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Abstract
We prove that with respect to an appropriate basis, the matrices associated to

complex representations of finite groups have entries lying in algebraic number rings.

Fix a finite group G. All representations of G discussed in this note are finite dimen-
sional. Given an n-dimensional C-representation V of G, we will say that V is defined over
a subring R of C if there is an R[G]-module V ′ with the following two properties:
• V ′ is a rank-n free R-module.
• There is an isomorphism V ′ ⊗R C ∼= V of C[G]-modules.

A more pedestrian way of saying this is that with respect an appropriate basis for V , the
matrices representing the action of G on V have entries in GLn(R) ⊂ GLn(C).

Recall that a number ring Ok is the ring of integers in an algebraic number field k, i.e.
a finite extension of Q. The goal of this note is to prove the following standard theorem.

Theorem A. For all C-representations V of G, there exists a number ring Ok such that
V is defined over Ok.

Proof. The proof will have two steps.

Step 1. There exists an algebraic number field k such that V is defined over k.

We remark that Brauer proved that V can be defined over a cyclotomic extension of
Q containing the mth roots of unity for m the least common multiple of the orders of the
elements of G; see [1, Theorem 24]. We will give a much softer argument that does not give
an explicit k.

Since G is finite, it is enough to show that V is defined over Q. Without loss of generality,
V is irreducible. This implies that V is isomorphic to a subrepresentation of the regular
representation C[G]. The regular representation Q[G] over Q can be decomposed as a
direct sum of irreducible representations, and the only thing that might go wrong is that
this decomposition might not be fine enough, i.e. there is an irreducible subrepresentation
W of Q[G] such that W ⊗C is reducible and V is isomorphic to a proper subrepresentation
of W ⊗ C.

Assume that this happens. Let n = dim(V ), and define

X = {U ∈ Grn(W ) | g(U) = U for all g ∈ G}.

Thus X is a closed subvariety of the Grassmannian Grn(W ), which is a projective variety
defined over Q. Our assumption that W is irreducible implies that X(Q) = ∅, while our
assumption that W ⊗ C is reducible and V is isomorphic to a proper subrepresentation of
W ⊗ C implies that X(C) 6= ∅.

This is impossible. Indeed, if Y ⊂ Am
Q is an open affine subset of X defined by a

radical ideal I ⊂ Q[x0, . . . , xm], then since Y (Q) = ∅ the Nullstellensatz says that I =
Q[x0, . . . , xm]. This is preserved when we extend scalars to C, i.e. we have

Y (C) = V (I ⊗ C) = V (C[x0, . . . , xm]) = ∅.

The desired result follows.
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Step 2. There exists a finite extension k′ of k such that V is defined over Ok′.

By the previous step, there exists an action of G on kn such that V ∼= kn ⊗ C as
C[G]-modules. Let L ⊂ kn be Ok-submodule spanned by the G-orbit of the standard
lattice On

k ⊂ kn, so L is a finitely generated Ok-submodule of kn that is preserved by G
such that L ⊗ k = kn. If we had an Ok-module isomorphism L ∼= On

k, then we would be
done. Unfortunately, this need not be true; however, the classification of finitely generated
modules over a Dedekind domain shows that

L ∼= I1 ⊕ · · · ⊕ In

for some nonzero ideals I1, . . . , In ⊂ Ok.
The problem is that the Ii might not be principal ideals, i.e. they might define nonzero

elements [Ii] of the class group cl(Ok). The class group is a finite abelian group, so we can
find k1, . . . , kn ≥ 1 such that ki[Ii] = 0. Pick the ki to be the minimal such integers. By
definition, the ideal Iki

i is principal, i.e. there exists some ai ∈ Ok such that

Iki
i = (ai).

Define
k′ = k[a1/k1

1 , . . . , a1/kn
n ],

so
Ii ⊗Ok Ok′ = (a1/ki

i ) ⊂ Ok′ .

Setting
L′ = L⊗Ok Ok′ ⊂ (k′)n,

we then have
L′ ∼= (I1 ⊗ Ok′)⊕ · · · ⊕ (In ⊗ Ok′) ∼= On

k′ .

We conclude that our original representation is defined over Ok′ , as desired.
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