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Abstract— The paper introduces a new area of application
of the supervisory control (SC) methods and a project dealing
with this research topic. Based on the observation that various
constraints on the operation and synchronization of concurrent
processes can be expressed in terms of SC specifications, the
paper proposes the application of SC to the automation of
concurrent program synthesis. Specifically, the paper proposes
a three-stage approach allowing to generate automatically the
part of the programs that deals with the coordination of
concurrent processes. In a first stage, Petri net models are
extracted from a high level specification. An SC specification
is also extracted. Then, SC is applied to generate the supervisor
enforcing the specification. Finally, the programs representing
the processes and the supervisor are generated. This work
is motivated by the difficulty of writing correctly concurrent
programs. Since this difficulty is due to the constraints on
the operation and synchronization of concurrent processes,
research in this area has the potential of simplifying the
development of concurrent programs.

I. INTRODUCTION

The development of correct software can be difficult and

expensive, especially in the context of concurrency. Thus,

tools that can automate software development to a higher

degree are of interest, in order to reduce the programming

effort and increase the number of features of the product that

are correct by construction. In the context of concurrency,

the main difficulty is writing the program segments that

ensure that the concurrent processes satisfy desired opera-

tion and synchronization constraints. This paper considers

the automatic synthesis of these program segments and

introduces an approach based on Supervisory Control (SC).

This work is part of a project for the development of a

concurrency tool suite (ACTS) for the synthesis of concur-

rent programs [1], [17]. The goal is to design software that

based on a high level specification can generate concurrent

programs.

The ACTS architecture is outlined in Figure 1. Given is

a specification written in a high level specification language

(HLL). Next, an analysis tool is applied to the high level

specification in order to extract a plant model of the

concurrent processes and also a specification for SC. Then,

SC is applied to generate a supervisor. Finally, the plant and

the supervisor are translated to programming code. All these

steps are carried out transparently and automatically, based

on the high level specification. The benefit of this approach
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is that the programmer would focus on a concise high

level description, instead of the more complex lower level

implementation. Of course, not every type of specifications

can be handled by a SC approach. However, the problem

of automating to a higher degree program synthesis raises

issues intrinsically related to SC, since various high level

requirements, such as fairness, absence of deadlocks, and

mutual exclusion, can be seen as SC specifications.

The paper is organized as follows. First, an illustrative

example is given in section II. Next, the Petri net rep-

resentation of programs is described in section III. The

code generation approach is described in section IV. Issues

related to the design of the HLL are addressed in section V.

The application of SC methods is discussed in section VI.

Related literature results are discussed in section VII. Ad-

ditional information about this project can be found in [1].

II. ILLUSTRATIVE EXAMPLE

Here we consider the problem of designing control soft-

ware for an assembly operation in a manufacturing line.

Two components A and B are assembled into a component

C as follows. A robot takes a part A and places it on a

conveyor, if the conveyor is stopped and no other part A is

on the conveyor. Another robot takes a part B and places

it on the conveyor at the same location if the conveyor is

stopped and no other part B is there. Then, the two parts

A and B are assembled. Then, after the conveyor is turned

on and the assembled product is removed, a new cycle may

begin. The conveyor should not move from the time a part A

or B is placed until the time when the parts are assembled.

Referring to Figure 1, the SC specification corresponds

to the requirements that only one part A (B) is placed on

the conveyor, that the parts are placed when the conveyor

is stopped, and that the conveyor should not move from the

time a part A or B is placed until the time when the parts

are assembled. For the rest, the specification describes the

processing sequence and corresponds to the description of

the plant.

The role of the analysis tool is to extract a PN model

of the plant and the SC specification based on a formal

description of the specification above. A possible solution

is the PN model of the plant is shown in Figure 2 and

the SC specification given in the inequalities (1)–(4). In

the plant model of Figure 2, the processing sequence is

shown to the left and the states of the conveyor to the

right. To incorporate the effect of processing delays, a

processing step is modeled by a controllable transition, an

uncontrollable transition, and a place, as shown in Figure 3.

The controllable transition is fired when the command is

issued and the uncontrollable transition is fired after the
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Fig. 1. Outline of the program synthesis approach.
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Fig. 2. Plant model.
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Fig. 3. A possible way to model processing delays.

command has been executed. For instance, in Figure 2,

t1 is fired when the command to turn on the conveyor is

issued and t2 is fired when the conveyor is on. Finally, the

following inequalities on the marking of the PN express

the remaining requirements of the specification. Note that

µi denotes the marking of the place pi.

µ6 + µ9 + µ10 ≤ 1 (1)

µ6 + µ9 + µ2 + µ3 + µ4 ≤ 1 (2)

µ8 + µ9 + µ10 ≤ 1 (3)

µ8 + µ9 + µ2 + µ3 + µ4 ≤ 1 (4)

The inequality (1) expresses the requirement that only one

part A should be placed on the conveyor. Further, (2)

describes the requirement that the conveyor should not move

from the time a part A is placed until the time when the

parts A and B are assembled. The inequalities (3) and (4)

 2
C
 4

t
11

C
 3

C
 1

p
8

p
9

p
10

t
9

t
5

t
8

t
6

t
7

p
6

p
7

p
5

t
10

t
2

t
1

t
3

t
4

p
1

2
p p

3

p
4

C

Fig. 4. Plant and supervisor.

expresses the similar requirements for the parts B.
The supervisor enforcing (1)–(4) could be designed fol-

lowing any of the literature SC approaches. The procedure

presented in this paper is not limited to a particular set of

SC methods. If [25] and [14] are followed, the inequalities

(1)–(4) are transformed to an admissible form that accounts

for the partial controllability of the plant:

µ5 + µ6 + µ9 + µ10 ≤ 1 (5)

µ5 + µ6 + µ9 + µ2 + µ3 + µ4 ≤ 1 (6)

µ7 + µ8 + µ9 + µ10 ≤ 1 (7)

µ7 + µ8 + µ9 + µ2 + µ3 + µ4 ≤ 1 (8)

The inequalities (5)–(8) are implemented by the places

C1,. . . , C4 shown in Figure 4.
In this example we could associate software processes

with the operation sequences of the parts A, B, and C

and with the conveyor. SC provides a way to generate

a coordination strategy of these processes such that the

specified outcome is achieved. While here we have used

a manufacturing example, coordination needs arise also in

purely software applications.

III. PETRI NET REPRESENTATION OF PROGRAMS

In this project, a program consists of a number of pro-

cesses running concurrently. The structure of each process
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Fig. 5. PNs that represent programs are a composition of state machine components. Note that the transitions with the same label are composed.

is represented by a PN. The places of the PN correspond to

operations performed by the process. The transitions may

be labeled by conditions, indicating which transition should

be taken when there is a choice. Each PN token corresponds

to a process. As a token moves from one place to another,

the execution of the corresponding process progresses from

one set of operations to another. Thus, the various places

of the PN correspond to different stages in the execution of

the process. We will denote by HPN (high level PN) a PN

in which places are labeled with instructions and transitions

with conditions.

In general, PN transitions may have multiple input places

and multiple output places. The effect of firing such tran-

sitions is made precise by describing the PN structure by

means of tuples of the form (p1, t, p2), (p, t), and (t, p),
where p1, p2, and p stand for places and t for a transition.

• A (p1, t, p2) tuple indicates that the PN has one arc

from p1 to t and of one arc from t to p2. Further,

when the transition t is fired, a process in the stage p1

continues with the stage p2.

• A (p, t) pair indicates that the PN has one arc from p

to t. Further, when the transition t is fired, a process

in the stage p terminates.

• A (t, p) pair indicates that the PN has one arc from t to

p. Further, when the transition t is fired, a new process

is created and the process begins in the stage p.

The description above can be applied to PNs with arbitrary

weights, since repeated arcs could be used to indicate

weights greater than one.

Note that when a place p has multiple output transitions,

if the transitions are labeled with conditions, a process in

the stage p will select the next transition to be fired based

on the conditions labeling the transitions. On the contrary,

if the transitions do not have conditions and there is no code

associated with p to select the next transition, the choice of

the next transition may be made by the supervisor.

Transitions with a single input place are fired immedi-

ately, unless controlled by a supervisor process. However,

transitions controlled by a supervisor or involving more

than one input place cannot be fired immediately. Rather,

a process sends a request to fire such a transition and

then waits for permission. After permission is granted, the
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Fig. 6. Implementation of the specification.

process goes on with the next stage.

Note that a PN may have more than one token. Each

token of the PN corresponds to a different instance of the

program associated with the PN. Note also that multiple

tokens in the same place are allowed. This situation corre-

sponds to multiple processes in the same execution stage.

By examining the way PNs are used to represent pro-

grams, it becomes apparent that the reachable stages and

transitions of any software process form a state machine.

That is, for any given initial position of a token in the PN,

a state machine will describe the possible stages and transi-

tions of the process associated with the token. Moreover, the

PN can be seen as a parallel composition of state machines.

An example of composition of state machine components

into a PN is shown in Figure 5. Therefore, without loss

of generality, state machines rather than general PNs can

be associated with processes. However, unlike to the typ-

ical definition of state machines, note that here arbitrary

markings and arbitrary arc weights are allowed. Moreover,

note that associating state machines with processes does

not simplify the SC problem, since the parallel composition

of state machines can result in arbitrary PNs that are not

necessarily state machines.

IV. CODE GENERATION

Code is generated according to the coordinator archi-

tecture shown in Figure 6. Thus, the result of software
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synthesis consists of a number of application processes and

a coordinator process. The application processes correspond

to processes defined in the specification. The coordinator

process corresponds to the software implementation of the

constraints given in the specification. Thus, the coordinator

process represents the supervisor generated by means of

SC. The supervisor (coordinator) exchanges messages with

the other processes to ensure that their operation respects

the constraints given in the specification. Note that the

number of processes is variable. Processes may terminate

and new processes may be created, as described in the

specification. While Figure 6 shows a single coordinator

process, a decentralized or distributed approach is possible

by using the corresponding SC methods.

Note that a distinction is made here between processes

and process types. Several processes may have the same

process type, that is, the same executable code. The code

of the supervisor and the code of the process types is gen-

erated as shown in Figure 7, where the software synthesis

procedure is outlined in Figure 8.

The coordinator approach is illustrated here on the ex-

ample of section II. The coordinator will use four vari-

ables m1. . . m4, each corresponding to the marking of

the supervisor places C1. . . C4. The coordinator process is

notified by the conveyor process each time t4 is fired and

by the assembly process each time t10 and t11 are fired.

Further, before firing one of t1, t5, or t7, the conveyor

and the assembly processes request permission from the

coordinator. The coordinator determines whether t1, t5, and

t7 are enabled or disabled based on the solution shown in

Figure 4. For instance, the coordinator enables t1 if m2 ≥ 1

and m4 ≥ 1. Further, if permission to fire t1 is granted, m2

and m4 are decremented. Similarly, if the firing of t4 or t10
is announced, m2 and m4 are incremented.

In code generation, special attention is given to transition

synchronization. Synchronization is implemented by a co-

ordinator process. When an application process is ready to

fire a transition t that is synchronized with other transitions,

the process requests the coordinator permission to fire t.

Permission is granted when all other processes involved in

the synchronization are ready.

Transitions are classified as follows. A transition is

controlled if the supervisory policy disables it in certain

circumstances. A transition is observed if its firings must

be communicated to the supervisor. Further, t is a synchro-

nization transition if •t 6= ∅ and there is t′ of a different

process type that has the same label and satisfies •t′ 6= ∅.

Moreover, if two transitions of two different process types

have the same label, one of them has one output place but no

input place, and none is a synchronization transition, then

they are action transitions. For example, in Figure 5(a)–

(c) the transitions of label e are synchronization transitions

and the transitions of label b are action transitions. Note that

transitions with one output place and no input place create

new processes. Thus, when an action transition takes place,

the coordinator process is notified in order to generate the

corresponding new processes. Based on the communications

needs for each transition and the supervisory policy, code

generation algorithms can be developed [17].

V. THE SPECIFICATION LANGUAGE

As previously mentioned, in our approach (Figure 1) the

specification is given in a high level specification language

(HLL). As shown in Figure 8, based on the specification,

a number of high level PNs (HPNs) and a supervisory

control (SC) specification are extracted. Note that using

HPNs instead of place transition nets (P/T nets) is necessary

due to the fact that the latter do not have the power of

Turing machines. Thus, processes are represented by PNs

in which places are associated with low level code and

transitions with conditions. However, this means that only

the part of the specification expressed by PNs is addressed

by the synthesis tools. Thus, the SC tools would only

guarantee correctness for the subproblem associated with

the PN structure extracted from the HLL program. This

is because the SC tools do not take in account the low

level code sections. The low level code sections embedded

in the specification are simply copied, as appropriate, to

the output files. In this respect our approach resembles the

approach taken in other program synthesis tools, such as

lexical analyzer generators and parser generators.

While the HLL will allow sections of low level code,

the HLL has to provide other ways to specify the software

parts that are difficult to write manually, so that they are

generated automatically. Thus, in the context of concurrent

programming, the HLL has to address the various synchro-

nization constraints that may be needed.
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The role of the HLL is to allow for programs that are

both compact and very readable. The HLL should allow

users not familiar with PNs to easily generate correct code.

Further, a specification written in the HLL is expected to

be considerably more compact than the PN representation

of the specification and much more compact than the

result of the SC and code generation steps. Indeed, the

high level specification would not detail how to implement

requirements such as mutual exclusion or liveness. Such

details would be handled by the SC tools. Thus, the user

would focus more on what needs to be done and less on

how it should be done. Moreover, since the high level

specification is more compact, the programmer would have

less code to check for errors.

VI. SUPERVISORY CONTROL

In the context of concurrent programs, SC specifications

could involve constraints expressed by inequalities, such

as (1)–(4), constraints involving disjunctions of inequali-

ties [15], and constraints described in terms of languages.

The ability to enforce liveness or reversibility is also of

great importance. Specific to concurrent programming ap-

plications is also the fairness requirement. In its most basic

form, it requires that regardless of external events, a process

waiting for a resource will eventually get access to it. Some

of the fairness constraints can be expressed in terms of

marking inequalities or Parikh vector inequalities [13].

While some of the aforementioned specifications have

simple solutions when the plant is fully controllable and

observable, note that partial controllability and observability

can arise in certain contexts. Uncontrollable and/or unob-

servable transitions may be needed in any of the following

contexts:

- A decentralized environment in which the transitions

of one entity are unobservable and uncontrollable to

the other entities.

- An embedded system environment in which transi-

tions are controllable when they can be controlled by

actuators and observable when they can be detected

based on sensor information.

- A transition associated with an interrupt can be con-

sidered uncontrollable (such as in [8]).

- For certain SC problems (such as liveness enforce-

ment), transitions labeled by conditions have to be

considered uncontrollable.

Currently, the SC methods used in this project are those

implemented in [12]. However, all available SC methods are

of interest, including automata based methods. Of special

interest for future work are algorithms and heuristics to find

the methods that suit best a given plant and specification.

VII. LITERATURE REVIEW

Due to the advent of multicore microprocessors, software

tools that convert sequential code to parallel code have

become increasingly important. However, such tools do

not affect the need for concurrent programming. Excepting

special cases, they cannot convert a sequential algorithm to

a parallel algorithm. Thus, concurrent programming is still

necessary and remains difficult. The application of the SC,

as proposed here, could help by automating certain aspects

of the development of concurrent programs, especially the

aspects related to the coordination of concurrent tasks.

When this approach is applied, tools converting sequential

code to parallel code remain very useful, as they could

improve the execution time of the sequential segments of

code of the concurrent processes. Note that our project deals

with the development of concurrent specifications and not

with the conversion of sequential code to parallel code.

Related to the SC theory is the approach for program

synthesis for reactive systems [19], [28]. The problem is

to synthesize a program based on a specification described

in temporal logic. In terms of the SC terminology, a

program would correspond to a supervisor. While currently

our project does not consider temporal logic specifica-

tions, these and other classes of specifications could be

incorporated in the future in order to increase the area of

applications.

The modeling and analysis of concurrent programs us-

ing PNs has been considered before, such as in [7] and

references therein. A software tool PEP has been created

for the development, verification, and simulation of parallel

programs [2], [9]. Comparing our approach with the ap-

proach of the PEP tool, note that the input is described by

a specification language in our work and by a low-level

language in PEP. Our approach could be used to assist the

programmer in writing a low-level specification, while the

PEP tool can be used to verify a low-level specification.

Among other PN based verification approaches, we men-

tion [6], [26], [27] for Ada programs. Note that our project

is on correct-by-construction synthesis, not on verification.

The scheduling problem, dealing with the execution order

of concurrent tasks, has been approached based on PN

models in references such as [8], [20], [23], [24], [30].

Typically, the results are on the sequential execution of

concurrent programs on hardware with a single computa-

tional resource. Most often reachability analysis is used for

synthesis, though there are also structural results, such as

in [24]. Note that in our project SC is to be used to assist

the programmer in writing concurrent programs, not just in

solving the scheduling problem based on a given concurrent

program. Further, the intent is to focus on structural SC

methods, in an attempt to avoid the state explosion problem

of reachability based methods.

Related is also the work on hardware/software codesign

of [5]. There, the specification is written in a language such

as Esterel [10], from which a network of codesign finite

state machines (CFSMs) is extracted. Note that networks

of CFSMs correspond to safe PNs [16]. Compared to our

project, while individual processes are modeled by state

machines, the parallel composition of the process models

results in PNs that are typically not safe. Moreover, we

intend to use specifications at a higher level.
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An approach for finding and correcting potential deadlock

situations in software appears in [32]. Given a program,

a PN model is extracted first. Then, a liveness enforcing

supervisor is generated. Finally, the liveness enforcement

supervisor is implemented by additional lines of code in

the original program. This approach has been implemented

in the software tool GADARA. Compared to our project,

we deal with program synthesis instead of programs that are

already written. In our project, SC is applied not only for

liveness enforcement but also to automate code generation

for other requirements that can be expressed in terms of SC

specifications.

The application of SC methods to software engineering

has also been considered in [21], [22]. Moreover, cer-

tain computer science methods, such as predicate control

for distributed computations [31] and the aforementioned

scheduling approaches, can be seen as SC methods [16].

The approaches used to generate control software are also

related to the SC. In [11], [29], control software is ob-

tained based on condition system models. Given a condition

system model and a specification language describing a

sequence of states that the system should follow, control

software is automatically generated [3]. Control software

can also be generated using the tool Supremica [18], [4]

based on finite automata specifications and methods. Note

that in our project, by using PN models, it is possible to take

advantage of both PN methods and automata methods, as

automata represent the reachability space of PNs. Further,

compared to [11], [29], we intend to use more general

specifications.

VIII. CONCLUSION

This paper proposes the application of supervisory con-

trol (SC) for the automatic synthesis of concurrent pro-

grams. The proposed approach involves three steps. Starting

with a program description written in a high level specifica-

tion language, a Petri net model and an SC specification is

extracted. Then, a supervisor is generated using SC meth-

ods. Finally, the supervisor is converted to low level code.

SC is of interest because various high level requirements can

be seen as supervisory control (SC) specifications. Thus, SC

methods or similar methods from related areas of research

have to be applied in order to achieve a high degree of

automation of the programming process.
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