
Decentralized Hybrid Formation Control
of Unmanned Aerial Vehicles

Ali Karimoddini1, Mohammad Karimadini 2, Hai Lin3

Abstract— This paper presents a decentralized hybrid su-
pervisory control approach for two unmanned helicopters that
are involved in a leader-follower formation mission. Using
a polar partitioning technique, the motion dynamics of the
follower helicopters are abstracted to finite state machines.
Then, a discrete supervisor is designed in a modular way for
different components of the formation mission. Furthermore, a
formal technique is developed to design the local supervisors
decentralizedly, so that the team of helicopters as whole, can
cooperatively accomplish a collision-free formation task.

I. INTRODUCTION

Nowadays, developing Unmanned Aerial Vehicles (UAVs)
in different sizes and shapes for various applications has
emerged as an attractive research area [1], [2], [3], [4]. A
challenging problem in the aerial robotics and cooperative
control of UAVs is formation control, in which it is desired
to instruct a group of agents to jointly move with a relatively
fixed distance. This capability improves the performance of
the UAVs to accomplish different tasks such as search and
coverage more efficiently. In the literature, there are several
methods that can partly handle subcomponents of a forma-
tion mission including reaching the formation, Keeping the
formation, and collision avoidance. Nevertheless, putting all
together to address the whole components of the formation
mission, requires an in-depth understanding of the interplay
between the components based on which a decision making
unit can be embedded in the control structure of the UAVs.
To make this control structure reliable enough, two main
problems should be addressed. Firstly, this control structure
has a hybrid nature, which includes both the continuous
dynamics of the UAVs and the discrete dynamics of the
decision making unit that interactively coexist in the system
[5]. Although a common practice is to treat the continuous
and the discrete structure of the system in a decoupled way,
the ignorance of the interactions between the continuous
and discrete dynamics of the system degrades the reliability
of the overall system. Secondly, to take the advantage of
decentralized control schemes, e.g. distributing the compu-
tation costs among the agents and increasing the reliability
of the system against the possible failures, a decentralized
controller is required. To address the first problem, in [6],

1 A. Karimoddini is with the Department of Electrical and Computer
Engineering, North Carolina Agricultural and Technical State University,
Greensboro, NC 27411 USA, akarimod@ncat.edu.

2M. Karimadini is with the Department of Electrical
Engineering, Arak University of Technology, Arak, Iran,
karimadini@arakut.ac.ir.

3H. Lin is with the Department of Electrical Engineering, University of
Notre Dame, Notre Dame, USA, hlin1@nd.edu.

a hybrid supervisory control framework was introduced for
the formation control of UAVs.

This paper addresses the second problem and presents a
decentralized hybrid supervisory control of two UAVs that
are involved in a leader-follower formation scenario. First,
using the abstraction techniques and symbolic based motion
planning techniques [7], [8], a DES model is obtained for
the motion dynamics of each agent. Then, the formation
task is formulated by logical requirements for which we
have modularly designed the discrete supervisors for dif-
ferent components of the formation including reaching the
formation, keeping the formation, and collision avoidance.
In the reaching and keeping the formation, the follower
UAVs can satisfy the desired performance independently.
However, for the collision avoidance, a tight cooperation of
the UAVs is required. For this purpose, a collision avoidance
supervisor is designed, so that the team of UAVs as whole,
can cooperatively satisfy the collision avoidance specification
as a global goal. Then, to render the decentralized implemen-
tation, the designed global supervisor is decomposed into
local supervisors through the natural projections into local
event sets.

The rest of this paper is organized as follows. Section
II describes the problem formulation. Section III obtains an
abstract model for the motion dynamics of the follower UAVs
using the polar partitioning of the motion space. A discrete
supervisor is modularly designed in Section IV, and then, it
is decomposed into local supervisors. The paper is concluded
in Section V.

II. PROBLEM FORMULATION

In [9] and [10] it is shown that subject to the proper
implementation of the inner-loop for an unmanned helicopter
to be fast enough to track the given references, the outer loop
dynamics can be approximately described as follows:

ẋ = u, x ∈ R2, u ∈ U ⊆ R2, (1)

where x is the position of the UAV; u is the UAV velocity
reference generated by the formation algorithm, and U is the
convex set of velocity constraints.

Also, assume that the UAVs are flying at the same altitude,
and the velocity of the k’th follower, UAVk, k = 1, 2 is in
the following form:

Vfollowerk = Vleader + Vrelk. (2)

Now, we can consider a relatively fixed frame for each
follower UAV, in which each follower moves with the relative

(a) (b)

Fig. 1. (a) Vertices of the element Ri,j . (b) Edges of the element Ri,j .

velocity Vrel.
Problem 1: Given the dynamics of the follower UAVs as

(1) and their velocity in the form of (2), design the formation
controller to generate the relative velocity of the followers,
Vrelk, such that starting from any initial state inside the
control horizon, the follower UAVs eventually reach their
desired positions, while avoiding the collision with other
follower UAVs. Moreover, after reaching the formation, the
follower UAVs should remain at the desired positions.

III. DISCRETE MODEL OF THE UAV MOTION DYNAMICS
OVER THE POLAR PARTITIONED SPACE

To address this problem, for each UAV consider a circle
with the radius of Rm that is centered at its desired position.
With the aid of the partitioning curves {ri = Rm

nr−1 (i −
1), i = 1, ..., nr} and {θj = 2π

nθ−1 (j − 1), j = 1, ..., nθ},
this circle can be partitioned into (nr−1)(nθ−1) partitioning
elements.

In this partitioned space, an element Ri,j = {p =
(r, θ)| ri ≤ r ≤ ri+1, θj ≤ θ ≤ θj+1}, has four vertices,
v0, v1, v2, v3 (Fig. 1(a)), four edges, E+

r , E−r , E+
θ , E−θ (Fig.

1(b)). The set V (∗) stands for the vertices that belong to ∗
(∗ can be an edge, or a region Ri,j).

As shown in [6], for a system with a multi-affine dynamics
ẋ = h(x, u(x)) defined over this polar partitioned space, two
control features can be designed. First, the region Ri,j can be
invariant, i.e., the trajectories of the system remain inside the
region forever. The other control feature is the exit edge. It is
possible to design a controller to drive the system’s trajectory
to exit from the edge Esq , q ∈ {r, θ} and s ∈ {+,−}, by
choosing the control values u(vm) at the vertices. According
to the properties of multi-affine systems, the control value at
any point inside the region can be achieved based on the
control values at the vertices as u(x) = Σ3

m=0λm(x)u(vm),
which λm(x) is a coefficient that determines the weight of
u(vm) in the control value u(x). We denote the controller
for having a region invariant by C0k. Also, Cr+k , Cr−k , Cθ+k ,
and Cθ−k are respectively the controllers for having the edges
Fr

+, Fr−, Fθ+, and Fθ−, as exit edges. Further details on
how to design these controllers are provided in [6].

Now, this model of the UAV motion dynamics over the
partitioned space can be abstracted to a finite state machine
and can be presented by a discrete automaton. An automaton
can be formally defined as follows:

Definition 1: (Automaton)[11]. A deterministic automa-
ton is a tuple A := (Q, q0, E, δ,Qm) consisting of a set
of states Q; an initial state q0 ∈ Q; a set of events E that
causes transitions between the states, and a transition relation
δ ⊆ Q × E × Q (with a partial map δ : Q × E → Q),
such that (q, e, q′) ∈ δ if and only if state q is transited to
state q′ by event e, denoted by q

e→ q′ (or δ(q, e) = q′).
Qm ⊆ Q represents the marked states to assign a meaning
of accomplishment to some states. For supervisor automaton
whose all states are marked, Qm is omitted from the tuple.

For this automaton, the sequence of these events forms a
string. We use ε to denote an empty string, and Σ∗ to denote
the set of all possible strings over the set Σ including ε. The
language of the automaton G, denoted by L(G), is the set
of all strings that can be generated by G, starting from the
initial states. The marked language, Lm(G), is the set of
strings that belong to L(G) and end with the marked states.

For UAV1, the discrete model of the system over the
partitioned space can be described by the automaton
A1 = (Q1, q01, E1, δ1, Qm1) whose set of discrete
states is Q1 = {R1, O1}, and its event set is E1 =
C1∪{C01}∪D1∪Ex, where C1 = {Cr+1 , Cr

−
1 , Cθ

+
1 , Cθ

−
1 }

and D1 = {di,j1| 1 ≤ i ≤ nr − 1, 1 ≤ j ≤ nθ − 1}.
When UAV1 is in one of the regions Ri,j , in the abstract
model it is considered to be in the discrete state R1. Then,
one of the actuation commands belong to C1 drives the
UAV to one of its adjacent regions. In this case, right
after issuing the actuation commands, the system transits
to the detection state O1 and waits until the UAV enters
a new region. Crossing boundaries of the new region, a
detection event belonging to D1 will be generated which
shows the UAV has entered the new region Ri′,j′ . The
command C01, keeps the UAV in the current region and
does not change the discrete state of the system. We use
the notation DM 1 = {di,j1| 1 ≤ i = 1, 1 ≤ j ≤ nθ − 1}
to denote the detection events, which show entering
a region in the first circle, and d1 = D1 − DM 1 =
{di,j1| 1 < i ≤ nr − 1, 1 ≤ j ≤ nθ − 1} ⊆ D1

for the rest of detection events. Here, Ex =
{Ca12F , Ca12N , Ca21F , Ca21N , Stop1, Stop2, R21, R12}
is the set of external events which are required
for the collision avoidance and do not change
the state of the system. The events belong to
CA = {Ca12F , Ca12N , Ca21F , Ca21N} show the collision
alarms, in which the events in CA1 = {Ca12F , Ca12N}
show that UAV2 enters the alarm zone of UAV1 and
accordingly, the events in CA2 = {Ca21F , Ca21N} show
that UAV1 enters the alarm zone of UAV2. The details
will be discussed in Section IV-B. The events Stop1 and
Stop2 are the commands that request UAV1 and UAV2 to
stop at their current position in the relative frame and the
command R12 and R21 release them, respectively. Similar
definitions can be given for the DES model of UAV2. The
graph representation of the discrete models of UAV1 and
UAV2 are shown in Fig. 2. In these graphs, the arrows
starting from one state and ending to another state represent

(a) (b)

Fig. 2. (a) DES model of UAV1. (b) DES model of UAV2.

the transitions, labeled by the events belong to Ei. The
entering arrows stand for the initial states. Marked states
are shown by double circles.

In the DES model of UAVk, k = 1, 2, the event set Ek
consists of the controllable event set Eck = {C0k, Cr+k ,
Cr
−
k , Cθ+k , Cθ−k , Stop1, Stop2, R21, R12} and the uncontrol-

lable event set Euck = {Ca12F , Ca12N , Ca21F , Ca21N} ∪
D1. The uncontrollable events are those that cannot be
affected by the supervisor. A language K is controllable with
respect to the language L(A) and the event set Euc if and
only if ∀s ∈ K and σ ∈ Euc, if sσ ∈ L(A), then sσ ∈ K.
Indeed, the controllability is the existence condition of a
supervisor for the control goal described by the specification
K [11].

IV. DESIGNING A DECENTRALIZED MODULAR
SUPERVISOR FOR THE FORMATION CONTROL OF THE

UAVS

Given the discrete model of follower UAVs over the
partitioned space, it is possible to design the supervisor to
achieve a desired order of events to accomplish the forma-
tion. Indeed, the supervisor, S, observes the executed strings
of the plant A and disables the undesirable controllable
events. Here, we assume that all of the events are observable.
The generated language and marked language of the closed-
loop system, L(S/A) and Lm(S/A), can be constructed as
follows:
(1) ε ∈ L(S/A)
(2) [(s ∈ L(S/A)) and (sσ ∈ L(A)) and (σ ∈ L(S))] ⇔
(sσ ∈ L(S/A))
(3) Lm(S/A) = L(S/A)

⋂
Lm(A)

where s is the string that has been generated so far by the
plant A, and σ is an event, which the supervisor S should
decide whether keep it active or not in the supervised system
S/A.

Within this framework one can use parallel composition
to facilitate the control synthesis. Parallel composition is a
binary operation between two automata which can be defined
as follows:

Definition 2: (Parallel Composition [11]) Let Ai =(
Qi, q

0
i , Ei, δi, Qmi

)
, i = 1, 2, be automata. The paral-

lel composition (synchronous composition) of A1 and A2

is the automaton A1||A2 = (Q = Q1 × Q2, q0 =
(q01 , q

0
2), E = E1∪E2, δ, Qm = Qm1 ×Qm2), with δ defined

as ∀(q1, q2) ∈ Q, e ∈ E : δ((q1, q2), e) =

(δ1(q1, e), δ2(q2, e)) , if δ1(q1, e)!, δ2(q2, e)!,

e ∈ E1 ∩ E2;
(δ1(q1, e), q2) , if δ1(q1, e)!, e ∈ E1\E2;
(q1, δ2(q2, e)) , if δ2(q2, e)!, e ∈ E2\E1;
undefined, otherwise.

Here, the parallel composition is used to combine the
plant’s discrete model and the supervisor as follows:

Lemma 1: [12] Let A = (Q, q0, E, α, Qm), be the
plant automaton and K ⊆ E∗ be the desired marked
language. There exists a nonblocking supervisor S such that
Lm(S/A) = Lm(S‖A) = K if ∅ 6= K = K̄

⋂
Lm(A) and

K is controllable. In this case, S could be any automaton
with L(S) = Lm(S) = K̄.

Now, using the above lemma, it is possible to design the
supervisor for the formation problem described in Problem
1, which includes two modules: 1- Reaching and keeping the
formation and 2- Avoiding collision. Next lemma describes
how to design the supervisors in a modular way.

Lemma 2: [12] Let A = (Q, q0, E, α, Qm) be the
plant automaton and the prefix-closed controllable languages
K1,K2 ⊆ E∗ be the desired marked specifications. Sup-
pose there exist nonblocking supervisors S1 and S2 such
that Lm(S1/A) = Lm(S1‖A) = K1 and Lm(S2/A) =
Lm(S2‖A) = K2, then S = S1‖S2 is a nonblocking
supervisor with Lm(S‖A) = K1

⋂
K2. �

A. Designing the supervisor for reaching and keeping the
formation

For reaching the formation, it is sufficient to directly
drive each of the follower UAVs towards one of the regions
R1,j , 1 ≤ j ≤ nθ − 1, located in the first circle in their
corresponding partitioned motion space. After reaching R1,j ,
the UAVs should remain inside it, to keep the formation. The
specifications KF 1 and KF 2 for reaching and keeping the
specification for UAV1 and UAV2 are realized in Fig. 3.
When the k’th follower UAV is not in the first circle, the
command Cr

−
k will be generated to push the UAV towards

the origin. Entering a new region, one of the events from
dk = {di,jk| 1 < i ≤ nr − 1, 1 ≤ j ≤ nθ − 1} will
appear. This will continue until one of the events from
DMk = {di,jk| i = 1, 1 ≤ j ≤ nθ − 1} be generated, which
shows that the formation is reached. In this case, the event
C0k is activated, which keeps the system trajectory inside
the first region. If a collision alarm happens to UAVk, the
formation supervisor does not change the generable language
after the events belonging to CA, and lets the collision
avoidance supervisor handle it until the collision be avoided
and the UAV be released to resume the formation task.

It can be seen that KF k, k = 1, 2 are controllable with
respect to the plant language L(Ak) and the event set Euck,
as they do not disable any uncontrollable event. Therefore,
based on Lemma 1, there exist supervisors that can control
the plants A1 and A2 to achieve these specifications. The
supervisors are the realization of the above specifications
in which all states are marked. Marking all states of the
supervisors allows the closed-loop marked states to be solely
determined by the plants’ marked states. The supervisor for

(a)

(b)

Fig. 3. (a) The specification for reaching and keeping the formation for
UAV1. (b) The specification for reaching and keeping the formation for
UAV2.

reaching the formation and keeping the formation of UAVk
is denoted by AF k.

B. Designing the supervisor for collision avoidance

Fig. 4. UAV2 enters the alarm zone of UAV2.

When UAV1 is going to reach its desired position, in
some situations, the other follower, UAV2, may enter the
alarm zone of UAV1 (Fig. 4), which requires these UAVs
to cooperatively avoid the collision. For this purpose, first,
UAV1 asks UAV2 to stop in the relative frame and then,
UAV1 finds a path to safely get away from UAV2. After
avoiding the collision, UAV1 releases UAV2 and both UAVs
resume their normal operation for reaching the formation.
Similar strategy is taken when UAV1 enters the alarm zone
of UAV2. This specification, KC , is shown in Fig. 5 whose
left side shows that after appearing one of the events ca12F or
ca12N , UAV1 realizes that UAV2 has entered its alarm zone.
Therefore, by event Stop2, UAV1 requests UAV2 to stop
for a while to safely manage the situation. The event ca12F

shows that UAV2 is in front of the path of UAV1 towards its
destination and hence, to avoid the collision it is sufficient
that UAV1 turns anticlockwise to change its azimuth angle,
θ, by activating the command C+

θ . This will continue until
removing the collision alarm. Then, UAV1 releases UAV2,
and reaching the formation can be resumed by the reaching
formation supervisor which was explained in the previous
section. Meanwhile, if UAV1 enters one of the regions in
the first circle, one of the events belong to DM 1 appears
which means that UAV1 has reached its desired formation
and should remain there for the rest of mission. Similarly, the
right side of Fig. 5, shows the collision avoidance mechanism
when UAV1 enters the alarm zone of UAV2. If neither
of collision avoidance alarms from the set CA happens,
then UAV1 and UAV2 can do their normal operations by
independent enabling of events C1 and C2 followed by the
detection signals D1 and D2 in any order as shown on the
top of Fig. 5. The other module, the reaching formation
supervisor, will manage this situation.

It can be verified that KC is controllable with respect to
the language L(A1||A2) and the event set Euc1 ∪ Euc2.
Therefore, based on Lemma 1, there exists a supervisor
Ac that can control the plants A1 and A2 to achieve this
joint specification. The supervisor is the realization of the
specification KC in which all states are marked.

The collision avoidance supervisor, AC , is a centralized
supervisor which manages both UAV1 and UAV2. To make
this supervisor decentralized and to achieve local supervisors,
we will utilize our proposed decomposition scheme intro-
duced in [13]. Here, local supervisors can be achieved by
the projection of the global supervisor to each agent’s local
event set. The projection of the global supervisor AC to the
event set of UAVi, Ei, is denoted by PEi(AC), and can
be obtained by replacing the events that belong to E\Ei by
ε-moves, and then, merging the ε-related states.

Once the local supervisor automata are derived through
the natural projection, the decentralized supervisor is then
obtained using the parallel composition of local supervisor
automata. Parallel composition captures the logical behavior
of concurrent distributed systems by allowing each subsys-
tem to evolve individually on its private events, while syn-
chronize with its neighbors on shared events for cooperative
tasks.

The obtained decentralized supervisor is then compared
with the original global supervisor automaton using the
bisimulation relation.

Definition 3: Consider two automata Ai = (Qi, q
0
i ,

E, δi), i = 1, 2. The automaton A1 is said to be similar
to A2 (or A2 simulates A1), denoted by A1 ≺ A2, if
there exists a relation R from A1 to A2 over Q1, Q2

and with respect to E, such that (1) (q01 , q
0
2) ∈ R, and

(2) ∀ (q1, q2) ∈ R, q′1 ∈ δ1(q1, e), then ∃q′2 ∈ Q2 such
that q′2 ∈ δ2(q2, e), (q′1, q

′
2) ∈ R. Automata A1 and A2

are said to be bisimilar (bisimulate each other), denoted
by A1

∼= A2 if A1 ≺ A2 with a simulation relation R1,
A2 ≺ A1 with a simulation relation R2 and R−11 = R2,
where R−11 = {(y, x) ∈ Q2 ×Q1|(x, y) ∈ R1}.

Fig. 5. The specification for cooperative collision avoidance.

Based on these definitions we can formally describe the
decomposability conditions with respect to two local event
sets.

Lemma 3: (Theorem 4 in [13]) A deterministic automaton
A = (Q, q0, E = E1 ∪ E2, δ) is decomposable with
respect to parallel composition and natural projections Pi,
i = 1, 2, such that A ∼= P1(A)||P2(A) if and only if
A satisfies the following decomposability conditions (DC):
∀e1 ∈ E1\E2, e2 ∈ E2\E1, q ∈ Q, s ∈ E∗,
• DC1: [δ(q, e1)!∧δ(q, e2)!]⇒ [δ(q, e1e2)!∧δ(q, e2e1)!];
• DC2: δ(q, e1e2s)!⇔ δ(q, e2e1s)!;
• DC3: ∀s, s′ ∈ E∗, s 6= s′, pE1∩E2

(s), pE1∩E2
(s′)

start with the same common event a ∈ E1 ∩ E2,
q ∈ Q: δ(q, s)! ∧ δ(q, s′)! ⇒ δ(q, p1(s)|p2(s′))! ∧
δ(q, p1(s′)|p2(s))!;

• DC4: ∀i ∈ {1, 2}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei, t ∈
E∗i , x1 ∈ δi(x, e), x2 ∈ δi(x, e): δi(x1, t)!⇔ δi(x2, t)!.

where, K̄ = {s ∈ Σ∗|(∃t ∈ Σ∗)st ∈ K} is the prefix
closure of the language K. The decomposability conditions
DC1 and DC2 respectively guarantee that any decision on
the selection or order of two transitions can be done by the
team of agent, while conditions DC3 and DC4 respectively
ensure that the interaction of local automata P1(A) and
P2(A) neither allows an illegal string that is not in A, nor
stops a legal string of A.

Now assume that given the global task and local plants,
a global supervisor is designed and decomposed into local
supervisors such that each closed loop system (the supervised
local plant with the corresponding local controller) satisfies
the global task. In this decentralized cooperative control
architecture we are then interested to check whether the

entire system satisfied the global task.
Problem 2: (Decentralized cooperative control problem)

Consider a plant, represented by a parallel distributed system

AP :=
2

‖
i=1

APi , with local event sets Ei, i = 1, 2, and

let the global specification is given by a deterministic task

automaton AS over E =
2
∪
i=1
Ei. Furthermore, suppose that

there exist a decomposable deterministic global controller

automaton AC ∼=
2

‖
i=1

Pi(AC), so that AP ‖ AC ∼= AS .

Then, whether the local controllers can lead the team to
satisfy the global specification in a decentralized architecture,
2

‖
i=1

(APi ‖ Pi(AC)) ∼= AS .

Following result considers a team of two local plants and
introduces the supervisor decomposability and satisfaction of
the global task by each local supervised plant as a sufficient
condition for the satisfaction of global task by the team.

Theorem 1: (Decentralized cooperative control using su-
pervisor decomposition) Consider a plant, represented by a
parallel distributed system AP1

‖ AP2
, with local event sets

Ei, i = 1, 2, and let the global specification is given by a
task automaton AS over E = E1∪E2. Furthermore, suppose
that there exist a deterministic global controller automaton
AC ∼= P1(AC) ‖ P2(AC), so that AC ‖ Ap ∼= AS . Then, the
entire closed loop system satisfies the global specification,

in the sense of bisimilarity, i.e.,
2

‖
i=1

(APi ‖ Pi(AC)) ∼= AS ,

provided the decomposability conditions DC1, DC2, DC3
and DC4 for AC .

The significance of this result is the decentralized imple-
mentation of the global supervisor, AC , given in Fig. 5,

by decomposing AC , into local supervisors. As it can be
seen in AC , the successive and adjacent events from pairs of
private event sets (from different local event sets) (C01, C2),
(C01, D2), (C02, C1), (C02, D1), (C1, D2), (C2, D2), ap-
pear in both orders in the global supervisor automaton
therefore DC1 and DC2 are satisfied. Moreover, among
common events R12, R21, CA1 = {ca12F , ca12N}, CA2 =
{ca21F , ca21N}, Stop1, and Stop2, the events R12, R21,
Stop1, and Stop2 are not shared between different strings.
Strings just share the events CA1, CA2, where the cor-
responding local strings do not interleave on these events
because of predecessor common events before CA1, CA2.
Therefore DC3 also is fulfilled. Finally, DC4 is satisfied
because of the determinism of local automata P1(AC) and
P2(AC), and hence, the supervisor automaton AC is decom-
posable into AC1 = P1(AC) and AC2 = P2(AC), shown in
Fig. 6, so that AC1 ‖ AC2

∼= AC .

V. CONCLUSION

In this paper, a collision free formation control algorithm
was proposed using hybrid supervisory control techniques.
The proposed supervisor has a modular structure and can
accomplish three main tasks: reaching the formation, keeping
the formation, and collision avoidance. This control structure
was implemented decentralizedly so that local (decomposed)
supervisors can treat the distributed agents to achieve a glob-
ally safe and collision free environment. Simulation results
and further details are available in the extended version [14].

ACKNOWLEDGMENT

The financial supports from NSF-CNS-1239222 and NSF-
EECS-1253488 for this work are greatly acknowledged.

REFERENCES

[1] K. P. Valavanis, K. P. Valavanis, Advances in unmanned aerial vehi-
cles: state of the art and the road to autonomy, Springer Publishing
Company, Incorporated, 2007.

[2] S. A. Bortoff, The university of toronto rc helicopter: a test bed for
nonlinear control, in: Control Applications, 1999. Proceedings of the
1999 IEEE International Conference on, Vol. 1, IEEE, 1999, pp. 333–
338.

[3] R. C. Michelson, S. Reece, Update on flapping wing micro air vehicle
research-ongoing work to develop a flapping wing, crawling ento-
mopter, in: 13th Bristol International RPV/UAV Systems Conference
Proceedings, Bristol England, Vol. 30, 1998, pp. 30–1.

[4] A. R. Partovi, H. Lin, G. Cai, B. Chen, A. Kevin, Development of
a cross style quadrotor, in: AIAA Guidance, Navigation, and Control
Conference, 2012.

[5] P. J. Antsaklis, J. A. Stiver, M. Lemmon, Hybrid system modeling and
autonomous control systems, in: Hybrid Systems, Springer, 1993, pp.
366–392.

[6] A. Karimoddini, H. Lin, B. M. Chen, T. H. Lee, Hybrid formation
control of the unmanned aerial vehicles, Mechatronics 21 (5) (2011)
886–898.

[7] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, G. J. Pappas,
Symbolic planning and control of robot motion [grand challenges of
robotics], Robotics & Automation Magazine, IEEE 14 (1) (2007) 61–
70.

[8] A. Karimoddini, H. Lin, B. M. Chen, T. H. Lee, Hybrid three-
dimensional formation control for unmanned helicopters, Automatica
49 (2) (2013) 424–433.

[9] A. Karimoddini, G. Cai, B. M. Chen, H. Lin, T. H. Lee, Hierarchical
Control Design of a UAV Helicopter,” in Advances in Flight Control
Systems, INTECH, Vienna, Austria, 2011.

(a)

(b)

Fig. 6. (a) The local supervisor for collision avoidance for UAV1. (b) The
local supervisor for collision avoidance for UAV2.

[10] A. Karimoddini, G. Cai, B. M. Chen, H. Lin, T. H. Lee, Multi-layer
flight control synthesis and analysis of a small-scale uav helicopter, in:
IEEE Conference on Robotics Automation and Mechatronics, 2010,
pp. 321–326.

[11] C. G. Cassandras, S. Lafortune, Introduction to discrete event systems,
Springer, 2008.

[12] R. Kumar, V. K. Garg, Modeling and Control of Logical Discrete Event
Systems, Vol. 300 of The Springer International Series in Engineering
and Computer Science, Springer, 1995.

[13] M. Karimadini, H. Lin, Guaranteed global performance through local
coordinations, Automatica 47 (5) (2011) 890–898.

[14] A. Karimoddini, M. Karimadini, H. Lin, Decentralized Hybrid For-
mation Control of Unmanned Aerial Vehicles, Technical Report:
NCAT-ACCESS-14-001, North Carolina Agricultural and Technical
State University, Autonomous Cooperative Control of Emergent Sys-
tems of Systems (ACCESS) Lab, [Online]. Available at: http://arxiv-
web3.library.cornell.edu/abs/1403.0258.

