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ABSTRACT
Passivity theory is a well-established tool for analysis and
synthesis of dynamical systems. Recently, this work has
been extended to switched and hybrid systems where pas-
sivity and stability results of single systems as well as inter-
connected systems are derived. However, the results may no
longer hold when quantization is present as is the case with
digital controllers or communication channels. The contri-
bution in this paper is to introduce a control framework
under which passivity for switched and non-switched sys-
tems can be maintained. This framework centers on the use
of an input-output coordinate transformation to recover the
passivity property. In order to present these results, back-
ground material is provided on passive quantization and out-
put strict passivity for switched and non-switched systems.
The proposed framework is first presented for non-switched
systems and then generalized to switched systems.
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1. INTRODUCTION
The notion of passivity, which originated in electrical net-

work theory, is a characterization of system input/output
behavior based on a generalized notion of energy. Along with
Lyapunov function techniques, passivity theory is widely
used in analysis and control of nonlinear systems [24, 10,
11, 13]. It is well known that passive systems are stable.
Additionally, the parallel interconnection and the negative
feedback interconnection of two passive systems is still a
passive system. These results provide open-loop conditions
to guarantee closed-loop stability. These well known results
are summarized along with some recent results in [7]. These
results have been extended to switched systems in [14, 15,
16, 17, 22, 29].

Although traditional passivity theory has been applied
successfully in various classical nonlinear systems, this prop-
erty is vulnerable to discretization, quantization and other
factors introduced by digital controllers or communication
channels in modern control systems. In digital control sys-
tem design, a continuous-time system is first discretized into
a sampled-data system. However, it is pointed out in [21, 3,
23, 19, 5] that passivity is not preserved under discretization,
which means the discretized system may not be passive even
if the original continuous-time system is passive. Exactly
how much passivity is lost under standard discretization has
been quantified in [21]. The passivity degradation under the
standard discretization can be characterized in terms of pas-
sivity indices and sampling time. In [19, 23], a novel average
passivity for discrete-time systems was proposed in order to
preserve the passivity property losslessly under any sampling
time. Besides preserving passivity in discrete-time, stability
and stabilization of discrete-time passive systems were also
considered in recent work [1, 20]. The problem of finding
the maximum sampling time preserving passivity for linear
discrete-time systems was considered in [1]. It was shown
that the feedback system is exponentially stable if the time-
varying asynchronous sampling times embedded in feedback
connection are bounded by the maximum sampling time.
Two passivity-based control strategies for the problem of
stabilizing sampled-data systems were presented in [20].

In addition to discretization, the effect of quantization also
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needs to be considered when digital controllers interact with
the environment by means of analog-to-digital converters
or digital-to-analog converters that have a finite resolution.
Moreover, quantization is necessary when the information
between plants and controllers is transmitted through com-
munication networks. In fact, the problem of control using
quantized feedback has been an active research area for a
long time. Most of the work [8, 12, 4, 6, 18] concentrates on
understanding and mitigating the effects of quantization for
feedback stability and stabilization. The existing results on
passivity and quantization effects mainly focus on certain
specific problems, depending on what kind of systems are
considered. In signal processing systems [25], passivity anal-
ysis and passification of LTI systems with quantization was
treated as an uncertainty described by integral quadratic
constraints. In networked control systems, conditions were
derived [9] under which the closed-loop networked control
system is passive in the presence of sensor quantization and
network induced delay. The problem of closed-loop stabil-
ity for input-affine passive systems with quantized output
feedback was investigated in [2]. Recent results [26, 27] used
passivity to achieve L2 stability in the presence of communi-
cation delays and signal quantization for networked control
systems. To the authors’ best knowledge, there is no pub-
lished results on either preserving passivity under quantiza-
tion in general or stability conditions for switched systems
under quantization.

In this paper, the main contributions are the derivation of
conditions under which the passive structure of an output
strictly passive (OSP) system can be preserved under quan-
tization and its application in stability for passive switched
systems with passive quantizers. The passivity preserva-
tion relies on an input/output transformation on the quan-
tized input and output. The result shows that one can find
such transformation so that the same passivity index of the
original OSP system, with respect to the transformed input
and output, will be recovered. The result is relatively gen-
eral since we only require the system to be OSP and the
quantizers to be passive, which characterize many practi-
cal quantizers. Although the passivity preserving condition
is initially derived for non-switched systems, it can be ex-
tended to passive switched systems where the input/output
transformation can switch between different transformations
according to the current active subsystem. Therefore, pas-
sivity of passive switched systems under quantization can
be guaranteed and the stability conditions in [15, 16] can be
applied.

The rest of the paper is as follows. In Section 2, back-
ground material on discrete-time passive systems and pas-
sive switched systems is covered. The notion of passive
quantizers is introduced. The conditions on preserving pas-
sivity under quantization for OSP systems are given in Sec-
tion 3. Section 4 extends the passivity-preserving conditions
for non-switched systems to passive switched systems and
then the stability conditions on passive switched systems are
obtained. An example is provided in Section 5 to demon-
strate the methods used in this paper. Some conclusions are
provided in Section 6.

2. BACKGROUND MATERIAL

2.1 Passivity for Discrete-Time Systems
The work in this paper is based on passivity for discrete-

Figure 1: A general quantizer bounded by a cone

time non-switched systems with time index k ∈ Z+. A sys-
tem has input u(k) ∈ Rm, output y(k) ∈ Rm, and internal
state x(k) ∈ Rn and can be modeled as

x(k + 1) = f(x(k), u(k))
y(k) = h(x(k), u(k)).

(1)

A discrete-time system is passive if it stores and dissipates
energy supplied to the system without generating its own
energy. The passivity property is typically demonstrated by
finding a positive energy storage function and showing that
the energy stored in the system at any time step is bounded
by the energy supplied to the system.

Definition 1. A discrete-time system (1) is passive if
there exists a positive energy storage function V (x) (V (x) >
0, ∀x #= 0) such that the following inequality holds for all
k ≥ k0

∆V (x(k)) :=V (x(k+1))−V (x(k))≤uT (k)y(k)−ρyT (k)y(k)
(2)

for ρ ≥ 0. When ρ > 0 this system is called output strictly
passive.

2.2 Passive Quantizers
Consider a quantizer q(·) with an input v and an output

u, where v ∈ R and u ∈ U . U ⊂ R is a quantized set whose
elements are distinct quantized levels.

Definition 2. [26] A quantizer is called a passive quan-
tizer if its input v and output u satisfy

av2 ≤ uv ≤ bv2 (3)

where u = q(v) and 0 ≤ a ≤ b < ∞.

The notion of a passive quantizer [26] is based on conic
systems theory [28]. A passive quantizer is a special case of a
memoryless conic system. This can be seen in Fig. 1, where
a quantizer satisfying (3) has its input and output mapping
bounded in a cone characterized by two lines with slope a
and b. The quantizer is called “passive” since the condition
uv ≥ 0 holds for all inputs v. This is the general condition
for a memoryless nonlinearity to be passive [13]. The no-
tion of passivity for quantizers can capture many quantizers



Figure 2: (a) A uniform quantizer with infinite
quantization levels (b) A uniform quantizer with fi-
nite quantization levels

Figure 3: (a) A logarithmic quantizer with infinite
quantization levels (b) A logarithmic quantizer with
finite quantization levels

used in practice, such as the uniform mid-tread quantizer
(Fig. 2), the logarithmic quantizer (Fig. 3) and many non-
standard quantizers (Fig. 1).

We can find the values of a and b from a quantizer’s in-
put and output mapping. For example, we can show that
a = 0, b = 2 for a uniform mid-tread quantizer with in-
finite/finite quantization levels; a = 0, b = 1 + δ for a
logarithmic quantizer with finite quantization levels; and
a = 1 − δ, b = 1 + δ for a logarithmic quantizer with in-
finite quantization levels, where 1 > δ > 0 is a constant
quantization gain.

It is worth pointing out that a quantized system in Fig.
4 is not necessarily a passive system even if the quantizers
Qc and Qp are passive quantizers. This leads us to resort
input-output transformations introduced in Section III to
preserve passivity.

Figure 4: A general system with input and output
quantization

2.3 Passivity for Switched Systems
A nonlinear switched system consists of a finite set of

subsystems with nonlinear dynamics. The finite number of
subsystems can be enumerated, {1, 2, ..., P}. At any point
in time, a single subsystem i is active and the dynamics
are nonlinear and time-invariant. The time-varying nature

of these systems comes from the switching behavior. The
switching signal σ(k) is a function that maps the time to
the index of the active subsystem, σ : Z+ → {1, ..., P}. This
function is piecewise constant and only changes at switching
instants. The model with the switching signal is given by

x(k + 1) = fσ(k)(x(k), u(k))
y(k) = hσ(k)(x(k), u(k)).

(4)

The switching instants can be listed in order k1, k2, etc.
Alternatively, the notation kip will be used to denote the pth

time that subsystem i becomes active. For example, the first
subsystem (i = 1) becomes active for the first time (p = 1)
at time k0 (k0 = k11). The second subsystem i = 2 becomes
active at time k1 (k1 = k21) and so forth. By using these two
notations in conjunction, it is possible to list completely the
times that a system becomes active as well as the times it
becomes inactive. Subsystem i becomes active the pth time
at time kip and then inactive at time k(ip+1). That same
subsystem becomes active again at time ki(p+1) .

An indicator set will be defined to signify regions where
a particular subsystem is active. Consider subsystem i that
is active from ki1 to k(i1+1), ki2 to k(i2+1), etc. The set
of times Ii can be defined to indicate those time intervals
where subsystem i is active,

Ii =
Ki⋃

p=1

{kip , ..., k(ip+1)}. (5)

This notation will be used to draw a distinction between the
active and inactive time intervals of a system.

The notion of passivity for switched systems used in this
paper is based on previous work on decomposable dissipa-
tivity for switched systems. This approach has been used
in continuous-time [29, 22] and in discrete-time [14]. The
concept of decomposable dissipativity is based on the fact
that systems typically store energy differently when they are
active compared to when they are inactive. The solution is
to decompose the supply rate into an active portion and an
inactive portion. When a subsystem is inactive, it may have
a different supply rate depending on which other subsys-
tem is active. The definition given here is a special case of
[14]. While that work presented a very general definition,
the authors didn’t consider stability of interconnected sys-
tems. Traditionally, stability of feedback interconnections is
one of the main benefits of dissipativity theory.

In decomposable dissipativity, the multiple energy storage
function approach is taken. This allows for each subsystem
i to have a unique notion of energy captured by the storage
function Vi(x). This notion of energy is positive, i.e. for all
i, Vi(x) > 0 for all x #= 0. The notion of supplied energy
for a subsystem i while it is inactive may be unique for
each active subsystem j #= i. This results in several inactive
energy supply rates for each i and j. These rates may be
a function of input, output, state, and time and will be
denoted as ωj

i (u, y, x, k). When each subsystem is inactive,
the following inequality holds for each active subsystem j at
an appropriate time t ∈ Ij (∀i)

Passivity for discrete-time switched systems is given in the
following definition. Recall that a function α : R+ → R+ is
class K∞ if α(0) = 0, α is non-decreasing, and α is radially
unbounded.

Definition 3. Consider a discrete-time switched system
(4). This system is passive if there exists a positive storage



function Vi(x), for each subsystem i, with the property that
for some K∞ functions αi and αi ,

αi(||x||) ≤ Vi(x) ≤ αi(||x||),

such that the following conditions hold for all i.

1. During the active time period k ∈ Ii of each subsystem
i, the system is passive (ρi ≥ 0)

Vi(x(k + 1))− Vi(x(k)) ≤ uT y − ρiy
T y. (6)

2. When each subsystem i is inactive, it is dissipative with
respect to a cross supply rate that may be specific to the
active subsystem j. For k ∈ Ij

Vi(x(k + 1)) − Vi(x(k)) ≤ ωj
i (u, y, x, k). (7)

3. The cross supply rates are absolutely summable for all
switching sequences ∀i and ∀j #= i,

∞∑

k=k0

|ωj
i (u, y, x, k)| < L, (8)

where L is an arbitrarily large finite constant.

When ρi > 0 for all i, the switched system is called output
strictly passive.

This definition is a natural extension of passivity for non-
switched systems. Consider the case when there exists a
common storage function for the switched system such that
equation (6) holds for all i. In this case, passivity for switched
systems reduces to the traditional notion of passivity for
non-switched systems.

3. PRESERVING PASSIVITY UNDER
QUANTIZATION

3.1 Proposed Passification Scheme
The main problem addressed in this paper is the prob-

lem of preserving passivity with signal quantization at the
system input, the system output, or both (Fig. 4). As men-
tioned previously, the quantizers of interest Qc and Qp are
passive and memoryless with

Qc : acu
2
Qc ≤ uQcyQc ≤ bcy

2
Qc , with 0 ≤ ac < bc < ∞;

Qp : apu
2
Qp ≤ uQpyQp ≤ bpy

2
Qp , with 0 ≤ ap < bp < ∞;

(9)
where uQc represents the input of the quantizer Qc and yQc

is the output of Qc. The same holds for Qp. If the input
to the quantizer is vector, the quantization function acts
component-wise on the input vector. One can verify

∥∥yQc

∥∥2

2
≤ b2c

∥∥uQc

∥∥2

2
and

∥∥yQp

∥∥2

2
≤ b2p

∥∥uQp

∥∥2

2
. (10)

The passification scheme proposed in this paper is shown
in Fig. 5. As mentioned,Hc is a discrete-time output strictly
passive system such that

∆Vc(k) = Vc(k + 1)− Vc(k) ≤ uT
c (k)yc(k)− ρcy

T
c (k)yc(k),

(11)
where uc, yc ∈ Rm, 0 < ρc < ∞, Vc ∈ R+ is the storage
function of Hc.

Figure 5: Proposed scheme to preserve passivity un-
der quantization

The block M shown in Fig. 5 is an input/output coordi-
nate transformation such that

[
um

ym

]
= M

[
ỹc
ũc

]
=

[
m11Im m12Im
m21Im m22Im

] [
ỹc
ũc

]
, (12)

where mij ∈ R, um, ym ∈ Rm and ũc, ỹc ∈ Rm. An appro-
priate transformation will be found in order to maintain the
passivity property of HC .

3.2 Main Results on Preserving Passivity
In this section, we apply the proposed set-up in Fig. 5

to show how passivity of the system Hc is preserved un-
der quantization. Similar set-up to recover passivity of the
original system over communication networks under network
induced delays and signal quantization have been reported
in [26, 27]. The result is stated in Theorem 1.

Theorem 1. Consider an OSP system HC in the pro-
posed scheme shown in Fig. 5 with passive quantizers Qc

and Qp. If a transformation M is chosen such that

m21 = 0, m2
11 = 2b2c

m11m12 =
−b2c
ρc

, m2
12 =

b2cb
2
p

ρ2c
m2

22,
(13)

then the subsystem H̃c : ũc → ỹc is output strictly passive
such that

∆Vc(k) = Vc(k + 1)− Vc(k) ≤ ũT
c (k)ỹc(k)− ρcỹ

T
c (k)ỹc(k).

Proof. The system Hc being output strictly passive im-
plies the following

∆Vc(k) = Vc(k + 1)− Vc(k) ≤ uT
c (k)yc(k)− ρcy

T
c (k)yc(k)

= − 1
2ρc

[
uc(k)− ρcyc(k)

]T [
uc(k)− ρcyc(k)

]

+
1
2ρc

uT
c (k)uc(k)−

ρc
2
yT
c (k)y

T
c (k)

≤ 1
2ρc

∥∥uc(k)
∥∥2

2
− ρc

2

∥∥yc(k)
∥∥2

2
.

(14)
Since the quantizers function component-wise on the input
vectors, in view of (9), one can verify that

∥∥um

∥∥2

2
=

m∑

i=1

u2
mi ≤

m∑

i=1

b2cy
2
ci = b2c

∥∥yc
∥∥2

2
(15)



where umi is the component of vector um and yci is the
component of vector yc. We can rewrite this as

−
∥∥yc

∥∥
2
≤ − 1

b2c

∥∥um

∥∥2

2
. (16)

Similarly, we can find

∥∥uc

∥∥2

2
≤ b2p

∥∥ym
∥∥2

2
. (17)

Substituting (16) and (17) into (14), gives

∆Vc(k) ≤
b2p
2ρc

∥∥ym(k)
∥∥2

2
− ρc

2b2c

∥∥um(k)
∥∥2

2
. (18)

Considering the transformation M ,

{
um(k) = m11ỹc(k) +m12ũc(k)

ym(k) = m21ỹc(k) +m22ũc(k),
(19)

equation (18) can be written as

∆Vc(k) ≤
b2p
2ρc

∥∥m21ỹc(k) +m22ũc(k)
∥∥2

2

− ρc
2b2c

∥∥m11ỹc(k) +m12ũc(k)
∥∥2

2

(20)

thus

∆Vc(k) ≤
( b2p
ρc

m21m22 −
ρc
b2c

m11m12

)
ũT
c (k)ỹc(k)

−
( ρc
2b2c

m2
11 −

b2c
2ρc

m2
21

)∥∥ỹc(k)
∥∥2

2

−
( ρc
2b2c

m2
12 −

b2c
2ρc

m2
22

)∥∥ũc(k)
∥∥2

2
.

(21)

With the parameters of M as chosen in (13), one can verify
that

∆Vc(k) ≤ ũT
c (k)ỹc(k)− ρcỹ

T
c (k)ỹc(k), (22)

which shows that H̃C is OSP.

The implementation of the transformation M chosen in
Theorem 1 is illustrated in Fig. 6. The transformation cho-
sen is a specific one that preserves passivity. In fact, the
choice of transformation M is not unique. One can find
a different transformation from (13), which gives designers
freedom to choose from various transformation candidates
according to different specifications. In general, any M is
allowable as long as it is invertible and satisfies the result
(22).

Figure 6: Implementation of M in Theorem 1

Remark 1. Although Theorem 1 is derived based on discrete-
time OSP systems, the result remains valid for continuous-
time OSP systems and the same transformation can be ap-
plied to preserve passivity.

Remark 2. For the case where only one of the quantizers
is needed, one can choose bc = 1 when only input quantizer
Qp is present or bp = 1 when only output quantizer Qc is
present.

Remark 3. Since H̃c is an OSP system, the negative
feedback interconnection of H̃c with another OSP system Hp,
as shown in Fig. 7, is also passive and thus the stability con-
dition can be derived from traditional passive systems theory.
The same idea is extended to switched systems in Section IV.

Figure 7: Negative feedback interconnection of two
OSP systems

4. STABILITY OF PASSIVE SWITCHED
SYSTEMS WITH QUANTIZATION

4.1 Stability of Passive Switched Systems
Passive systems form an important class of dynamical sys-

tems. For one, these systems are common in practice. Addi-
tionally, passivity can be used to simplify analysis. Passivity
is a property that implies stability and the property is pre-
served when systems are combined in feedback. Combining
these two results gives open-loop conditions for closed-loop
stability. Additionally, large scale systems can be shown to
be stable if each component is passive and the components
are sequentially combined in feedback or in parallel. The
following results are discrete-time extensions of the work



presented in [15]. They will appear in [17]. The first result
concerns stability of a single passive switched system.

Theorem 2. A passive discrete-time switched system is
stable for zero input (u(k) = 0, ∀k).

The passivity property can be used when considering in-
terconnections of systems. The following result shows stabil-
ity of the feedback interconnection of two passive systems.

Figure 8: The negative feedback interconnection of
two systems.

Theorem 3. The feedback interconnection (Fig. 8) of
two passive switched systems G1 and G2 forms a passive
switched system.

As in the non-switched case, these results can be used to
verify closed loop stability by showing that the two systems
in feedback are passive. This result can also be used from
a design perspective. When controlling a passive switched
system, any passive controller is stabilizing without addi-
tional conditions. This allows for a large class of controllers
to be applied directly including traditional PI controllers.

4.2 Passification of Quantized Switched Sys-
tems

The work presented in Section 3 can be extended to
switched systems. The structure of the passification scheme
remains the same (Fig. 5) with the system HC being mod-
eled as a switched system according to the dynamics (4).
Now that the system dynamics are time-varying, the trans-
formation M must also be time-varying

M(k) =

[
m11(k)Im m12(k)Im
m21(k)Im m22(k)Im

]
. (23)

The matrix M(k) will be piecewise constant, belonging to
a finite set of constant matrices. There will be at most one
constant matrix for each subsystem of the given switched
system.

The transformation M can switch as HC switches. In or-
der for this to be allowable, the switching signal of HC must
be known or measurable in real time. From the perspective
of this paper, the system HC is a designed controller so it
should be possible to measure the switching signal. Addi-
tionally, the set of ρi that define the OSP switched system
should be known. A function ρ(k) can be defined such that

ρ(k) = ρi for active subsystem i. (24)

This function is piecewise constant and changes as the switch-
ing signal changes. This function is used to demonstrate
passivity in the following theorem.

Theorem 4. Consider an output strictly passive discrete-
time switched system HC (4). This system is placed in the
structure (Fig. 5) with passive quantizers defined by the con-
stants ac, bc, ap, and bp. This control structure preserves the
output strict passivity property of system HC if the trans-
formation M(k) is chosen according to the following time-
varying equations

m21(k) = 0, m2
11(k) = 2b2c (25)

m11m12(k) =
−b2c
ρ(k)

, m2
12(k)(t) =

b2cb
2
p

ρ2(k)
m2

22(k), (26)

Proof. Since HC is OSP, for each subsystem i there ex-
ists a Vi to satisfy the passive inequality with ρi > 0 for
i ∈ {1, ..., P},

Vi(x(k+1)) ≤ Vi(x(k))+uT
c (k)yc(k)−ρiyc(k)

T yc(k). (27)

The quantizers satisfy the following inequalities,

||um||2 ≤ bc ||yc||2 and ||uc||2 ≤ bp ||ym||2 .

Applying Theorem 1, the OSP structure of each active sub-
system is preserved at each time step by the transformation
M(k). The storage functions Vi are also preserved with the
structure.

Now the inactive behavior can be analyzed. For each in-
active subsystem i and for all active subsystems j #= i, there
exists a cross supply rate ωj

i . For each one, a modified sup-
ply rate can be introduced such that

ω̃j
i (ũc, ỹc, x, k) = ωj

i (uc, yc, x, k), ∀i, j. (28)

These new cross supply rates imply

Vi(x(k + 1)) ≤ Vi(x(k)) + ω̃j
i (ũc, ỹc, x, k) (29)

and
∞∑

k=k0

|ω̃j
i (ũc, ỹc, x, k)| < L, (30)

where L is an arbitrarily large finite constant given by (8).
Since these hold for all i and j, the inactive behavior is dis-
sipative and the supply rates are still absolutely summable.
All the conditions for the switched system to be passive are
satisfied. The proposed scheme maintains passivity of the
switched systems.

As mentioned earlier, this choice of transformation M(k)
is not unique. The conditions listed in the theorem are suf-
ficient to preserve passivity after the quantization effect but
there is an entire class of transformations that will also pre-
serve passivity.

This result can be used to preserve passivity of a single
system. This can be used with previous results to show
stability of feedback interconnections (Fig. 8). When this
system is combined in negative feedback with another pas-
sive switched system, the overall interconnection is a passive
switched system so is stable using Theorem 2 and 3. An ex-
ample is provided in the following section to demonstrate
how this result can be used.

5. EXAMPLE
The work presented in this paper is a method of maintain-

ing passivity for discrete-time switched systems with quan-
tization. The following example illustrates how this method



can be applied to a practical system. A linear example was
chosen, however, the results are valid for nonlinear switched
systems. The switched system HC chosen is a switched sys-
tem with two subsystems.

The first subsystem of HC is modeled by the following
dynamics

x(k + 1) =

[
−0.060 0.173
0.125 0

]
x(k) +

[
1
0

]
u(k) (31)

y(k) =
[
−0.74 0.346

]
x(k) + 2u(k). (32)

The second subsystem of HC is

x(k + 1) =

[
−0.179 0.169
0.125 0

]
x(k) +

[
1
0

]
u(k) (33)

y(k) =
[
−0.667 0.158

]
x(k) + 0.94u(k). (34)

This system can be shown to be a passive switched sys-
tem using the definition given in this paper. The storage
functions to show passivity (6) are

V1(x) = xT (k)

[
0.761 −0.016
−0.016 0.96

]
x(k) (35)

V2(x) = xT (k)

[
0.671 −0.019
−0.019 0.989

]
x(k) (36)

with cross supply rates

ω1
2(u, y, x, k) = uT (k)y(k) +

1
10

(x2
1 + x2

2) (37)

ω2
1(u, y, x, k) = uT (k)y(k) +

2
5
x2
1. (38)

These rates satisfy (7-8). The system is OSP with ρ1 = 0.202
and ρ2 = 0.295.

Both input and output quantization are applied to the
controller. The quantizers are uniform with quantization
interval 0.1. It can be shown that these are passive quantiz-
ers with a = 0 and b = 2.

The transformation M(k) can take on values in the set
{M1,M2} where

M1 =

[
2.83 −7.00
0 0.354

]
(39)

M2 =

[
2.83 −4.79
0 0.354

]
, (40)

given by (25-26). Transformation M(k) = M1 when subsys-
tem i = 1 is active and M(k) = M2 when subsystem i = 2
is active.

The switched controller with quantization and transfor-
mation M(k) was simulated in feedback with a passive plant.
The plant has the following dynamics

x(k + 1) =

[
−0.020 0.865

1 0

]
x(k) +

[
2
0

]
u(k) (41)

y(k) =
[
−0.330 0.865

]
x(k) + 2u(k). (42)

The feedback interconnection of these two systems forms a
passive switched system. When simulated, both the state of
the plant and the controller converge to a set near the origin
for arbitrary switching. The convergence of the plant state
and output are as shown in Fig. 9 with switching signal Fig.
10.

This example demonstrates the methods introduced in
this paper. The example chosen was straightforward, be-
ing a linear switched system with two subsystems. However,

0 2 4 6 8 10
0

5

10

time (k)

x1

0 2 4 6 8 10
0

5

10

time (k)

x2

0 2 4 6 8 10
0

0.5

1

1.5

time (k)

y
Figure 9: The first two panels show stability of the
plant state x1 and x2. The third panel shows the
system output y.

0 1 2 3 4 5 6 7 8 9 10

1

2

time(k)

su
bs

ys
te

m

Figure 10: The switching signal of controller Hc that
switches between subsystems 1 and 2 is shown.

these methods apply to nonlinear switched systems with any
arbitrary finite number of subsystems.

6. CONCLUSION
In this paper, we introduced a scheme to preserve the

output strict passivity property of a system with passive
input and output quantization by using an input-output co-
ordinate transformation. Then we showed that the same
scheme can be applied to switched systems and thus the
stability of interconnected passive switched systems can be
guaranteed from the results. The example demonstrated
how these methods can be applied to a practical quantized
switched system.
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