = νW
j · B(i′)

Th,loc

(
x(ζ̂j ), y(ζ̂j ), tn+1

)
. (4.6)

For convenience in discussion let’s rewrite bi(ζ̂j ) and bi′ (ζ̂j ) in the following forms:

bi(ζ̂j ) = ai + bi ζ̂j ,

bi′(ζ̂j ) = ai′ + bi′ ζ̂j , −1 ≤ ζ̂j ≤ 1 .
(4.7)

Finally, the reconstructed b(j)

Wh
(tn+1) supported on eWj is defined as

b(j)
Wh

(ζ̂j , tn+1) = b
(j)

Wh
(tn+1) + b̂j ζ̂j , −1 ≤ ζ̂j ≤ 1 , (4.8)

where b̂j is obtained by a weighted combination of bi and bi′ as follows:

α1 = 1.0

ε + (bi)
2

, α2 = 1.0

ε + (bi′)2
,

ω1 = α1

α1 + α2
, ω2 = α2

α1 + α2
,

b̂j = ω1bi + ω2bi′ ,

and ε = 10−8 in this paper.

5. Limiting technique

For the central DG scheme, since shock waves or contact discontinuities are all local phenomena, we apply a detector 
introduced in [36] to identify cells, denoted as “trouble cells” on Th which may contain oscillatory solutions. The recon-
struction algorithm described in Sec. 4.1.1 is first applied to solutions UTh (x, tn+1) and BTh,loc(x, tn+1) supported on these 
“trouble cells” of Th . For other cells of Th , there is no need to do reconstruction. For the central finite volume scheme, 
the reconstruction is applied to all cells of Th to get UTh (x, tn+1) and BTh ,loc(x, tn+1). Then the reconstruction algorithm 
described in Sec. 4.1.2 is used to reconstruct b(j)

Wh
(tn+1) on edges which are on “trouble cells” or intersect “trouble cells”. 

For other edges of Wh , there is no need to do reconstruction for the central DG scheme; and we can take uniform weights 
α1, α2 = 1 in the reconstruction described in Sec. 4.1.2 for the central finite volume scheme. Finally, the algorithm described 
in Sec. 3.4 is used to reconstruct the exactly divergence-free Bn+1

Wh
on dual cells. And the algorithm described in Sec. 3.5 is 

used to reconstruct the exactly divergence-free Bn+1
Th

on Th subsequently.

6. Numerical test problems

In this section, numerical examples with smooth or discontinuous solutions are presented to demonstrate the perfor-
mance of the schemes introduced in this paper. The time step size 	tn is dynamically determined by

	tn = hCCFL

max(|u| + c)
,

where h is triangle edge length, CCFL is the CFL number and c is the speed of the fast magneto-acoustic wave [4]. With 
second-order TVD Runge–Kutta time discretization, CCFL = 0.1 is used for all simulations. θ = 	tn/�τn = 0.5 is used in the 
fully discrete central DG or FV schemes for computing the magnetic field.

6.1. Vortex evolution problem

We consider a vortex evolution problem to test the order of accuracy of the schemes. The vortex problem was initially 
suggest in [30] and was adapted to the MHD equations in [19]. The problem is defined on a [−5, 5] × [−5, 5] domain with 
flow through boundary conditions used on both sides. The unperturbed MHD flow is given by (ρ, pgas, ux, u y, Bx, B y) =
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Table 1
Numerical errors and convergence order based on ρ and ε for the second-order accurate central DG scheme for solving the 2D vortex evolution problem.

h L1 ρ error Order L∞ ρ error Order L1 ε error Order L∞ ε error order
1
8 9.99E–4 – 4.43E–4 – 4.48E–3 – 1.96E–3 –
1

16 2.47E–4 2.02 1.09E–4 2.02 1.18E–3 1.92 5.06E–4 1.95
1

32 6.30E–5 1.97 2.89E–5 1.92 3.05E–4 1.95 1.70E–4 1.57
1

64 1.63E–5 1.95 7.94E–6 1.86 8.30E–5 1.88 4.39E–5 1.95
1

128 4.24E–6 1.94 2.39E–6 1.73 2.14E–5 1.96 1.09E–5 2.01

Table 2
Numerical errors and convergence order based on Bx for the second-order accurate central DG scheme for solving the 2D vortex evolution problem.

h L1 Bx error on Th Order L∞ Bx error on Th Order L1 Bx error on Wh Order L∞ Bx error on Wh Order
1
8 5.58E–3 – 1.78E–3 – 4.89E–3 – 1.42E–3 –
1

16 1.31E–3 2.09 4.56E–4 1.96 1.15E–3 2.09 3.69E–4 1.94
1

32 3.28E–4 2.00 1.41E–4 1.69 2.97E–4 1.95 1.22E–4 1.60
1

64 8.27E–5 1.99 3.59E–5 1.97 7.48E–5 1.99 3.11E–5 1.97
1

128 2.08E–5 1.99 1.17E–5 1.62 1.92E–5 1.96 9.38E–6 1.73

Table 3
Numerical errors and convergence order based on ρ and ε for the second-order accurate central FV scheme for solving the 2D vortex evolution problem.

h L1 ρ error Order L∞ ρ error Order L1 ε error Order L∞ ε error Order
1
8 6.85E–3 – 3.18E–3 – 2.07E–2 – 8.36E–3 –
1

16 9.83E–4 2.80 7.27E–4 2.13 3.30E–3 2.65 1.87E–3 2.16
1

32 1.16E–4 3.08 8.90E–5 3.03 5.52E–4 2.58 2.91E–4 2.68
1

64 1.74E–5 2.74 7.31E–6 3.61 1.29E–4 2.10 8.86E–5 1.72
1

128 3.83E–6 2.18 1.32E–6 2.47 3.38E–5 1.93 3.62E–5 1.29

(1, 1, 1, 1, 0, 0). The ratio of specific heats is γ = 5/3. The vortex is introduced through perturbed velocity and magnetic 
fields given by

(δux, δu y) = κ

2π
e0.5(1−r2)(−y, x) ,

(δBx, δB y) = μ

2π
e0.5(1−r2)(−y, x) ,

where r2 = x2 + y2. The pressure determined by the dynamical balance is given by

δpgas = κ2(1 − r2) − μ2

8π2
e1−r2

.

We use κ = 1, μ = 1 in our computation. The exact solution is the initial configuration propagating with speed (1, 1), and 
is given by

U(x, y, t) = U0(x − t, y − t) ,

where U0 = (ρ, pgas + δpgas, ux + δux, u y + δu y, Bx + δBx, B y + δB y). The Dirichlet boundary condition with solution on 
the boundary given by U(x, y, t) is used. The typical triangle edge length, denoted by h, is listed in the first column of all 
the tables shown in this section. Table 1 shows the L1 and L∞ errors and orders of accuracy using values of variables ρ
and ε at time T = 1.0 computed by the second-order central DG scheme. Table 2 shows the L1 and L∞ errors and orders 
of accuracy of Bx on grids Th and Wh respectively. L1 and L∞ errors and orders of accuracy using values of variables ρ
and ε at time T = 1.0 computed by the second-order central FV scheme is displayed in Table 3, and the L1 and L∞ errors 
and orders of accuracy of Bx computed by the central FV scheme on grids Th and Wh respectively is shown in Table 4. 
These tables show clearly that both DG and FV schemes achieved the expected accuracy property. The absolute value of the 
undivided divergence of the magnetic field is about O(10−13) in these calculations. The undivided divergence is defined by 
sum of the divergence inside the element and the normal jump cross cell edges.

6.2. The field loop advection

We consider the magnetic field loop advection problem proposed in [17]. The following initial condition same as in [8,
12] is used. (ρ, pgas, ux, u y, uz, Bz) = (1, 1, 2, 1, 1, 0). (Bx, B y) = ( ∂ Az , −∂ Az ), where Az is the z-component of the magnetic
∂ y ∂x
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Table 4
Numerical errors and convergence order based on Bx for the second-order accurate central FV scheme for solving the 2D vortex evolution problem.

h L1 Bx error on Th Order L∞ Bx error on Th Order L1 Bx error on Wh Order L∞ Bx error on Wh Order
1
8 3.72E–2 – 1.16E–2 – 3.42E–2 – 1.15E–2 –
1

16 6.13E–3 2.60 2.97E–3 1.97 5.50E–3 2.64 2.95E–3 1.96
1

32 9.03E–4 2.76 4.85E–4 2.61 8.51E–4 2.69 4.77E–4 2.63
1

64 1.54E–4 2.55 1.13E–4 2.10 1.47E–4 2.53 1.12E–4 2.09
1

128 3.37E–5 2.19 3.93E–5 1.52 3.18E–5 2.21 3.92E–5 1.51

Fig. 3. Central DG solution of the z-component of the magnetic potential Az of the field loop problem. (a): t = 0.0; (b): t = 2.0; and (c): t = 10.0. 10 equally 
spaced contours are used. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

potential

Az =
{

A0(R − r) if r ≤ R

0 if r > R

with A0 = 10−3, R = 0.3 and r = √
x2 + y2. γ = 5/3.

The computational domain is [−1, 1] ×[−0.5, 0.5]. Quasi-uniform triangular mesh is used for this calculation for the ease 
of applying periodic boundary condition on all sides. The typical edge length of triangles is roughly equal to 1 . Solution 
180
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Fig. 4. Central FV solution of the z-component of the magnetic potential Az of the field loop problem. (a): t = 0.0; (b): t = 2.0; and (c): t = 10.0. 10 equally 
spaced contours are used. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of the problem is computed to time T = 10. Figs. 3 and 4 show the z-component of the magnetic potential Az computed by 
the central DG and FV schemes over time, respectively. Due to exact divergence-free nature of the numerical magnetic field, 
symmetry of the numerical Az is well preserved during the whole time of computation. Numerical dissipation is observed 
around the center and the boundary of the loop and no oscillation is observed in simulation results. For calculation using 
the central DG scheme, no limiter is applied. [8] used “whether the z-component of the magnetic field Bz stays around 
machine zero” as a criterion to demonstrate the importance of the magnetic field being divergence-free in the simulation. 
Both of our schemes produced the approximated Bz with the magnitude of 10−5 while using the exactly divergence-free 
magnetic field. This is caused by the O(10−6) deviation of the numerical uz from its exact value 1.

6.3. Rotor problem

This test problem is the second rotor problem described in [23]. The computational domain is [0, 1] × [0, 1]. γ = 5/3. 
A dense rotating disk of fluid is initially placed at the central area of the computational domain, while the ambient fluid is 
at rest. The initial condition is given by

(ρ, pgas, ux, u y, uz, Bx, B y, Bz) = (ρ(x,0),0.5, ux(x,0), u y(x,0),0,
2.5√
4π

,0,0,0).

Here
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Fig. 5. Central DG solution of the rotor problem at time t = 0.295. Thirty equally spaced contours are shown in each plot. (a) Density ρ; (b) Pressure pgas ; 
(c) Magnetic pressure (B2

x + B2
y)/2; (d) Mach number; (e) Zoom-in view of Mach number around central region. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Central FV solution of the rotor problem at time t = 0.295. Thirty equally spaced contours are shown in each plot. (a) Density ρ; (b) Pressure pgas ; 
(c) Magnetic pressure (B2

x + B2
y)/2; (d) Mach number; (e) Zoom-in view of Mach number around central region. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Central DG solution of the Orszag–Tang problem. Evolution of ρ over time is plotted by using 15 equally spaced contours. Top left: t = 0.5; top right: 
t = 1.0; bottom left: t = 2.0; bottom right: t = 3.14. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

(ρ(x,0), ux(x,0), u y(x,0)) =

⎧⎪⎨
⎪⎩

10, −(y − 0.5)/r0, (x − 0.5)/r0 if r < r0

1 + 9 f , −(y − 0.5) f /r, (x − 0.5) f /r if r0 < r < r1

1, 0, 0, if r > r1

where r0 = 0.1, r1 = 0.115, f = (r1 − r)/(r1 − r0), and r = √
(x − 0.5)2 + (y − 0.5)2.

The solution at time t = 0.295 is computed. Figs. 5 and 6 plot the numerical results of the density ρ , pressure pgas , 
magnetic pressure (B2

x + B2
y)/2 and Mach number computed by central DG and FV schemes, respectively. We see that there 

is virtually no diffusion of the loops boundaries and no oscillations in the magnetic pressure within the loops interior. The 
zoom-in view of the Mach number of the central FV solution is smoother than that of the central DG solution. See Figs. 5(e) 
and 6(e). This is due to the fact that limiting is only applied to DG solution supported on “trouble cells”. The pressure is 
positive throughout the computational domain. The degradation in the density variable that was previously reported in [16]
is not seen in our simulation.

6.4. Orszag–Tang problem

Here we simulate the Orszag–Tang vortex problem [41]. The initial conditions are ux = − sin(y), u y = sin(x), Bx =
− sin(y), B y = sin(2x), ρ = γ 2, pgas = γ , uz = Bz = 0. The computational domain is a square [0, 2π ] × [0, 2π ] with peri-
odic boundary conditions along both boundaries. γ = 5/3. The final output time t = π . The typical edge length of triangles 
used to partition the domain is about 1

256 . Starting from a smooth initial condition, the flow becomes very complex as 
expected from a transition towards turbulence gradually. Figs. 7 and 8 show the development of density ρ solution of the 
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Fig. 8. Central FV solution of the Orszag–Tang problem. Evolution of ρ over time is plotted by using 15 equally spaced contours. Top left: t = 0.5; top right: 
t = 1.0; bottom left: t = 2.0; bottom right: t = 3.14. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Orszag–Tang vortex problem computed by the central DG and FV schemes, respectively. The central DG and FV solutions are 
comparable. Also we report that the density and pressure have remained positive till at least time t = 3π . No positivity fix 
was needed for this problem.

7. Concluding remarks

In this paper we introduced new central and central DG schemes for solving the ideal MHD equations on two-
dimensional triangular grids. These schemes utilized ideas of the CT framework and central schemes and central DG schemes 
on overlapping cells, and achieve exactly divergence-free magnetic field. Numerical tests show that the proposed schemes 
have achieved the desired order of accuracy and computed MHD shock wave problems successfully.

While this paper only implements the second-order accurate schemes, the proposed schemes in principle can be gener-
alized to three dimensions and to general meshes with arbitrary order of accuracy. We will report in a subsequent paper 
implementation of these schemes with higher-order accuracy.
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