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Fibrin networks, with and without cells, formed under wild type and hemophilic conditions, have been

synthesized, studied and compared. The three dimensional structure of each fibrin network was

reconstructed from two-dimensional z-stacks of confocal microscopy sections using novel image

analysis algorithms. These images were used to establish microstructure-based models for studying the

relationship between the structural features and the mechanical properties of the fibrin networks. The

mechanical properties were assessed by analyzing the networks’ responses to uniaxial tensile and shear

stresses, simulating the impact of blood flow on the fibrin network. The elasticity of the fiber network

predicted by the model agrees well with prior experimental data. The change in the fibrin network

alignment under applied strain and the elastic modulus values were calculated and compared with prior

experimental data obtained in Ryan et al., Biophys. J., 2009, 77, 2813. The model correctly predicts the

network alignment under load and the result is in good agreement with the results obtained for small

networks in Brown et al., Science, 2009, 325, 741. It was shown that a nonlinear worm-like chain model

correctly predicted both the elastic properties of the networks and the alignment of the fibers as the clot

sample is stretched.
1. Introduction

In past studies, many of the blood plasma protein components,

blood cellular components, elements in the vessel wall and the

blood flow hydrodynamic factors that are involved in the

development of a hemostatic clot have been identified. In addi-

tion to in vitro analysis, the development of mice that are defi-

cient in specific hemostatic components has enabled us to study

the role of particular elements of hemostasis in vivo. An extensive

review of the different experiments and models studying blood

clot formation can be found in Diamond.3

An important area in coagulation research is the study of the

structural stability of a blood clot, which has important medical

consequences. For instance, an abnormal fibrin network can
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make thrombi overly resistant to degradation or too fragile.4–8

Abnormally structured clots may also generate emboli that can

lodge in critical organs, disrupting the blood flow with poten-

tially fatal consequences.

The stability of clots is closely related to the fibrin network,

which provides the structural support for a blood clot (see
Fig. 1 A thrombus formed in a wild type mouse. (a) a three-dimensional

reconstructed image of the clot; (b) a projection of the reconstructed

image on the horizontal xy plane; and (c) a cross-section of the recon-

structed image taken on the vertical yz plane within the blood clot.

Platelets are in red; fibrin is in green; yellow is for a combination of

platelets and fibrin; and black is for other blood cells. These images show

that platelets are covered by the fiber network and the surface of the

blood clot mainly consists of the fiber network.
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Fig. 1). Following clot initiation, activated platelets release

platelet activators and provide a membrane surface to support

coagulation reactions. The procoagulant environment provided

by the activated platelet surface enhances the production of

thrombin, leading to further platelet activation and to fibrin

polymerization. Thrombin converts fibrinogen to fibrin by

cleaving fibrinopeptides from its central domain, exposing knobs

that can then interact with holes at the ends of the molecules and

generate protofibrils.9,10 Protofibrils then grow and aggregate

laterally to form fibers with twisted structures. Fibers aggregate

with each other to a variable extent depending on the fibrinogen

and thrombin concentrations and the ionic conditions to form

fiber bundles, which branch to yield a three-dimensional

network.9–12 Since the fibrin network influences the shape,

strength, flexibility and stability of clots,9,10 the formation of the

fiber network is crucial to clot function.

The mechanical properties of fibrin networks undergoing

small deformations have been extensively studied using

continuum models and inverse analysis of experimental data.13,14

The values of the elastic modulus obtained using linear visco-

elastic models are in the range 100–1000 Pa. The viscoelastic and

elastic properties of an individual fiber have also been investi-

gated.2,15,16 It has been shown that individual fibers are relatively

soft15 and extraordinarily extensible.16 Brown et al.2 have shown

that structural transitions of fibrin, including protein unfolding

and water loss, allow the clot to be permeable and highly

extensible.

A number of models have been developed to investigate the

mechanical properties of biopolymer networks.2,17–20 These

studies associated the response of the fiber network to stress with

two phenomena: the stiffening of fibers and their geometrical

rearrangement, which is essentially determined by the flexibility

of the individual fibers in the network. Therefore, network

modeling must account for the behavior of individual fibers. For

low strain, semi-flexible fiber and stiff fiber models were devel-

oped.18,20 In the semi-flexible fiber models, the entropic stiffening

was shown to be responsible for the network stiffening. In the

stiff fiber models, the network stiffening was shown to result

from a geometrical reorientation of fibers and from the bending

at small strains and the enthalpic stretching at large strains. Both

of these modeling approaches were successful in predicting the

network behavior in the case of small strains.17,18

Recently, a model of small networks composed of 5–30 fibers

was used to study the effects of fiber elasticity on the bulk

properties of the small networks undergoing high deformation.

The worm-like chain model is shown in Hudson et al.21 to

successfully describe force-extension relation of a single fibrin

fiber. This model also shows that individual fibers play an

important role in strengthening the entire network and that at

large strains fibrin fibers composing the network display

a nonlinear strain stiffening behavior. This nonlinear behavior

results in the equitable strain stiffening redistribution in the

network. As the fibers are stretched, the stiffer fibers distribute

the load to the less strained fibers and thus, the strain concen-

tration is reduced.

To the best of our knowledge, little attention has been paid to

the study of alignment and fibrin stiffening of large fibrin

networks at high strains. Moreover, although the network

structure is hypothesized to play a key role in clot stability, most
4984 | Soft Matter, 2011, 7, 4983–4992
of the current studies do not take the detailed structure of the

network into account when determining the bulk properties of

the blood clot. Therefore, the main focus of this work was to

delineate a complete picture of the behavior of the realistic fibrin

clots consisting of a large number of fibers. This was done using

computational models based on the geometric structures of the

reconstructed 3D networks and the properties of the individual

fibers.

Namely, we developed a mechanical model based on the

microstructures of the realistic three-dimensional fibrin network,

as well as the microscopic mechanics of single fibers, using

a modeling strategy similar to that described by Hudson et al.21

Specifically, 3D networks of fibrin clots comprised of thousands

of fibers were considered. The clots were synthesized using

normal platelet-poor plasma and hemophilic plasma to address

the comparative strength properties of defective clots. We

reconstructed the network structures from z-stacks of confocal

microscopy images and used them in our model. The individual

fibers were modeled by either a linear spring model or a nonlinear

worm-like-chain model. The Young’s modulus of the network

was estimated as the ratio of the average force per unit area to the

average yield strain.

Another result in the present paper is the development of an

accurate image topology reconstruction method which allows

one to reconstruct a fibrin network from a z-stack of 2D

confocal microscopy images and to analyze the global structure

of the network. This reconstruction method enables us to

analyze various properties of the network, such as the density of

the branch points and the width and length of the fiber

segments. By quantifying the distribution of network neighbors,

the most common type of connections is determined to be three-

neighbor-type connections in all types of networks (see Fig. 5).

Through 3D image reconstruction, a spatial nonconformity in

the node and fibrin distribution for the network with cells was

revealed. We observed that clots initiated by cellular procoa-

gulant activity have preferential network node localization

near cell surfaces, which is consistent with prior experimental

data.5

Currently, determination of the number and length of fibers, as

well as the number of branch points, in a fibrin network is done

manually by analyzing scanning electron or laser scanning

confocal micrographs of gels.5,36 The algorithms described in this

paper automate this process. We show that the results generated

by the new image analysis algorithms agree well with the analysis

done manually, and in addition this method is able to distinguish

between fiber branch points and when two independent fibers

cross one another in the gel.

The model and the image analysis algorithms were used for

examining changes in the bulk modulus and scenarios mimicking

the network interacting with blood flow by imposing strain on

the fibrin network. This was done for a variety of experimentally

obtained fibrin networks, including normal versus hemophilic

plasma clots, clots with elevated prothrombin22 and elevated

fibrinogen,36 low branching versus high branching networks, and

fibrin networks with embedded cells versus networks without

cells. We show that the elasticity of the fiber network predicted

by the model agrees well with the experimental data. The model

also correctly predicts the network alignment under load and it is

in agreement with the results of Brown et al.2
This journal is ª The Royal Society of Chemistry 2011



For the networks we examined, networks formed with and

without cells were found to reorient in a similar manner under an

applied load. Hudson et al.21 argued that the integrity of a fibrin

network is largely determined by the maximum strain that the

individual fibers can sustain and that network failure starts at the

single fiber or branch point level. Our study confirms this finding

for large realistic fiber clot networks. Therefore, the under-

standing of how a load is distributed within the network is critical

to understanding network failure. Our results also underline the

importance of having proper coupling in a fiber network of cells

and mechanical network factors (e.g., fiber density and fiber

geometry) and its impact on the network strength. In particular,

we showed that the average stiffness of fibrin networks with

endothelial cells is about 2.6 times larger than that of networks

without endothelial cells. Therefore, the interplay between these

factors has profound consequences on clot stability.

The paper is organized as follows. Some biological back-

ground and a review of the current models are given in Section 1.

Experimental details, image analysis, and our modeling methods

based on recognizing microstructures of fibrin networks are

described in detail in Section 2. The simulation results are pre-

sented in Section 3 and the conclusions are given in Section 4.
2. Methods

2.1. Modeling methodology

2.1.1. Network realization. Each network was simulated

using nonlinear (or linear) mass-spring models. A fiber is repre-

sented by a bond between two rigid and freely rotating nodes

from a 3D reconstructed image of a synthesized network (see

below). The effect of stress applied by blood flow to the fiber

network is modeled by imposing fixed boundary conditions on

the bottom of the network (z¼ 0) and by applying strain to every

node (Fig. 2). The geometry (diameter and free length) of each

fiber was determined via image analysis.

2.1.2. Computational models. The elastic behavior of

a network arises in the model from deformations of the elastic

springs in the network, while the viscoelastic behavior is

demonstrated when nodes propagate in a viscous flow. In what

follows, we describe linear and nonlinear single fiber models and

compare simulation results obtained using these two models. We

show that the nonlinear fiber model has to be employed in order

to take the strain stiffening of fibers into account.21
Fig. 2 Schematic of the computational domain and boundary condi-

tions for the fibrin network. At z ¼ 0: dri(t) ¼ 0, at z ¼ h: dyi(t) ¼ 3yi(0).

This journal is ª The Royal Society of Chemistry 2011
In the linear model, each fiber is represented by a linear spring,

with a spring force given by

F(dL) ¼ kdL, (1)

where k ¼ EA / L0 is the spring constant, E is the Young’s

modulus, A is the cross-sectional area of a fiber, and L0 is the

initial fiber length, and dL is the extension of a fiber. The Young’s

modulus is taken to be 14.5 MPa.15

Several recent theoretical models have been proposed to

account for the strain stiffening of fibers.17,21 Which of these

models is the most applicable to a fibrin network depends on how

flexible a fiber is compared to the mesh size of the network. Since

the persistence length of the fiber is comparable to the mesh size

or the distance between cross-links within the network, the strain

stiffening in the fiber network naturally emerges from an entropic

model, in particular, from an ideal worm-like chain model. This

model has been successfully used for describing force-extension

behavior of a fibrin fiber.2,21 The stress-strain relation for a fiber

is also represented in our model as a worm-like chain for a large

strain in the form of the following governing equation

F ¼ kBTN
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where kB is the Boltzmann constant, T is the absolute tempera-

ture, N is the number of fibrin molecules making up a fiber, P is

the persistence length, Lc is the contour length, and dL is the

extension of a fiber (see Table 1). The governing equation for the

ith connection node is given by mir ̈i ¼ �gr ̇i +
P

jFij. Here, Fij is

the force acting along the fiber connecting the ith and the jth

nodes and given by eqn (1) or (2), rij is the radius vector con-

necting the ith and jth nodes, and mi is the mass of the ith node.

The damping term was approximated using the Stokes force due

to the interaction with the blood flow, g ¼ 6pmrf, where, m ¼
0.004 Pa s23 is the blood viscosity, and rf is the radius of the node.

A leapfrog algorithm was used to solve the system of ordinary

differential equations governing the network of springs. After an

incremental strain is applied during one time step, the system

relaxes to its equilibrium, which is used as an initial condition for

the next time step.

2.1.3. Determination of elastic properties. The volume

average method has been used to examine the strength of

a discrete network.24–27 This method approximates the stress

tensor as a finite sum of the product of the position and the

traction exerted on the boundary, i.e., sij ¼ 1

V

X
xi akj nk;where

sij is the network stress, V is the volume, aij is the fiber stress

tensor and nk is the kth component of the normal vector. The
Table 1 The parameter values used in the linear and nonlinear models.
These values were taken from the work by Brown et al.2

Linear Model Nonlinear Model

E ¼ 14.5 MPa kB ¼ 1.38 � 10�23 J K�1

N ¼ 1200
T ¼ 300 K
P ¼ Epr4 / kBT
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finite approximation of the stress converges to the continuum

stress tensor as the number of fibers on the boundary increases.

Thus, this method may be especially useful for dense networks.

However, our reconstructed fibrin network is relatively coarse.

The density (number of fibers per unit volume 1 mm3) is in the

range from 0.013 mm�3 to 0.17 mm�3. The density of the network

is even smaller near the boundary and, thus, the stress deter-

mined by the volume average method, may not converge to

a specific value. Therefore, rather than using the volume

average method, the estimated stress of the network was calcu-

lated by summating the forces of the fibers on the network

boundary to which the force was applied and the elastic modulus

was determined as the ratio of the average force to the average

strain, i.e.,

l ¼

�P
Fi=Ai

�M

i¼1

3
(3)

where Fi is the normal component of the force acting on the ith

fiber of thickness Ai, 3 is the average strain, and M is the total

number of fibers.
2.2. Experimental methods

2.2.1. Materials. Phosphatidylserine, phosphatidylcholine,

and phosphatidylethanolamine were purchased from Avanti

Polar Lipids (Alabaster, AL, USA). Corn trypsin inhibitor (CTI)

and prothrombin were from Haematologic Technologies Inc.

(Essex Junction, VT, USA). Fibrinogen was from Enzyme

Research Labs (South Bend, IN). Cells (human umbilical vein

endothelial cells) were purchased from Lonza and cultured as

described.28 Tumor necrosis factor alpha (TNFa) was from

Millipore. AlexaFluor-488-labeled fibrinogen was prepared

according to the manufacturers instructions [Invitrogen Corpo-

ration (Carlsbad, CA)]. The labeled fibrinogen contained 8

molecules of dye per fibrinogen molecule. The preparation was

frozen in aliquots that were thawed only once at 37 �C before

each experiment. Turbidity measurements on fibrin formed in the

presence or absence of labeled fibrinogen demonstrated that the

inclusion of labeled fibrinogen did not affect polymerization

(data not shown). Phospholipid vesicles (15% phosphatidylser-

ine, 41% phosphatidylcholine, 44% phosphatidylethanolamine)

were prepared by extrusion.29

2.2.2. Plasma preparation. Blood was collected with

informed consent under a protocol approved by the University of

North Carolina Institutional Review Board. Whole blood was

drawn into 3.2% citrated saline and corn trypsin inhibitor

(18.5 mg mL�1, final, to prevent contact activation) and centri-

fuged at 150g for 10 min. The upper layer (platelet-rich plasma)

was centrifuged at 13 000g for 10 min to yield platelet-free

plasma. Platelet-free plasma from at least 30 individuals with

normal partial thromboplastin times were pooled to yield normal

pooled platelet-free plasma (PFP). PFP was then used with or

without additional exogenous prothrombin (spiked to 200% or

400%, final) or fibrinogen (spiked to 6 mg mL�1 (200%), final).

Hemophilia A plasma was purchased from HRF, Inc. (Raleigh,

NC, USA).
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2.2.3. Clot formation and laser scanning confocal microscopy.

Clot formation in the absence of cells was initiated by the addi-

tion of calcium, phospholipid vesicles and tissue factor (16 mM,

4 mM and 1 pM, final, respectively) to plasma. Clot formation in

the presence of cells was initiated by adding calcium to plasma

and triggered by cellular tissue factor. Alexa-Fluor 488-labeled

fibrinogen was included in each reaction as a trace molecule to

visualize fibrin structure (10 mg/150 mL, final). Clots were allowed

to form until turbidity reached a stable maximum in samples run

in parallel, as described.5,28 Formed clots were scanned with

a Zeiss LSM5 Pascal laser scanning confocal microscope (Carl

Zeiss, Inc) linked to a Zeiss Axiovert 200Mmicroscope equipped

with a Zeiss 63� 1.4 NA oil immersion plan apo-chromatic lens.

The 488 nm line of a medium power multi-line argon ion laser

was used for excitation and a 505–530 nm band-pass filter was

used for emission. A computer equipped with Carl Zeiss software

(v1.5) was used to operate the system. Optical sectioning was

achieved by closing the pinhole in the front of the detector to one

Airy unit. The zoom factor was 1. 30–60 optical sections (1024 �
1024 pixels each) in three randomly chosen locations were

collected at 0.36 mm intervals in the z axis. Optical resolution was

0.14 mm in the xy plane and 0.5 mm on the z axis. The sectioning

interval in z was smaller than the calculated z axis optical section

resolution to achieve Nyquest sampling in z based on the Zeiss

software calculation. No correction was made for refractive

index mismatch.
2.3. Image analysis

The goal of our image segmentation and analysis algorithms was

to identify and segment the fibrin network using 3D images of

networks reconstructed from z-stacks of confocal microscopy

images, and to extract the global structure of the network. The

idea was to compute the 3D medial axis/centerline preserving the

topology of the original network. As a result, we obtained a one-

voxel-wide centerline, in which the branch points and other

structural information could be computed. Based on the

centerline, we were able to analyze various properties of the

network, such as the density of the branch points, the width and

length of the fiber segments, the pore size, etc. Furthermore, the

topology of the network could be simplified and modeled by a 3D

graph, in which the vertices represent the branch points or end

points of the fibrin network, and the edges connecting pairs of

vertices correspond to the fiber segments between consecutive

branch points (or end points) in the original network. The graph

representation of the network and the measurements of the

network properties were then used as input for the computa-

tional modeling and 3D reconstruction.

2.3.1. Methodology of image analysis. Our image segmenta-

tion and analysis algorithm consisted of five main steps,

described below.

Segmentation.We first needed to identify the fibrin network in

the input image and separate it from the image background. We

used the 3D region growing method30 with global thresholding to

identify the voxels belonging to the sought fibrin network,

resulting in a binary image in which the fiber was labeled 1 and

the background was labeled 0 (see Fig. 3). The algorithm
This journal is ª The Royal Society of Chemistry 2011



Fig. 3 Image segmentation results. Original image (left) and segmented

image (right).
repeatedly takes a seed point as an input, and iteratively includes

the points in its neighborhood until no points beyond the

threshold are left. The seed points were determined by selecting

the points with the maximal intensity values in the image.

3D thinning. The 3D medial axis/skeleton of a target 3D object

is a concrete representation of the overall structure of the object.

Given the surface of a target object, its 3D medial axis or skel-

eton is a set of points, each of which has at least two distinct

nearest points on the surface. Although an accurate computation

of the 3D medial axis is a difficult task, various approximation

algorithms based on a Voronoi diagram, distance trans-

formation, or thinning have been proposed for computing the

medial axis. Our method is based on the 3D thinning algorithm,

which allows for a fast computation in digital images and results

in a one-voxel-wide centerline.31 The centerline preserves the

same anatomy of the original network and provides useful

structural information, such as the branch points, the length of

each network segment, etc. In each iteration, the thinning algo-

rithm checks whether a voxel is removable from the remaining

voxels, until no more changes can be made. Any voxel to be

removed must satisfy the following conditions:

� The voxel is on the current object surface;

� The voxel is not at the end of a network segment;

�Deletion of the voxel does not change the Euler characteristic

(i.e., does not create new holes in the image);

� The voxel is a simple point, so that its deletion does not

change the number of connected object components in the image.

Branch points identification. After the centerline is extracted,

we labeled each centerline point according to the number of

centerline points in its neighborhood and identified the network

branch points based on their labels. An end point has only one

neighbor in its 26-neighborhood in the 3D image, a non-branch

point has two neighbors, and a branch point has three or more
Fig. 4 The 3D centerline of the fibrin network: The centerline before

pruning (left) and the centerline after pruning (right). The arrows are

pointing at some false branches before pruning.

This journal is ª The Royal Society of Chemistry 2011
neighbors. In Fig. 4, the branch points are marked by red and the

end points are marked by blue.

Pruning. A well known inherent problem of the medial axis is

its sensitivity to local changes on the object’s surface. That is,

even a small pertubation on the surface may cause a significantly

different medial axis structure. As a result, a noticeable set of

false short branches exists in the centerline, which affects the

accuracy of our analysis of the density of branch points. A

number of pruning methods have been proposed to prune these

undesired medial axis features, but none of them can completely

solve our problem. Most pruning methods rely on a significance

measure for each of the axis/centerline points.32 In our experi-

ments, the pruning is closely related to the identification of

branch points (see Fig. 4). We observe that although a small

perturbation of the surface may introduce undesired branches on

the inner medial axis, it does not affect the outer medial axis

much. The outer medial axis of a non-branching fiber with

a small perturbation is much farther away from the object

boundary than that of a branching fiber. Hence, we pruned out

the false branches based on their lengths and the distance from

the branch point to the outer medial axis. The latter can be

computed by a method based on Delaunay triangulation.33 Only

the branch points that are within a certain distance to the outer

medial axis are preserved.

Network analysis and simplification. Using both the segmented

network and its centerline, we are able to analyze the network

structure and produce a graphical representation of the network.

A depth-first search (DFS) is performed on the centerline to

traverse each branch point and end point and obtain its

geometric position. An edge is created in the graph to connect

two vertices (branch points and/or end points) if they can be

reached from each other through a path of non-branch points.

To compute the thickness of each fiber segment, we use a plane at

each centerline point orthogonal to the fiber segment and count

the connected object voxels around that centerline point within

the plane. As a result, a graph is generated for the network. The

vertices of the graph represent the branch points and end points,

and the edges of the graph represent the fiber segments between

consecutive branch points and end points (with known average

fiber thickness). This simplified structure also makes possible

a 3D reconstruction that presents the 3D structure of the

network and allows for fast manipulation of the network (rota-

tion, zoom in and out, etc).
3. Results

In this section, we first present the results of analyzing fiber

networks that do not sustain any load. Next, the elasticity of

various networks is given. Finally, we show how networks

reorient under loads, which relates the network structure to its

mechanical properties.
3.1. Fibrin networks analysis

We examined the fibrin structure from 3D reconstructed images

of clots obtained using the experimental approach described in

Section 2.3.1. Results of the image analysis were used to recreate
Soft Matter, 2011, 7, 4983–4992 | 4987



a three-dimensional network and to perform its structural anal-

ysis. We studied the inter-fibrin network differences in structure

by counting the number of branch points, estimating the average

thickness and computing the densities of the nodes as a function

of the radial distance from the cells.

Analysis of peculiarities and data comparison of fibrin

networks with and without cells and of hemophilic networks

were performed (see Table 3) to assess both feasible structural

similarities and differences.

Clots prepared from normal poor-platelet plasma (NPP) or

hemophilic poor-platelet plasma (HPP), triggered by lipidated

tissue factor, unstimulated cells (indicated by C), or cells stimu-

lated by tumor necrosis factor alpha TNFa (indicated by TNFa-C)

were used. The clotting activity was changed in NPP by adding

prothrombin to 200% or 400% of normal levels (indicated by 200II

and 400II), or fibrinogen to 6 mg mL�1 (200% of the normal level)

(indicated by 200Fgn). The network structures of clots produced

under these conditions have previously been well-character-

ized,1,5,22,28,34-36 and these studies provided a range of structures

suitable for developing our algorithms. Briefly, both elevated

prothrombin and elevated fibrinogen increase the network

density relative to NPP.1,5,22,36 Using cell monolayers to initiate

clotting produces clots with denser networks near the cell surface

than distal to the cell surface.5,28 TNFa-stimulated cells have

a higher procoagulant activity than unstimulated cells and

produce denser networks than unstimulated cells.28,36 Hemo-

philic clots contain a coarser network of thicker fibers than

normal clots.34,35 Under the experimental conditions used, clots

formed with unstimulated cells or lipidated tissue factor have

close mean density values, whereas clots formed with TNFa-

stimulated cells have on average 2.3 times higher densities than

NPP sample clots (2.2, 2.9, and 1.8 times for 0%, 200%, and 400%

of prothrombin concentration, respectively).

The number of neighbors for each network node was calcu-

lated. The distribution of neighboring nodes for all types of

networks was found to be quite similar having a maximum of n¼
3 neighbors. In this most common connection type, the node is

conjugated with three other nodes (Fig. 5).

In networks formed without cells the number of nodes with 3

neighbors comprises 53–57% of the total number of nodes. The

same index for hemophilic network is 51%. Four-neighbors

connection type nodes comprise 13–16% of the total number of

nodes in the NPP samples, 13–18% in the NPP samples with cells

(joint stimulated and unstimulated cells), and 10% in the hemo-

philic sample. Two-neighbors connection type nodes comprise

only 1% of the total number of nodes. One neighbor nodes

comprise 20–28% (no cells) and 35% (hemophilic) of all nodes.
Fig. 5 Some types of network connections: (a) the most common three-

nodes connection type and (b) the four-nodes connection type.
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The averaged distributions of neighbors are presented in Fig. 6,

in which histograms for the networks formed with cells (a),

without cells (b), and from hemophilic plasma (c) are shown.

Here, (a) presents stimulated and unstimulated cells samples

together, (b) presents all no cells samples (see Table 3).

Two approaches were used to determine the network density.

In the first approach the network density was calculated by

counting the total number of branch points in the sample and

dividing this by the sample volume. The second approach used

a previously published method,5 in which the network density

was manually quantified and analyzed using commercial soft-

ware ImageJ (version 1.37v, National Institute of Health).

Briefly, a random grid of 2-pixel crosses was placed on individual

slices and the density was determined by counting fibers inter-

secting the middle of the crosses, divided by the total number of

crosses. Crosses placed over cells were subtracted from the total

number of crosses. Table 2 shows the comparison of the two

methods, as the nondimensional relative network densities for

the studied samples are presented. These nondimensional values

were calculated by dividing the actual densities by the density of

the NPP sample. The values from these two methods are linearly

and positively correlated (R ¼ 0.923). However, method I is less

time consuming and, because it measures all fibers rather than

only a sample, it is expected to be more accurate than method II.5

We also found that the hemophilic clots contain thicker than

normal fibers, which is consistent with the findings from scanning

electron microscopy.34 It should be noted the the absolute

diameters measured by scanning electron microscopy are thinner

than they are in hydrated clots, such as those imaged by confocal

microscopy. This is partially because the resolution of confocal

microscopy is not high enough to resolve small length scales. Due

to the large deviation in the measured fiber diameters, we could

not correlate the thickness and the thrombin concentration. In

general, clots produced with higher thrombin concentrations

would be expected to have thinner fibers.22

The results in Table 2 and Table 3 show that the network

density increases with increasing concentration of prothrombin
Fig. 6 Distribution of the number of neighbors in networks (a) of NPP

type with cells, (b) of NPP type without cells, and (c) obtained from

hemophilic plasma.
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Fig. 7 The number of nodes per layer for (a) the networks formed in

normal plasma and hemophilic plasma, in the absence of cells and (b) the

networks formed in normal plasma with cells.

Table 2 Average relative network densities evaluated by two
approaches: a published method5 (left column), and a computational
method for network data analysis (right column)

Sample

Network Density n/nNPP

Method I Method II

No cells
NPP (Normal Pooled Plasma) 1 1
NPP400II 1.5 1.9
NPP200Fgn 1.8 2.5
Unstimulated cells
NPPC 0.7 0.3
NPPC

200II 1.5 1.2
NPPC

400II 1.9 2.1
TNFa-stimulated cells
NPPTNFa-C 1.8 2.2
NPPTNFa-C

200II 2.5 2.33
NPPTNFa-C

400II 3.1 3.3
and fibrinogen, which is consistent with prior experimental

results.1,5,22,36 In addition, consistent with experimental work by

Campbell et al.,28 the network density in clots produced by

TNFa-stimulated cells is higher compared to that in clots

produced by unstimulated cells.

The spatial distribution of the network nodes was also deter-

mined. For this purpose each sample was divided into 29 equal

layers in the z direction and the number of nodes in each layer

was counted, enabling one to calculate the average node density

and the number of nodes per unit volume (nodes cm�3) as

a function of the z coordinate. Here, z ¼ 0 corresponds to the

bottom of the well, the z axis is directed toward the sample

surface, and x and y form the coordinate system of the layer. The

spatial distributions of the node density for clots produced by

homogeneously distributed soluble tissue factor in plasma are

shown in Fig. 7(a). It can be seen that the nodes are quite

uniformly distributed along the z axis. In contrast, the node

density of the networks produced by cellular tissue factor, which

localized procoagulant activity to the cell surface, gradually

decreases as z increases (Fig. 7(b)). Such a difference in the

network node density distributions can be attributed to clotting

in the sample volume, due to diffusion of thrombin from the

cellular surface into the plasma medium.5 The node density

averaged in the z direction through the 3.3 mm thick layer is
Table 3 A summary of the quantitative measurements of the fibrin network

Sample
Number of
branch points

HPP (Hemophilic) 759
No cells
NPP (Normal Pooled Plasma) 5422
NPP400II 10 123
NPP200Fgn 13 604
Unstimulated cells
NPPC 1855
NPPC

200II 6610
NPPC

400II 11 406
TNFa-stimulated cells
NPPTNFa-C 11 938
NPPTNFa-C

200II 12 675
NPPTNFa-C

400II 18 138

This journal is ª The Royal Society of Chemistry 2011
shown in Fig. 8. As seen from the Figs 8(c) and (d), the nodes are

more densely populated near cells resulting in a non-uniform

node density distribution (Fig. 7(b)). For comparison, the node

densities for the network without cells and for the hemophilic

type network are presented in Figs 8(b) and (a), respectively. It

can be clearly seen that the network without cells displayed

a rather uniform structure. The hemophilic network displays

a much more penetrable structure than the clots produced in

NPP, which is consistent with previous experimental findings.35

This increased permeability is thought to reduce the ability of
s

Average fibrin diameter
(mm) (mean � SD)

Average fibrin length,
mm (mean � SD)

1.94 � 1.32 5.98 � 5.51

1.54 � 1.00 2.86 � 2.51
1.47 � 0.89 2.30 � 1.82
1.38 � 0.88 2.03 � 1.60

2.12 � 1.63 4.16 � 3.61
2.41 � 1.73 2.95 � 2.40
2.35 � 1.65 2.61 � 2.11

1.78 � 1.15 2.60 � 1.83
1.82 � 1.28 2.54 � 1.92
2.46 � 1.78 1.98 � 1.49

Soft Matter, 2011, 7, 4983–4992 | 4989



Fig. 8 Branch point density distributions for different types of

networks: (a) the hemophilic type network (HPP), (b) the fibrin network

from normal plasma containing no cells (NPP), (c) the fibrin network

with unstimulated cells NPPC, (d) the fibrin network with stimulated cells

NPPTNFa-C.

Table 5 The calculated elastic modulus of different fibrin networks

Sample l, Pa

HPP 7
NPP 23
NPP400II 97
NPP200II 123
NPPC 167
NPPC

200II 170
NPPC

400II 175
NPPTNFa-C 161
NPPTNFa-C

200II 130
NPPTNFa-C

400II 363
these clots to prevent bleeding at the sites of injury in hemophilic

patients.35
3.2. Elastic properties of fibrin network

The accuracy of the models was validated by comparisons to

experimental data1 for randomly generated fibrin networks. A set

of random networks was generated based on quantitative

measurements in ref. 1 (see Table 4). The Young’s modulus of

individual fibers in the model was varied from 1 Mpa to 15 Mpa,

when 5–25% of the strain was applied to the network. The esti-

mated modulus values were compared with the storage modulus

G0 in ref. 1, since the loss modulus (G0 0) was much smaller than

G0, using the ratio
G00

G
0 # 0:04. The model predictions and exper-

imental data are in good agreement for using the worm-like chain

nonlinear model, while the linear model fails to predict the

experimentally measured values (See Table 4). Here, the storage

modulus, G0, and the loss modulus, G0 0, represent the elastic and
the viscous portions of the complex modulus G ¼ G0 + G0 0 ¼
s0 0/g + s0/g, where s0 and s0 0 are the viscous and elastic stresses,

and g is the maximum strain.

Once the accuracy of the model was validated, the model was

employed to estimate the modulus of the reconstructed networks,
Table 4 Comparison of numerical and experimental values 1 of network ela

Sample1 Fibrin thickness, nm Number of branch points G0, P

A 72 26 0
B 61 21 0
C 46 80 100–
E 44 137 25
F 85 11 50–
I 69 7.7 200–
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as described in the previous method section. Table 5 summarizes

the computed bulk elastic modulus for all of the networks. The

average stiffness of the networks with cells (<lI>¼ 194.5 Pa) was

2.6 times higher than that without cells (<lII> ¼ 74.3 Pa). The

NPPTNFa-C
400II sample was found to have the highest stiffness and

therefore can be considered to have the most stable structure

among all of the samples. These findings are in agreement with

previous experimental studies,5 which suggest that thrombin

generation on the cell surface modulates the three-dimensional

structure and the stability of the clot.

The stiffness of the hemophilic network was 10 times lower

than the average stiffness of the networks produced from normal

plasma. This is consistent with experimental data showing

a reduced elastic modulus of the hemophilic clots compared to

the normal clots.37
3.3. Fibrin network orientation parameter

Hydrodynamic stresses, such as those due to blood flow, can

deform the fibrin network. The orientation of the fibers and

alterations in the fiber density affect the physical properties of the

clot.

In a recent work by Whittaker and Przyklenk38 the fibrin fiber

bundle orientation was used to assess thrombus structure. Three

different types of clots were analyzed: clots formed in vitro, clots

formed within coronary arteries after injury to the tunica media

and development of stenosis, and clots from luminal thrombi

obtained six weeks after surgical induction of an abdominal

aortic aneurysm and subsequent placement of embolic coils in

pigs. The two-dimensional fiber bundle orientation was deter-

mined by measuring the angular deviation: in vitro 28.7�, in

coronary samples 18.6�, and in aortic samples 4.4�. Assuming the

network to be two-dimensional, the corresponding orientation

parameters (defined below) were 0.54, 0.8, and 0.99. Under
stic modulus

a (exp. reports)1 l, Pa (linear model) l, Pa (nonlinear model)

–10 26 980 7
–50 18 100 71
150 72 832 116
–50 52 564 18
100 10 170 136
300 3030 69
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Fig. 10 The orientation parameter Py as a function of the applied strain.
no-load conditions the orientation parameter of the in vitro

synthesized fibrin clots was close to 0.1.2

Thus, the orientation of the fibers varies widely and depends

on the clotting conditions, such as the external loads, active

surfaces, the presence of cells, etc. One of the factors strongly

influencing the fiber orientation is stress on the fiber surfaces

produced by blood flow.39 In the present study, the effect of the

blood flow was approximated by a uniformly distributed strain

load across the sample network. The effect of the applied strain

on the network alignment was studied numerically for three

different types of clot samples; HPP, NPP, and NPPC (see

Table 3 and Table 5). The fibrin network orientation parameter

was used to quantitatively describe the fibrin alignment along the

ith coordinate axis, where i ¼ x,y,z. This parameter is defined

here as Pi ¼ 2hcos2qii � 1, where qi is the direction angle between

a fiber and one of the ith axes, and averaging is done over all fiber

segments composing the sample. According to the given defini-

tion of the parameter Pi, it ranges from �1 to 1 and allows the

assessment of a three-dimensional network alignment, with

respect to the coordinate axes. If network fibers are randomly

oriented with respect to the ith direction, then Pi ¼ 0. For fibers

oriented perpendicular to the ith direction, Pi ¼ �1. If the

network is perfectly aligned along the ith direction, Pi ¼ 1.

The structure of the initially unstressed fibrin clots was found

to exhibit anisotropic alignment. For example, for the hemo-

philic sample the orientational parameter was P ¼ (Px,Py,Pz) ¼
(�0.241, �0.323, �0.92), for the NPP sample, P ¼ (�0.438,

�0.29, �0.863), and for the NPPC sample, P ¼ (�0.38, �0.183,

�0.91). The values of Pz are close to �1, which probably results

from the fact that fibrin clot samples were prepared as thin layers

so that most of the fibers aligned in the xy plane.

When strain was applied along one of the ith directions, the

fibers began to align and the fibrin network orientation para-

meter gradually increased from its initial value to some asymp-

tote as seen in Fig. 9 and 10. For comparison, experimental data

from Brown et al.2 are shown in Fig. 10. Although experiments

were done with fibrin networks with different structural

topologies, the model correctly predicts the range of the orien-

tation parameter.

The analysis of the network orientation of clots formed in vitro

revealed that although the fibrin fibers were disorganized, their

orientations were not random. The fibers were found to be

generally aligned in parallel to the bottom of the well, and to

have nonzero orientation components Px and Py. It should be
Fig. 9 The orientation parameter Pz as a function of the applied strain.
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noted that in experimental vascular clots the mean orientation of

fibers is in the circumferential direction within the vessel.38 This is

the result of shear stresses present during fiber formation.39 The

alignment of the fibers studied here, under no flow conditions,

results from some other mechanism, possibly an interaction with

the glass surface of the well.
4. Conclusions

The structural features and mechanical properties of three types

of fibrin networks were studied: networks formed from normal

plasma with and without cells, and from plasma from a hemo-

philic patient.

A multistep approach was developed for the reconstruction of

a three-dimensional network structure from experimental images

to quantify the structural properties of fibrin networks. An

algorithm was developed that significantly speeds up the image

analysis. It was found that all types of networks exhibit a similar

distribution of neighbors with three-neighbor connections being

the most common. Spatial non-uniformity in fiber and node

distributions was found in networks with cells, likely attributable

to localized expression of the procoagulant on the cell surface.5,28

The mechanical model based on the microstructures within the

network extends the prior model for small networks21 and

enables one to calculate the bulk properties of the network. The

nonlinear worm-like chain model of individual fibers correctly

predicts both the elastic properties of the networks and the

alignment of the fibers as the clot sample is stretched. The pre-

dicted results of the network alignment were shown to be in

agreement with experimental data.2 Therefore the developed

model can be used to interpret experimental results as well as to

design further experiments on determining fibrin clot structural

changes under different mechanical loads.

While blood clots made of platelets and a fibrin network

prevent bleeding after a break in blood vessels, pathological

clotting within vessels (thrombosis) generates thrombi that can

occlude vessels or generate emboli that may lodge in and restrict

blood flow to critical tissues. An overly stable clot which consists

of a dense fibrin network and is less permeable may be resistant

to fibrin lysis. Brown et al.2 studied fibrin structures to address

how fibrin clots are both permeable and extensible by examining

molecules, single fibers and whole clots. The protein unfolding

explains how a fiber behaves as a linear spring with a strain of 1.2

and starts to display strain hardening afterwards. We
Soft Matter, 2011, 7, 4983–4992 | 4991



interpolated this phenomenon by applying a worm-like chain

model developed by Hudson et al.21 to represent a single fiber.

Our study confirmed the importance of taking into account

protein unfolding and nonlinear elasticity of single fibers.

Our simulations show that the average stiffness of a hemo-

philic fibrin network sample is about 10 times smaller than the

average stiffness of normal fibrin networks. The average stiffness

of fibrin networks formed with cells is about 2.6 times larger than

the average stiffness of fibrin networks formed without cells.

Differences in stiffness can partially be attributed to the struc-

tural differences in networks at the macroscale.

Fibrin networks generated from the hemophilic plasma

samples are more sparse than networks formed from wild type

samples. The model predicts such networks to be less resistant to

shear stress generated by blood flow, which is consistent with clot

instability seen in hemophiliac patients.

Our results show that differences in mechanical properties of

different fibrin networks can be partially explained by the

structural differences in networks at the macroscale. However, if

one could understand how the rate of fibrin generation is affected

by changes in coagulation activity and how fibrin fibers form at

the molecular level, it would be possible to predict the mechan-

ical properties of fibrin networks formed in individuals with

particular coagulation factor profiles. The ability to determine

the properties of fibrin networks would have significant

biomedical value, enabling one to better assess thrombotic or

hemorrhagic risk and the response to therapeutic interventions.
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