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Abstract

We initiate the study of p-adic algebraic groups G from the stability-
theoretic and definable topological-dynamical points of view, that is,
we consider invariants of the action of G on its space of types over Qp

in the language of fields. We consider the additive and multiplicative
groups of Qp and Zp, the group of upper triangular invertible 2 × 2
matrices, SL(2,Zp), and, our main focus, SL(2,Qp). In all cases we
identify f -generic types (when they exist), minimal subflows, and
idempotents. Among the main results is that the “Ellis group” of
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SL(2,Qp) is Ẑ × Z∗p, yielding a counterexample to Newelski’s con-
jecture with new features: G = G00 = G000 but the Ellis group is
infinite. A final section deals with the action of SL(2,Qp) on the
type-space of the projective line over Qp.

1 Introduction and preliminaries

The machinery of topological dynamics has proved to be useful in general-

izing stable group theory to unstable environments (the original paper on

the topic being [19]). Given a structure M and group G definable in M , a

natural action, given by model theory, is that of G on the space SG(M) of

complete types over M concentrating on G. On the other hand this action

is simply a dynamical system for G considered as a discrete group. When

Th(M) is stable, G is what is called a stable group, and the fundamental

theorems of stable group theory are coded in this dynamical system. There

has been a considerable amount of work extending stable group theory to

the case where Th(M) is NIP (does not have the independence property),

and G is definably amenable (see [14] and [5] for example). When M is the

field of reals, then a (semialgebraic) noncompact simple Lie group such as

SL(2,R) is not definably amenable, but its definable topological dynamics

was nevertheless analyzed in [10]. The latter work was partly motivated by

a conjecture of Newelski on the connection between the Ellis group of such

an action and the definable Bohr compactification G∗/(G∗)00 of G (G∗ being

the interpretation of G in a saturated elementary extension). The case of

SL(2,R) gives an example where these two invariants are different, the de-

finable Bohr compactification being trivial and the Ellis group being Z/2Z.

In the current paper we extend this analysis of [10] to the p-adic context,

namely where M is the field of p-adic numbers, rather than the field of re-

als. We focus on SL(2,Qp) and its building blocks but the analysis should

extend to semisimple p-adic Lie groups (as groups definable in the p-adic

field).

In the real case we made use of the Iwasawa decomposition of SL(2,R)

as

B(R)0 · SO(2,R), where B is the Borel subgroup of upper triangular ma-

trices, SO(2,R) is a maximal compact subgroup, and B(R)0 is the semial-

gebraic, equivalently topological, connected component of B(R) (note that

the intersection of B(R)0 and SO(2,R) is trivial). In the p-adic case, the

Iwasawa decomposition of SL(2,Qp) has the form

B(Qp)·SL(2,Zp) where B is as before, and now SL(2,Zp) is a maximal com-
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pact subgroup. However now the intersection of the constituents is large (in

fact of p-adic dimension 2) and also the constituents are far from connected.

For example SL(2,Zp), being profinite, has trivial connected component. So

the analysis in the p-adic case is rather harder and requires some new ideas.

A crucial role in our analysis of SL(2,R) was its action on the homogeneous

space SL(2,R)/B(R)0, which is a 2-cover of the natural action of SL(2,R)

on P1(R). In fact the universal minimal definable flow of SL(2,R) was the

space of nonalgebraic types of the homogeneous space SL(2,R)/B(R)0. We

proceed quite differently in the p-adic case. On the other hand, there are

analogies between the final statements regarding the Ellis group; in the real

case the Ellis group of SL(2,R) (acting on its type space) is Z/2Z which

coincides with K∗/(K∗)0 where K∗ is the multiplicative group of a saturated

real closed field K. In the p-adic case, the Ellis group of SL(2,Qp) (acting

on its type space) is Ẑ×Z∗p which coincides with K∗/(K∗)0 where K∗ is the

multiplicative group of a saturated p-adically closed field K. In any case,

SL(2,Qp) provides another counterexample to Newelski’s conjecture on the

relationship between the Ellis group and G/G00, but with different features

from the ones provided by Corollary 0.3 of [16] for example, as the Ellis

group is infinite whereas G = G00 = G000.

To be more precise, our main results are as follows where M denotes the

structure (Qp,+,×), G denotes SL(2,−), SG(M) denotes the space of com-

plete types over M extending the formula ‘x ∈ G’, ∗ denotes the canonical

semigroup structure on SG(M), and other notation will be explained later.

• A minimal subflow of (G(M), SG(M)) is cl(I ∗ J ) where I is the

unique minimal subflow of the action of SL(2,Zp) on its type space,

and J is a certain minimal subflow of the action of B(Qp) on its type

space. In particular cl(I ∗ J ) is the universal minimal definable flow

of SL(2,Qp). See Theorem 3.4.

• The Ellis group attached to the flow (G(M), SG(M)) is Ẑ × Z∗p. See

Corollary 3.8.

We also prove that the space of nonalgebraic types over M of the pro-

jective line P1(Qp) is minimal and proximal under the natural action of

SL(2,Qp). See Corollary 4.8.

As part of our analysis we classify 1-types over Qp from the stable group

theory point of view, namely we describe f -generics of various kinds (de-

finable, finitely satisfiable) and minimal flows, with respect to the additive

and multiplicative groups. This does not seem to have observed before, and
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provides interesting phenomena for definable topological dynamics in the

NIP setting.

Let us discuss where our work fits into current themes in topological

dynamics and definable groups. This paper does not explicitly offer any

new general results in topological dynamics and model theory. However,

the project of generalizing the study of groups definable in o-minimal struc-

tures to the p-adic environment has been on the cards for a long time.

Benjamin Druart’s thesis [7] and the preprint [8], studied groups definable

in p-adically closed fields, in particular SL(2,Qp), in analogy with o-minimal

and finite Morley rank group methods. On the other hand there has been

considerable interest in generalising the stability-theoretic and topological

dynamical study of real Lie groups such as SL(2,R) to the p-adic context

since the paper [10] was written in 2012, and this is what we accomplish

in the current paper. Moreover, as G. Jagiella has pointed out to us, the

methods in our paper suggest generalizations to definable groups G in NIP

theories with a decomposition G = B ·K where B has “definable f -generics”

and K has “finitely satisfiable generics”. This will be pursued in future work.

Our notation for model theory is standard, and we will assume familiarity

with basic notions such as type spaces, heirs, coheirs, definable types etc.

References are [24] as well as [21].

Our notation for the p-adics is as follows: Qp is the field of p-adics and Zp
is the ring of p-adic integers. Z is the ordered additive group of integers, the

value group of Qp. M denotes the standard model (Qp,+,×,−, 0, 1), and

we sometimes write Qp for M . M̄ denotes a saturated elementary extension

(K,+,×, 0, 1) of M and again sometimes we write K for M̄ . Γ denotes the

value group of K. We will be referring a lot to the comprehensive survey [2],

for the basic model theory of the p-adics. A key point is Macintyre’s theorem

[18] that Th(Qp,+,×, 0, 1) has quantifier elimination in the language where

we add predicates Pn(x) for the nth powers (all n). Moreover the valuation

is quantifier-free definable in Macintyre’s language, in particular is definable

in the language of rings. (See Section 3.2 of [2].) We will give a little more

background at the beginning of Section 2.1.

In the rest of this introduction we give more background on topological

dynamics and the model-theoretic approach.

In Section 2 we analyse the model-theoretic dynamics of the building

blocks of SL(2,Qp), namely the additive and multiplicative groups, the

Borel subgroup, and the maximal compact subgroup SL(2,Zp). As men-

tioned earlier, this is of independent interest.
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In Section 3, we prove the main results, on the minimal subflows and

Ellis group of the action on SL(2,Qp) on its type space, making use of the

Iwasawa decomposition and results in Section 2.

In Section 4 we study the action on the type space of the projective line.

We also ask several questions.

We would like to thank a referee for his/her comments, which had a sub-

stantial impact on the paper. He/she pointed out many, often crucial, math-

ematical points which needed clarification and/or correction, often suggest-

ing the required correction. Following these comments, we have also added

explanations of how the current paper differs from the earlier work ([10])

on SL(2,R), and how it relates to other current research.

1.1 Topological dynamics

Our references for (abstract) topological dynamics are [1] and [12]

Given a (Hausdorff) topological group G, by a G-flow mean a continuous

action G × X → X of G on a compact (Hausdorff) topological space X.

We sometimes write the flow as (X,G). Often it is assumed that there is

a dense orbit, and sometimes a G-flow (X,G) with a distinguished point

x ∈ X whose orbit is dense is called a G-ambit.

In spite of p-adic algebraic groups being nondiscrete topological groups,

we will be treating them as discrete groups so as to have their actions on

type spaces being contiinuous. (But note that there is a model-theoretic

account of the dynamics of definable groups with a definable topology. See

[17] for example. And it might be worthwhile to prove and compare results.)

So in this background section we assume G to be a discrete group, in

which case a G-flow is simply an action of G by homeomorphisms on a

compact space X.

By a subflow of (X,G) we mean a closed G-invariant subspace Y of

X (together with the action of G on Y ). (X,G) will always have minimal

nonempty subflows. Points x, y ∈ X are proximal with respect to (X,G) if

there is a net (gα)α in G and z in X such that both gαx and gαy converge

to z. (X,G) is proximal if every pair of elements of X is proximal.

Given a flow (X,G), its enveloping semigroup E(X) is the closure in

the space XX (with the product topology) of the set of maps πg : X → X,

where πg(x) = gx, equipped with composition ◦ (which is continuous on the

left). So any e ∈ E(X) is a map from X to X and, for example, proximality

of the flow (X,G) is equivalent to: for all x, y ∈ X there is e ∈ E(X) such

that e(x) = e(y).
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Note also that E(X) is a compact space and we have an action g·e = πg◦e
of G on E(X), by homeomorphisms. So (E(X), G) is a flow too.

Ellis [9] proved the following correspondence between minimal subflows

and ideals of E(X).

Theorem 1.1. Denote by J the set of idempotents of the enveloping semi-

group E(X). Then

1. Minimal (automatically closed) left ideals I of E(X) coincide with

minimal subflows.

2. Given a minimal closed left ideal I, I ∩J 6= ∅; moreover for u ∈ I ∩J ,

(u ◦ I, ◦) is a group, called the Ellis group.

3. All Ellis groups (varying I and u) are isomorphic, so we sometimes

refer to this isomorphism class as the Ellis group attached to the orig-

inal flow (X,G).

There is a universal G-ambit, which is (under our discreteness assump-

tion on G) the Stone-Cech compactification βG of G. This is precisely the

(Stone) space of ultrafilters on the Boolean algebra of all subsets of G. The

action of G on itself by left translation gives rise to an action on βG by

homeomorphisms. Identifying g ∈ G with the principal ultrafilter it gener-

ates yields an embedding of G in βG and βG together with the identity

element idG of G as distinguished point, is the universal G-ambit. The uni-

versal property is that for any other G-ambit (X, x) there is a unique map

of G flows from βG to X which takes idG to x.

The enveloping semigroup E(βG) of βG coincides with βG (due to its

universal character) and hence βG is equipped with a canonical semigroup

structure, continuous on the left. It can be described explicitly in various

ways, see Section 4 of [19] for one such description. Minimal G-subflows,

equivalently minimal left ideals, of βG are isomorphic as G-flows and co-

incide with the universal minimal G-flow (M, G), a G-flow, unique up to

isomomorphism, with the feature that any minimal G-flow is an (surjective)

image of (M, G) under a map of G-flows. The Ellis group of (βG,G) is an

important invariant of the group G.

1.2 Model theory

The model-theoretic background for the current paper is contained in [11]

and [23], but we give a quick summary here.
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Given an L-structure M , S(M) denotes the collection of all complete

types over M (in all sorts or number of variables). For a definable set Z in

M , SZ(M) denotes the (Stone) space of complete types over M containing

the formula x ∈ Z. If M ′ is an elementary extension of M , Z(M ′) denotes

the interpretation in M ′ of the formula defining Z in M . M̄ denotes a

saturated elementary extension of M , and we also may consider elementary

extensions of M̄ in which all types over M̄ are realized.

Fact 1.2. Suppose that all complete types (in any sort) over M are defin-

able. Then every complete type p over M has a unique coheir in S(M̄) as

well as a unique heir in S(M̄).

This applies to the situation where M = (Qp,+,×,−, 0, 1) due to a

theorem of Delon [6].

Now suppose that G is a group definable in M .

The “definable” analogue of βG is the space SG(M) of all complete

types over M concentrating on G. G clearly acts on SG(M) (on the left)

by homeomorphisms. If all types over M are definable, then E(SG(M))

coincides with SG(M) and we already have a semigroup structure, which

we denote by ∗, on SG(M). It can be explicitly described as p∗q = tp(gh/M)

where g realizes p and h realizes the unique heir of q over (M, g).

It is worth mentioning the notion of a definable action of G on a compact

space X. It means an action of G on X (by homeomorphisms) with the

property that for each y ∈ X the map from G to X taking y ∈ X to gy

is definable. Where a map φ from G to the compact space X is said to be

definable if for any two closed disjoint subsets C1, C2 of X, the preimages

φ−1(C1), φ
−1(C2) are separated by a definable (in M) subset of G.

When all types over M are definable, then (SG(M), G, idG) is the univer-

sal definable G-ambit (in analogy with βG being the universal G-ambit).

Moreover some/any minimal subflow M of SG(M) will be the universal

minimal definable G-flow. And the Ellis group pM, for p any idempotent

in M, will be a basic invariant of the definable group G.

Another basic invariant of G is the compact group G(M̄)/G(M̄)00M , where

G(M̄)00M is the smallest bounded index type-definable over M subgroup of

G(M̄). This can also be described as the definable Bohr compactification of

G.

As already pointed out in [19] there is a natural surjective homomorphism

from the Ellis group to the definable Bohr compactification. Newelski sug-

gested that in tame contexts such as when Th(M) has NIP , this is actually

an isomorphism. This was proved in [5] when G is definably amenable (and
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proved earlier in [4] when M is o-minimal and G definably amenable). In

[10] we showed that SL(2,R) as a group definable in (R,+,×) gives a coun-

terexample. And one of the points of the current paper is that SL(2,Qp)

provides another (counter)example. In fact it will be somewhat more strik-

ing as the (definable) Bohr compactification of SL(2,Qp) is trivial, whereas

the (definable) Ellis group will be infinite. As mentioned earlier, our coun-

terexample is different from the ones provided by Corollary 0.3 of [16], as

we have G = G000 (where G = SL(2,K) which is abstractly simple modulo

its finite centre).

This paper will make use of some more model-theoretic machinery, around

definable amenability and f -genericity, in a NIP environment (bearing in

mind that Th(Qp,+,×,−, 0, 1) has NIP , see Section 4.2 of [2] for refer-

ences).

So let us now assume, in addition to G being a group definable in M ,

that Th(M) has NIP . G is said to be definably amenable if there is a left

G-invariant Keisler measure µ on G; namely µ is a map from the Boolean

algebra of subsets of G definable in M to the real unit interval [0, 1], µ(∅) =

0, µ(G) = 1, µ is finitely additive, and µ(gX) = µ(X) for all definable X

and g ∈ G. Now SL(2,Qp) (as a group definable in (Qp,+,×,−, 0, 1)) will

not be definably amenable, for the same reason that SL(2,R) is not, see

[13]. But its constituents in the Iwasawa decomposition will be definably

amenable.

Let M̄ be a very saturated elementary extension of M . By a global type

of G we mean a type p(x) ∈ SG(M̄). p is strongly f -generic if every left

G-translate of p is Aut(M̄/N)-invariant (i.e. does not fork over N) for some

small N ≺ M̄ depending only on p. The existence of a strongly f -generic

type is equivalent to definable amenability of G ([14]). Assuming G to be

definably amenable we can take as a definition of p being f -generic that

Stab(p) is G(M̄)00, and this is implied by p being strongly f -generic. (See

Section 3 of [5].)

There are two extreme cases for a strongly f -generic global type p(x).

The first case is when p and all of its left translates are definable over some

small model N , and the second case is when p and all of its left translates

are finitely satisfiable over some small model M . In the second case every

strongly f -generic type is finitely satisfiable in any small model, and G is

what is called an fsg group (group with finitely satisfiable generics). In this

fsg case, the f -generic types, strongly f -generic types, and generic types

coincide. Here a (left) generic formula is one such that finitely many (left)
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translates cover the group, and a (left) generic type is one all of whose

formulas are (left) generic.

Finally let us remark that the sister paper [10] on SL(2,R) was subse-

quently extended in various ways; first to a larger class of semialgebraic real

Lie groups, and secondly to arbitrary real closed base fields in place of R.

See [15] and [26]. The p-adic version should be able to be extended similarly.

Also the analysis we give in this paper could be situated in a more general

environment of definable groups G in NIP structures, where G has a nice

“abstract” Iwasawa decomposition.

2 Ingredients and building blocks

Our model-theoretic analysis of SL(2,R) (acting on its space of types) in [10]

made heavy use of the Iwasawa decomposition SL(2,R) = K · B(R)0 with

K the maximal compact subgroup SO(2,R) and B(R)0 the (real) connected

component of the Borel subgroup of upper triangular matrices. Note that

both K and B(R)0 are connected and also have trivial intersection.

The Iwasawa decomposition for SL(2,Qp) on the other hand has the

form K ·B(Qp) where K is the maximal compact SL(2,Zp) and B is again

the Borel subgroup of upper triangular 2-by-2 matrices. B(Qp) is itself is the

semidirect product of the additive and multiplicative groups of Qp (where

the action is multiplication by the square). See [3]. So we start with the

model-theoretic/dynamical analysis of these building blocks.

2.1 The additive and multiplicative groups

If we refer to a theory T it will be Th(Qp,+,×,−, 0, 1). Recall that Pn(x)

denotes the formula saying that x is an nth power, and that T has quantifier

elimination after adding predicates for all Pn. Before getting into details we

recall, with references, some basic facts which will be used freely in this

section and the rest of the paper. First the topology on both the standard

model Qp and the saturated model K is the valuation topology. The follow-

ing can be found in (or easily deduced from) Section 1 of [18] (Facts 1 to 3)

and Section 2 of [2] and make use of Hensel’s Lemma. The (nonzero) nth

powers form an open subgroup of finite index in the multiplicative group,

and each coset contains representatives from Z. It is clear that the partial

type ∩nPn(x) defines the “connected component” (K∗)0 of the multiplica-

tive group K∗ of K. So every translate of (K∗)0 can be (type)-defined over

Z too.
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We first describe the complete 1-types over the standard model M =

(Qp,+,×,−, 0, 1).

Lemma 2.1. The complete 1-types over M are precisely the following:

(a) The realized types tp(a/M) for each a ∈ Qp.

(b) for each a ∈ Qp and coset C of (K∗)0 in K∗ the type pa,C saying that x is

infinitesimally close to a (i.e. v(x−a) > n for each n ∈ N), and (x−a) ∈ C
(note this implies x 6= a).

(c) for each coset C as above the type p∞,C saying that x ∈ C and v(x) < n

for all n ∈ Z.

Proof. (i) First we observe that every nonrealized 1-type over the standard

model M is either “at infinity” namely contains the formulas v(x) < n for

all n ∈ Z, or is infinitesimally close to some a ∈ Qp, namely contains the

formulas v(x−a) > n for all n ∈ Z. This depends on compactness of “balls”

defined by v(x) ≥ n in the standard model, and is not true over a saturated

model, as we remark in 2.2(iii).

Next we show that each purported complete 1-type over M described

in (b) is consistent. Fix a ∈ Qp. It suffices, by compactness to show that

for every n, k, and coset C of the kth powers, v(x − a) > n ∧ (x − a) ∈ C
has a solution. Choose an element b in C ∩Zp (as mentioned earlier we can

find one). Let r be a natural number such that rk > n. Then bprk ∈ C and

v(bprk) > n. Let x = a+ bprk, then (x− a) has value > n and is in C.

A similar argument shows consistency of any type of kind (c).

Note that for any complete type p(x) over M and any a ∈ M , p has to

choose some coset C of (K∗)0 such that “(x− a) ∈ C” is in p.

So it remains to show completeness of the pa,C and p∞,C . We will do the

case of p0,C from (b). (The general case of (b) is similar, by expanding poly-

nomials around a.) To show completeness of p0,C it is enough, by quantifier

elimination, to show that p0,C decides each formula of the form Pn(f(x))

where f(x) is a polynomial over Qp. Suppose f(x) = aix
i + ai+1x

i+1 + · · ·+
amx

m where ai 6= 0. Let c realize p0,C . Then c−if(c) = ai+ai+1c+..+amc
m−i.

As v(ai+1c + .. + amc
m−i) > Z, and each (multiplicative) coset of the nth

powers is open, it follows that c−if(c) and ai are in the same coset of Pn.

But the coset of Pn that c−i is in is determined by c realizing p0,C . Hence

the coset of Pn in which f(c) lives is also determined, by c realizing p0,C , as

required.

Finally we show completeness of p∞,C from (c). Consider again a formula

Pn(f(x)), (with f(x) over Qp) and we want it to be decided by p∞,C . Again
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let f(x) = aix
i + ... + amx

m with ai 6= 0 and am 6= 0. Let c realize p∞,C .

Now we consider c−mf(c) = aic
i−m + ..+ am−1c

−1 + am.

Now v(aic
i−m + ...+ am−1c

−1) > Z. So again as cosets of the nth powers

are open in the multiplicative group, it follows that c−mf(c) and am are in

the same coset of Pn. Hence again the coset of f(c) modulo Pn is determined

by c realizing p0,C .

Remark 2.2. (i) The lemma shows that the definable (with parameters)

subsets of Qp are precisely given by (finite) Boolean combinations of formu-

las x = a, v(x− a) ≥ n and (x− a) ∈ C ′, for a ∈ Qp, n ∈ Z and C ′ a coset

of the nth powers.

(ii) An identical proof to the above shows that working now over the satu-

rated model M̄ = (K, ....), if p(x) ∈ S1(M̄) is a nonrealized complete 1-type

“at infinity”, namely containing v(x) < Γ, then for some coset C of (K∗)0, p
is axiomatized by v(x) < Γ together with x ∈ C. Similarly if p(x) ∈ S1(M̄)

is nonrealized and says that v(x − a) > Γ for some a ∈ K then for some

C as before p is axiomatized by x 6= a and v(x − a) > Γ together with

(x− a) ∈ C.

(iii) There will be nonrealized 1-types over M̄ not accounted for in (ii), but

we do not have to describe them precisely for the purposes of this paper.

We start with the additive group. We consider S1(M) as a (Qp,+)-flow.

We could and should write it as SGa(M) but this is too much notation.

Proposition 2.3. (i) Each type p(x) ∈ S1(M) of kind (c) is invariant

(under the action of (Qp,+)), and these account for all the minimal subflows

of S1(M).

(ii) The global heirs of the types in (i) are precisely the global (strongly)

f -generics of (K,+), and are all definable, and invariant under (K,+).

(iii) (K,+) = (K,+)0 = (K,+)00.

Proof. (i) Let a realize p∞,C . Then clearly for b ∈ Qp, v(a+ b) < Z. On the

other hand, for b ∈ Qp, (a + b)/a = 1 + (b/a) and note that v(b/a) > Z.

As the group of nth powers in Qp is open for all n, it follows that a + b

and a are in the same coset of the nth powers for all n, and so in particular

a+ b ∈ C. We have shown that p∞,C is fixed under addition by elements of

Qp, as required.

If q(x) ∈ S1(M) is arbitrary note that the closure of the orbit (under

(Qp,+)) of q always contains a “type at infinity” namely a type of kind
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(c). Hence the only minimal subflows of S1(M) are those of the form {p}
for p of kind (c).

(ii) and (iii). Let q be a global heir of a type p∞,C of kind (c). Then

q is definable over M and Stab(q) = (K,+). This already shows that

(K,+) = (K,+)00(= (K,+)000) (because any global type 1-type determines

a coset of (K,+)000). Conversely suppose q(x) ∈ S1(M̄) is an f -generic.

Then by what we have just said, together with the fact that (K,+) is defin-

ably amenable, since it is abelian, q must be (K,+)-invariant. We claim first

that q must be a “type at infinity”. For otherwise “v(x) ≥ γ” is in q(x) for

some γ in the value group Γ of K. Then for b ∈ K with v(b) < γ, q + b 6= q,

a contradiction. So q is a type at infinity as claimed. By Remark 2.2(ii), q

is axiomatized by v(x) < Γ together with x ∈ C for some coset C of (K∗)0.
But then clearly q is definable over Qp and so is the heir of p∞,C .

Now for the multiplicative group. SGm(M) denotes the space of complete

types over M concentrating on Gm, namely all complete 1-types except for

x = 0. Gm(Qp) is just the multiplicative group (Q∗p,×) and SGm(M) is a

Gm(Qp)-flow.

Proposition 2.4. (i) SGm(M) has two minimal subflows, the collection of

types of kind (b) with a = 0, namely P0 = {p0,C : C coset of (K∗)0} and the

collection of types of kind (c), namely P∞ = {p∞,C : C coset of (K∗)0}.
(ii) The global heirs of the types mentioned in (i) are precisely the global

(strongly) f -generic types of Gm, all of which are definable. Moreover the

orbit of each such type under K∗ is closed.

(iii) (K∗)00 = (K∗)0.

Proof. (i) Fix any p0,C ∈ P0. Then it is clear that the closure of its orbit

under Q∗p equals P0. Likewise for P∞. Hence P0 and P∞ are minimal sub-

flows. On the other hand it is clear that for any q(x) ∈ SGm(M), the closure

of the orbit of q under Q∗p intersects both P0 and P∞. Whence P0 and P∞

are the only minimal subflows of SGm(M).

(ii) and (iii). Fix p0,C . Let p′0,C be its (unique) global heir. Note that p′0,C is

axiomatized again by v(x) > Γ and x ∈ C. It is clear that the the stabilizer

of p′0,C (with respect to the action of K∗) is precisely (K∗)0, whereby p′0,C
is f -generic. On the other hand the orbit of p′0,C under K∗ is precisely P ′0
the collection of global heirs of the types in P0. Hence p′0,C is also strongly

f -generic. In a similar fashion the unique global heir of each p∞,C is strongly

f -generic. We have shown that the types in P ′0 and the analogue P ′∞ have

stabilizer (K∗)0, are definable over M and are all strongly f -generic. This
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already shows that (K∗)00 = (K∗)0. Bearing in mind Remark 2.2 (ii), we

have shown that global types at infinity or infinitesimally close to 0 are

(strongly) f -generic. It is easy to see that these are the only (strongly) f -

generics; suppose γ ∈ Γ is positive, and q(x) is a global 1-type implying that

−γ < v(x) < γ. We can find g ∈ (K∗)0 with v(g) > 2γ. But then gq implies

v(x) > γ, so q is not invariant under multiplication by (K∗)0, so could not

be f -generic.

Let us now discuss the additive and multiplicative groups of the valuation

ring O. O(M) is (Zp,+), and O∗(M) = (Z∗p,×), where remember that O∗ is

defined by v(x) = 0. These groups (Zp,+) and (Z∗p,×) are compact groups

definable in Qp, so by Corollary 2.3 of [20], (O,+) and (O∗,×) are fsg

groups, which have been studied intensively. Moreover, by Corollary 2.4 of

[20], O00 coincides with the “infinitesimals” of O, namely the kernel of the

standard part map to Zp, and O/O00 is isomorphic to Zp as a compact

group. As the latter is profinite we also conclude that O00 = O0 and is the

intersection of the nth powers (as n varies). This goes through word for

word for the multiplicative group O∗. In particular O∗/(O∗)00 is isomorphic

as a compact group to Z∗p and (O∗)00 = (O∗)0 equals the intersection of the

nth powers as n varies.

Let us first record a description of K∗/(K∗)00 which will be important

for our main results.

Remark 2.5. K∗/(K∗)00 is Ẑ× Z∗p, as a compact group (which note is not

a compact p-adic Lie group).

Proof. First of all (K∗)00 = (K∗)0 by Proposition 2.4. Since (K∗)0 is the

intersection of the nth powers (K∗)n for all n, we get that (K∗)0 is invariant

under expansions of the language (in particular it exists in the expansions).

Similarly both (O∗)0 and Γ0 are invariant under expansions of the language.

So the compact groups K∗/(K∗)0, O∗/(O∗)0 and Γ/Γ0 do not change if we

expand the language.

So let us expand the language by adding a unary predicate R to Qp for

the integer powers pn of p (n ∈ N). Then in the expansion M ′, Q∗p is defin-

ably a product of R and Z∗p. We may assume that our saturated elementary

extension M̄ of M expands to a saturated elementary extension M ′ of M ′.

So we have that definably in the expanded language, K∗ = R(M ′)×O∗. As

the connected component of a product of two definable groups is the product

of the connected components, we get that (K∗)0 = R(M ′)0 × (O∗)0. There-

fore K∗/(K∗)0 coincides with R(M ′)/R(M ′)0×O∗/(O∗)0. By the discussion
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preceding Remark 2.5, the second term of the last product is isomorphic to

Z∗p. Regarding the first term, note that the valuation v induces a definable

isomorphism between R(M ′) and Γ which clearly maps R(M ′)0 onto Γ0,

and hence R(M ′)/R(M ′)0 is isomorphic to Γ/Γ0 as topological groups. And

the last group is isomorphic to Ẑ. We conclude that K∗/(K∗)0 is isomorphic

to Ẑ× Z∗p as topological groups.

Finally in this section we record some basic facts about the definable

dynamics of (Zp,+) and (Z∗p,×), leaving details to the interested reader.

Proposition 2.6. (i) The universal definable minimal flow of (Zp,+) is

the space SO,na(M) of nonalgebraic types concentrating on O, which are

precisely the types in (b) above for a ∈ Zp.
(ii) The global coheirs of the types in (i) are precisely the global (strongly)

f -generic types of O which coincide with the generic types of O.

(iii) The orbits in SO,na(M) are indexed by the multiplicative cosets C,

namely a typical orbit is of the form {pa,C : a ∈ Zp}.

Remark 2.7. Compare to the case where M = (R,+,×) and G is the circle

group (SO2, or [0, 1) with addition mod 1). The set of nonalgebraic types is

the unique minimal flow and there are two orbits, infinitesimal to the left,

and infinitesimal to the right (of each point of G in the standard model).

Proposition 2.8. (i) The universal definable minimal flow of (Z∗p,×) is

the space SO∗,na(M) of nonalgebraic types concentrating on O∗, namely the

types pa,C with v(a) = 0.

(ii) The global (strongly) f -generic types are precisely the coheirs of these

types and they coincide with the global generic types.

(iii) The Z∗p-orbits in SO∗,na(M) are precisely the sets {pa,aC : a ∈ Z∗p} for

C a coset of (K∗)0.

2.2 The Borel subgroup

The Borel subgroup B of SL(2,−) is the group of upper triangular 2-by-2

matrices of determinant 1.

So B(K) is the subgroup of SL(2,K) consisting of matrices

[
a c
0 a−1

]
where a ∈ K∗ and c ∈ K. There is no harm in identifying the matrix[
a c
0 a−1

]
∈ B(K) with the pair (a, c) ∈ K∗ × K. Likewise for B(Qp). Note

that with this notation the product (a, c)(α, β) equals (aα, aβ + cα−1).

Lemma 2.9. B(K)00 = B(K)0 = {(a, c) : a ∈ (K∗)0, c ∈ K}.
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Proof. B(K) maps onto K∗ with kernel (K,+). So the result follows from

Proposition 2.3 (iii) and Proposition 2.4(iii).

Rather than describe all the global f -generic types ofB(K) we will choose

one, as follows. Let C0 denote (K∗)0, the connected component of the mul-

tiplicative group. Then p′0,C0
, the unique global heir of p0,C0 , is a global

f -generic of K∗, and likewise p′∞,C0
, the unique global heir of p∞,C0 is a

global f -generic of (K,+). Let α realize p′0,C0
and β realize p′∞,C0

such that

tp(α/M̄, β) is finitely satisfiable in M̄ .

We let p̄0 = tp((α, β)/M̄) ∈ SB(M̄), and let p0 = tp((α, β)/M) be its

restriction to M . Note that this is new notation which will be used in Section

3 too.

Lemma 2.10. p̄0 ∈ SB(M̄) is a global (strongly) f-generic type of B(K),

every (left) B(K)-translate of which is definable over M .

Proof. We note first that p̄0 is left B(K)0-invariant: let (a, c) ∈ B(K)0,

which by Lemma 2.9 means that a ∈ (K∗)0. Now (a, c)(α, β) = (aα, aβ +

cα−1). As a ∈ K∗0, then tp(aα/K) = tp(α/K). On the other hand, β also

realizes a global f -generic type of the multiplicative group. So tp(aβ/M̄) =

tp(β/M̄). Also tp(aβ/M̄, cα−1, aα) realizes the unique heir of tp(β/M̄) so

as the latter is an f -generic of the additive group which is connected, we

have that tp(aβ + cα−1/M̄, cα−1, aα) is an heir of tp(β/M̄). It follows from

all of this that tp((aα, aβ + cα−1)/M̄) = tp((α, β)/M̄) as required.

As tp(α/M̄) is definable over M and tp(β/M̄, α) is the heir of tp(β/M̄)

which is definable over M , then tp(α, β/M̄) is definable over M . Using a

similar argument as in the first paragraph, every left B(K)-translate of p̄0

is definable over M .

Corollary 2.11. (i) The B(K)-orbit of p̄0 is closed, and hence is a minimal

B(K)-subflow of SB(M̄).

(ii) Let J̄ denote the B(K)-orbit of p̄0 and J the closure of the B(M)-orbit

of p0. Then the restriction to M map gives a homeomorphism between J̄
and J , and J is a minimal subflow of SB(M).

(iii) J is a subgroup of (SB(M), ∗), is isomorphic to B(M̄)/B(M̄)0, and is

the Ellis group of the dynamical system (B(M), SB(M)). Moreover p0 is an

idempotent in (SB(M), ∗).

Proof. (i). This follows by using the proof of Lemma 1.15 of [23]. More

specifically it is proved there that in the NIP environment, a global defin-

able f -generic type p is almost periodic by showing that in fact the orbit of
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p is closed.

(ii). We have seen in Lemma 2.10 that every p ∈ J̄ is the unique heir of its

restriction to M . Hence the restriction to M map, π, which is a continuous

map between J̄ and its image π(J̄ ) is a bijection, hence a homeomorphism.

Now it is fairly easy to see directly that π(J̄ ) is a minimal B(M)-subflow

of SB(M), although we can also appeal to the general result Corollary 4.7

of [25] to see this. As J is a closed B(M)-subflow of π(J̄ ), it follows that

they are equal, and we obtain all of (ii).

(iii). The natural map from SB(M̄) to (the profinite group)B(M̄)/B(M̄)0, is

continuous. Moreover this map induces a bijection hence homeomorphism

between J̄ and B(M̄)/B(M̄)0. Composing with the homeomorphism be-

tween J and J̄ gives a homeomorphism θ say between J andB(M̄)/B(M̄)0.

It is clear that this is also an isomorphism of semigroups, whereby (J , ∗)
is already a group, so must concide with the Ellis group (u ∗ J , ∗) (u an

idempotent of J ). As p̄0/B(M̄)0 is the identity of B(M̄)/B(M̄)0 by Lemma

2.9, it follows that p0 is an (in fact the) idempotent of J .

2.3 The maximal compact subgroup

As already remarked a maximal compact subgroup of SL(2,Qp) is SL(2,Zp).
We refer to this group as K and sometimes, by abuse of language, we also let

K denote the defining formula. So K(M̄) is SL(2,O), and SK(M), SK(M̄)

denote the corresponding type spaces. (The notation O for the valuation

ring in the saturated model M̄ was introduced in Section 2.1.) We have the

standard part map st : SL(2,O)→ SL(2,Zp) the kernel of which is (by def-

inition) the infinitesimals. By Corollary 2.4 of [20], this kernel coincides with

SL(2,O)00. (Note that as SL(2,Zp) is profinite, this group of infinitesimals

is an intersection of definable groups, so coincides with SL(2,O)0.)

From Corollary 2.3 of [20], K is an fsg group. In particular, we have

Fact 2.12. (i) Left and right generic definable subsets of K(M̄) coincide

and are all satisfiable in M .

(ii) There exist left generic types in SK(M̄), which by (i) coincide with right

generic types.

(iii) The unique minimal K-subflow of SK(M) is the set I of generic types

over M .

(iv) Likewise the unique minimal subflow I ′ of SK(M̄) is the set of global

generic types, each such global generic type q being the unique coheir of

q|M ∈ I.
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(v) The standard part map st induces an isomorphism (in fact homeomor-

phism) between K(M̄)/K(M̄)00 and SL(2,Zp)

Recall that in the current situation where all types over M are definable,

we have the semigroup operation ∗ on SK(M), and I is a left ideal under ∗.
From Theorem 3.8 of [22] for example, we see that the Ellis group of

the action of SL(2,Zp) on SK(M) is canonically isomorphic to K/K00 =

SL(2,Zp). With notation as in Fact 2.12 this Ellis group is u∗I for some/any

idempotent in I. Different choices of u give isomorphic groups and the

collection of such u ∗ I partitions I. We will elaborate slightly on these

basic facts.

Lemma 2.13. 1. I is a two-sided ideal of (SK(M), ∗).

2. For any q ∈ I, q∗SK(M) is the copy of the Ellis group which contains

q.

Proof. 1. Let q ∈ I and p ∈ SK(M). Let b ∈ K(M̄) realize p and let a

realize the unique coheir of q over M̄ . Then tp(ab/M) realizes q∗p. On

the other hand, tp(a/M̄) is right generic, whereby tp(ab/M̄) is also

right generic, so by Fact 2.12 (iv), q ∗ p = tp(ab/M) ∈ I.

2. Again let q ∈ I. Let E ⊆ I be the copy of the Ellis group which

contains q, and let q0 be an idempotent in E. Then q ∗ SK(M) =

(q0 ∗ q) ∗ (SK(M)) = q0 ∗ (q ∗ SK(M)) ⊆ q0 ∗ I (using part 1.) ⊆
q0 ∗ q ∗ I ⊆ q ∗ I ⊆ q ∗ SK(M). This shows that q ∗ SK(M) = q0 ∗ I
which equals E.

As usual for x, y in a given group G, xy denotes the conjugate yxy−1 of

x by y and the notation extends naturally to subsets X of G in place of

x ∈ G.

In our context G = SL(2,K) and K(M̄) is SL(2,O).

Lemma 2.14. (K(M̄)0)g = K(M̄)0 for all g ∈ SL(2,Qp) = G(M).

Proof. We know that K(M̄)0 is the kernel of st : K(M̄)→ K(M), so equal

to ∩V V (M̄) where V ranges over open semialgebraic neighbourhoods of

the identy in K(M) = SL(2,Zp). But SL(2,Zp) is an open (semialgebraic)

subgroup of SL(2,Qp), so K(M̄)0 = ∩V V (M̄) where V ranges over open

semialgebraic neighbourhoods of the identity in SL(2,Qp). But clearly the

family of open semialgebraic neighbourhoods of the identity in SL(2,Qp)
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is invariant under conjugation by elements of SL(2,Qp). Hence the lemma

follows.

Corollary 2.15. Let g ∈ G(M̄) and t ∈ K(M̄)0 be such that tp(g/t,M)

is finitely satisfiable in M . Then tg ∈ K(M̄)0. If in addition, tp(t/M) is a

generic type of K then so is tp(tg/M).

Proof. The first sentence is fairly immediate from Lemma 2.14: if by way

of contradiction tg /∈ V (M̄) for some open semialgebraic neighbourhood of

the identity of K(M), then there is g1 ∈ G(M) such that tg1 /∈ V (M̄),

contradicting Lemma 2.14.

The second sentence follows from the fact that the set of generic types

in SK(M) is closed.

3 SL2(Qp)

We use the above material to describe the minimal definable universal sub-

flow of SL(2,Qp) as well as its Ellis group. We first identify the minimal

subflow, see Theorem 3.4 below.

3.1 Minimal subflow of (G(M), SG(M))

The Iwasawa decomposition of SL(2,Qp) is B(Qp) ·SL(2,Zp), namely every

element of SL(2,Qp) can be written as a product ht with h ∈ B(Qp) and

t ∈ SL(2,Zp) (and also as a product t1h1 with t1 ∈ SL(2,Zp) and h1 ∈
B(Qp)). However, in contradistinction to the Iwasawa decomposition for

real Lie groups, there is a large intersection of the constituents; namely

B(Qp) ∩ SL(2,Zp) = B(Zp) ={[
a c
0 a−1

]
|a ∈ Z∗p and c ∈ Zp

}
.

We recall the notation from the previous sections: K(M) = SL(2,Zp) is

the maximal compact subgroup of SL(2,Qp), and I is the unique minimal

subflow of the flow (K(M), SK(M)). We fix a generic type q0 ∈ SK(M)

which concentrates on K0. p0 is the restriction to M of the global f -generic

type p̄0 ofB(K), and J is the minimal subflow of (B(M), SB(M)) containing

p0, as in subsection 2.2.
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Lemma 3.1. I ∗ J ⊆ SG(M) ∗ q0 ∗ p0.

Proof. We have to show that for any q1 ∈ I and p1 ∈ J , there is s ∈ SG(M)

such that s ∗ q0 ∗ p0 = q1 ∗ p1.
Let p′ ∈ SB(M) be such that p′ ∗ p0 = p1. (Because p0, p1 ∈ J which is a

minimal subflow of SB(M) so of the form SB(M) ∗ p0.) Now let s = q1 ∗ p′.
Then

s ∗ q0 ∗ p0 = q1 ∗ p′ ∗ q0 ∗ p0 = tp(t0hth0/M) = tp(t0t
hhh0/M)

where t0 realizes q1, h realizes the (unique) heir of p′ over M, t0, t realizes

the unique heir of q0 over M, t0, h and h0 realizes the unique heir of p0 over

M, t0, h, t. We may assume that t0, h, t are in SL(2,K) and that h0 realises

the unique heir of p0 over M̄ .

By Lemma 2.10, tp(hh0/M̄) is definable overM , and note that tp(hh0/M) =

p′ ∗ p0 = p1.

On the other hand, by Corollary 2.15, th ∈ K0. As q1 ∈ I and t0 realizes

the unique coheir of q1 over M, th, we have that tp(t0t
h/M) = q1.

Hence tp(t0t
hhh0/M) = q1 ∗ p1 as required.

Lemma 3.2. SG(M) ∗ q0 ∗ p0 = cl(I ∗ J )

Proof. The previous lemma together with the fact that SG(M) ∗ q0 ∗ p0 is

closed shows that the RHS is contained in the LHS.

For the converse, we will show that the G(M) orbit of q0∗p0 is contained

in I ∗J which suffices, by taking closures, to see that the LHS is contained

in the RHS.

So let g ∈ G(M) and write g = th with t ∈ K(M) = SL2(Zp) and

h ∈ B(M) = B(Qp). Then

(th)(q0 ∗ p0) = tqh0 ∗ hp0 = tp(tth0hh0/M)

where t0 realizes q0 and h0 realizes the unique heir of p0 over M, t0. By

the choice of J , tp(hh0/M) ∈ J . Clearly (or by 2.15), tp(th0/M) ∈ I, as

is tp(tth0/M). Now as tp(h0/M, t0) is an heir of its restriction to M , also

tp(hh0/M, tth0) is an heir of its restriction to M , so tp(tth0hh0/M) ∈ I ∗ J ,

so by the displayed equation above

g(q0 ∗ p0) ∈ I ∗ J , as required.
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Lemma 3.3. SG(M) ∗ q0 ∗ p0 ⊆ SK(M) ∗ J . Namely every s ∗ q0 ∗ p0 (with

s ∈ SG(M)) is of the form r ∗ p with r ∈ SK(M) and p ∈ J .

Proof. Let s = tp(th/M) where t ∈ K(M̄) = SL(2,O) and h ∈ B(M̄) =

B(K). Then

s ∗ q0 ∗ p0 = tp(tht0h0/M) = tp(tth0hh0/M)

where t0 realizes the unique heir of q0 over (M, t, h) and h0 realizes the

unique heir of p0 over M̄ , namely p̄0. Again, tp(hh0/M̄) is definable over

M (by Lemma 2.10), and tp(hh0/M) ∈ J (by Corollary 2.11). Moreover

by 2.15, th0 ∈ K and so also tth0 ∈ K. Thus tp(tth0hh0/M) ∈ SK(M) ∗ J as

required.

Theorem 3.4. (i) cl(I∗J ) is a minimal subflow of the flow (G(M), SG(M)).

(ii) Moreover q0 ∗ p0 is an idempotent in this minimal flow.

Proof. (i). By Lemma 3.2, cl(I∗J ) is a G(M)-flow. As any point in cl(I∗J )

is of the form s ∗ q0 ∗ p0 by Lemma 3.2, and the closure of the G(M)-orbit

of this s ∗ q0 ∗ p0 is precisely SG(M) ∗ s ∗ q0 ∗ p0, it suffices to prove:

Claim. For any s ∈ SG(M), I ∗ J ⊆ SG(M) ∗ s ∗ q0 ∗ p0.
Proof of claim. Fix s ∈ SG(M). By the previous lemma, let q′ ∈ SK(M),

and p1 ∈ J be such that

(1) s ∗ q0 ∗ p0 = q′ ∗ p1, and note that by Lemma 2.10 and Corollary 2.11

(ii) the unique global heir of p1 is a strong f -generic of B every translate of

which is definable over M .

We can easily find q1 ∈ I such that

(2) q1 ∗ q′ ∈ K0 (in the obvious sense that some/any realization is in K0).

Now, let q ∈ I and p ∈ J and we want to show that q∗p ∈ SG(M)∗s∗q0∗p0.
Let p′ ∈ SB(M) be such that:

(3) p′ ∗ p1 = p, where p1 is as in (1).

Now we compute q∗p′∗q1∗q′∗p1. Let a realize q, b realize the unique heir of

p′ over (M,a), c realize the unique heir of q1 ∗ q′ over (M,a, b) and d realize

the unique heir of p1 over M̄ (so in particular over (M,a, b, c)). Then

(4) q ∗ p′ ∗ q1 ∗ q′ ∗ p1 = tp(abcd/M) = tp(acbbd/M)

Now by the property of p1 in (1), tp(bd/M̄) is definable over M . In particular

(using (3)) bd realizes the unique heir of p over (M,acb). On the other hand,

by 2.15 and (2), cb ∈ K0(M̄). As tp(c/M, a, b) is definable over M , and

tp(b/M, a) is definable over M , tp(a/M, b, c) is finitely satisfiable in M (and



Some model theory and topological dynamics of p-adic algebraic groups 21

moreover realizes the unique coheir over (M, b, c) of q, as all types over M

have unique heirs). As the stabilizer (inside K) of the global coheir of q is

K0, it follows that tp(acb/M) = q. So we conclude that

(5) tp(acbbd/M) = tp(acb/M) ∗ tp(bd/M) = q ∗ p.
By (4) and (5) q ∗ p = r1 ∗ (q′ ∗ p1) where r1 = q ∗ p′ ∗ q1 ∈ SG(M). So by

(1) q ∗ p = r1 ∗ s ∗ q0 ∗ p0 giving the claim.

End of Proof of claim.

This finishes the proof of (i).

(ii) is an easy computation, bearing in mind the techniques above, which

we carry out below.

We want to show that

q0 ∗ p0 ∗ q0 ∗ p0 = q0 ∗ p0

The left hand side is tp(tht0h0/M), where t and t0 realize q0, h and h0

realize p0, and tp(t/M, h0, t0, h0) is the coheir of q0 etc. We will slightly adapt

the proof of Lemma 3.3. First rewrite this left hand side as tp(t(th0)hh0/M).

Conclude from 2.15 that th0 ∈ K(M̄)0. But K(M̄)0 is the stabilizer of the

unique global coheir q̄0 of q0, whereby t(th0) realizes q0. On the other hand,

we may assume that h0 realizes the global heir p̄0 of p0 (and that t, h, t0 are

in M̄). As the stabilizer of p̄0 is B(M̄)0 which contains h it follows that hh0

also realizes p̄0. Putting it together we see that tp(t(th0)hh0/M) = q0 ∗ p0, as

required.

Note that from Theorem 3.4 and the discussion in subsection 1.2, we

have identified the universal definable minimal flow of SL(2,Qp). Moreover

we have shown that q0 ∗ p0 is almost periodic and idempotent.

3.2 The Ellis group

LetM denote the minimal G(M)-flow SG(M)∗q0∗p0 = cl(I ∗J ). The Ellis

group attached to the flow (G(M), SG(M)) is then the group (q0 ∗p0 ∗M, ∗)
which we aim to describe explicitly.

Remember that the intersection of K(M) (i.e. SL(2,Zp)) and B(Qp) is

B(Zp).

Lemma 3.5. Let h realize p0. Let t ∈ SL(2,Zp). Then

• if t ∈ B(Zp), then p0t = t tp(h′/M), for some h′ ∈ B(K)0 ∩ dcl(h,M)
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• if t /∈ B(Zp), then p0t = tp(t′h′/M), where t′ ∈ SL(2,O)0 ∩ dcl(h,M)

and h′ ∈ B(K) ∩ dcl(h,M).

Proof. The first case is immediate as p0(x) implies x ∈ B(K)0, B(K)0 is

normal in B(K) and t ∈ B(K).

For the second case: Let t =

[
u1 u2
u3 u4

]
such that u3 6= 0. Let h = (a, c)

realize p0. Then

ht =

[
au1 + cu3 au2 + cu4
a−1u3 a−1u4

]
=

[
1 0

a−1u3
au1+cu3

1

] [
au1 + cu3 au2 + cu4

0 (au1 + cu3)
−1

]
= t′h′.

Since v(c) < dcl(v(a),Z), we have that au1 + cu3 6= 0 and v( a−1u3
au1+cu3

) =

v(a−1u3)− v(au1 + cu3) = v(a−1u3)− v(cu3) > Z. So st( a−1u3
au1+cu3

) = 0. This

implies that t′ =

[
1 0

a−1u3
au1+cu3

1

]
∈ SL(2,O)0. Clearly t′ and h′ are definable

over M,h.

Lemma 3.6. q0 ∗ p0 ∗M = q0 ∗ J .

Proof. We first prove that q0 ∗ J ⊆ q0 ∗ p0 ∗M.

Let q0∗p be in the left hand side, namely p ∈ J . Using Corollary 2.11(iii),

we have that q0 ∗ p = q0 ∗ p0 ∗ p, and is clearly in I ∗ J , so in M.

So it suffices to show that q0 ∗ p0 ∗ p = q0 ∗ p0 ∗ q0 ∗ p0 ∗ p which is immediate

as q0 ∗ p0 is an idempotent (Theorem 3.4).

We now want to show that

q0 ∗ p0 ∗M ⊆ q0 ∗ J

By Lemma 3.3 it suffices to prove that

q0 ∗ p0 ∗ SK(M) ∗ J ⊆ q0 ∗ J

Let q ∈ SK(M) and p ∈ J . Let r ∈ SL(2,Zp) be the standard part of q

and let q′ = r−1q. So q′ ∈ K0, and

q0 ∗ p0 ∗ q ∗ p = q0 ∗ p0 ∗ r ∗ q′ ∗ p

Now we have two cases:

Case (i). r ∈ B(Zp).
Let t realize q0, h realize the heir of p0 over (M, t), t′ realize the heir of

q′ over (M, t, h) , with t, h, t′ ∈ G(M̄) and let h′ realizes the global heir of

p.
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By the first part of Lemma 3.5 and our case analysis, hr = rh1 with

h1 ∈ B(K)0 ∩ dcl(M,h). So

q0 ∗ p0 ∗ r ∗ q′ ∗ p
= tp(trh1t

′h′/M) = tp(trt′
h1h1h

′/M)

= tp(trt′
h1/M) ∗ tp(h1h

′/M).

But t′h1 is in K0 (as h1 ∈ dcl(M,h) and we can use Corollary 2.15),

and tr realizes the unique coheir over (M, t′h1) of the generic type q0r of K,

whereby tp(trt′h1/M) = q0r. As before tp(h1h
′/M) = p. We have shown so

far that q0 ∗ p0 ∗ q ∗ p = q0r ∗ p = q0 ∗ rp. As r is assumed to be in B(Zp) we

see that rp ∈ J too. So q0 ∗ rp ∈ q0 ∗ J as required.

Case (ii). r ∈ SL(2,Zp) \B(Zp).
By the second part of Lemma 3.5, p0r = tp(t0h0/M) with t0 ∈ SL(2,O)0,

h0 ∈ B(K) and both t0, h0 ∈ dcl(M,h), for h = (a, c) realizing p0. Now

choose t realizing the unique coheir of q0 over (M,h) and t′ realizing the

unique heir of q′ over (M, t, h), with t, t′, h in G(M̄). Now let h′ realize the

unique heir of p over M̄ . So, by the remarks above,

q0 ∗ p0 ∗ r ∗ q′ ∗ p = tp(tt0h0t
′h′/M) = tp(tt0(h0t

′h−10 )h0h
′/M).

Now, as t0 and t′ are in SL(2,O)0 and using Corollary 2.15, we see

that t0(h0t
′h−10 ) ∈ SL(2,O)0, and as t realizes the unique coheir of q0 over

these elements, tp(tt0h0t
′h−10 /M) = q0. On the other hand, now standard

arguments give that tp(h0h
′/M̄) is the unique global heir of tp(h0h

′/M) ∈
J . Hence tp(tt0(h0t

′h−10 )h0h/M) is of the form q0 ∗ p′ for some p′ ∈ J , and

Case (ii) is complete.

We have shown that the Ellis group attached to the flow (G(M), SG(M))

is q0 ∗ J .

Theorem 3.7. The map from J to q0 ∗J which takes p to q0 ∗p, is a group

isomorphism between (J , ∗) and (q0 ∗ J , ∗).

Proof. We first show that for p, p′ ∈ J , q0 ∗ p = q0 ∗ p′ iff p = p′.

Suppose that q0 ∗ p = q0 ∗ p′. Hence there are realizations t, t′ of q0, h of p

and h′ of p′ such that th = t′h′. Note that t and t′ are both in SL(2,O)0.

So we have:
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Claim (1). (t′)−1t = h′h−1 ∈ SL(2,O)0 ∩B(K).

We need a couple of additional observations.

Claim (2). SL(2,O)0 ∩B(K) = B(O)0

Proof of Claim (2). SL(2,O)∩B(K) = B(O). As discussed at the beginning

of Section 2.3, SL(2,O)0 is precisely the infinitesimals (with respect to the

standard model M = Qp). Hence the intersection of SL(2,O)0 with B(O)

is the infinitesimals of B(O) which again coincides with B(O)0.

Claim (3) B(O)0 ⊂ B(K)0.

Proof of Claim 3. Note that (K∗)0∩O∗ = (O∗)0. By the description of B(K)0

in Lemma 2.9, we obtain Claim (3).

So from Claims (2) and (3) we conclude that h and h′ from Claim (1) are

in the same coset of B(K)0 in B(K), which implies that p = p′.

So we have shown that the map taking p ∈ J to q0 ∗ p establishes a

bijection between J and q0 ∗ J . So the Theorem will be established after

proving that for p, p′ ∈ J ,

q0 ∗ p ∗ q0 ∗ p′ = q0 ∗ p ∗ p′

Claim. Let p, p′ ∈ J . Then p ∗ q0 ∗ p′ = tp(t0/M) ∗ p ∗ p′ for some t0 ∈
SL(2,O)0.

Proof of claim. Let h0 realize p in M̄ , let t1 ∈ SL(2,O)0 realize the unique

heir of q0 over M,h0, and let a realize the unique global heir of p′. Then

p ∗ q0 ∗ p′ = tp(h0t1a/M) = tp((h0t1h
−1
0 )h0a/M).

Put t0 = h0t1h
−1
0 which is in SL(2,O)0 (i.e. in K(M̄)0 with earlier notation).

By Lemma 2.10 and Corollary 2.11, tp(h0a/M̄) is definable over M , and

clearly h0a realizes p∗p′. So t0h0a realizes tp(t0/M)∗(p∗p′) = tp(t0/M)∗p∗p′,
proving the claim.

Now fix p, p′ ∈ J . Let t0 be given by the claim, and let h0, h1 be realizations

of p, p′ respectively in M̄ such that h0 realizes the unique heir of p over

M, t0 and h1 realizes the unique heir of p′ over M, t0, h0. So t0h0h1 realizes

tp(t0/M) ∗ p ∗ p′ = p ∗ q0 ∗ p′ (by the claim). Let t realize the unique global

coheir q′0 of q0. As Stab(q′0) = SL(2,O)0, it follows that q′0t0 = q′0. Hence,

putting everything together,

q0 ∗ p ∗ q0 ∗ p′ = q0 ∗ tp(t0/M) ∗ p ∗ p′ = tp(tt0/M) ∗ p ∗ p′ = q0 ∗ p ∗ p′

as required. This completes the proof of Theorem 3.7.
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Corollary 3.8. The Ellis group attached to the action of SL(2,Qp) on its

type space is Ẑ× Z∗p (as an abstract group).

Proof. By 2.11, (J , ∗) is isomorphic to B(K)/B(K)0 which is in turn iso-

morphic to Ẑ× Z∗p by Remark 2.5 and Lemma 2.9.

Question 3.9. What is the (definable) generalized Bohr compactification

of SL(2,Qp)? Does it already coincide with the (definable) Ellis group iden-

tified in Theorem 3.7.

Explanation. The generalized Bohr compactification was defined in [12] as

a certain quotient of the Ellis group, namely by the intersections of the

closures of the neighbourhoods of the identity in the so-called τ -topology on

the Ellis group. This account of the generalized Bohr compactification was

discussed in [16] and studied further there in the model-theoretic context.

4 The action of SL(2,Qp) on the type space

of the projective line over Qp

Let P1(Qp) denote the projective line over Qp, naturally a definable set in M .

SP1(M) denotes the space of complete types over M which concentrate on

the definable set P1(Qp). The usual action of SL(2,Qp) on P1(Qp) extends

to an action on SP1(M). We will study this action and observe that the

collection of nonalgebraic types in SP1(M) is a minimal proximal SL(2,Qp)

flow.

We begin with some prequisites concerning projective space and com-

patibilities with our earlier notation.

P1(Qp) is defined to be the set of equivalence classes of vectors

[
a0
a1

]
of elements of Qp, not both zero, under the equivalence relation given by[
a0
a1

]
∼
[
λa0
λa1

]
for all λ ∈ Qp, λ 6= 0.

P1(Qp) is of course interpretable in the structureM , and we can definably

identify it with Qp ∪ {∞} by identifying the ∼-class of

[
a
1

]
with a ∈ Qp

and denoting the ∼-class of

[
1
0

]
by∞, the point at infinity. Here∞ is some

fixed tuple from M . From now on we may write

[
a
b

]
instead of its ∼-class.
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Note that P1(Qp) is a p-adic analytic manifold via the natural bijections

φ1 : Qp −→ P1(Qp) \
{[

0
1

]}
and φ2 : Qp −→ P1(Qp) \

{[
1
0

]}
which give

P1(Qp) a manifold structure. This p-adic manifold structure is also definable

in the structure M .

But we will be mainly interested in P1(Qp) as a definable set in M . P1(K)

denotes the obvious thing, and in fact we can consider P1 as a formula in

the language of M .

The standard action ofG(Qp) on P1(Qp) is:

[
a b
c d

]
·
[
x
y

]
=

[
ax+ by
cx+ dy

]
; this

action is well-defined since

[
a b
c d

]
is invertible. Moreover the same formula

gives an action of G(K) on P1(K). In any case we obtain an action of G(Qp)

on the compact space SP1(M) which is a definable action as discussed earlier.

Remark 4.1. • The stabilizer of

[
1
0

]
is B(Qp).

• The quotient space G(Qp)/B(Qp) is homeomorphic to P1(Qp) via:

[
a b
c d

]
/B(Qp) 7→



[
a/c
1

]
if c 6= 0

[
1
0

]
if c = 0

.

Remark 4.2. We have given above a definable identification of P1(Qp) with

Qp ∪ {∞}. The same thing identifies P1(K) with K ∪ {∞}. Hence the type

space SP1(M) identifies with the space S1(M) of complete 1-types over M ,

together with the point∞, which is considered as a realized type. Note that

with notation from Section 2.1, the 1-types over M of the form p∞,C will be

the types of elements of P1(K) which are infinitesmially close to the point

∞ (with respect to the p-adic manifold topology discussed earlier).

Definition 4.3. For p ∈ SG(M) and q in SP1(M) we define p∗q as tp(g·b/M)

where b realizes q and g realizes the unique coheir of p over (M, b).

Remark 4.4. (i) If p1, p2 ∈ SG(M) and q ∈ SP1(M) then (p1 ∗ p2) ∗ q =

p1 ∗ (p2 ∗ q).
(ii) Let π be the map from SL(2,Qp) onto P1(Qp) defined implicitly in 4.1,

extended naturally to a map between the respective type spaces. Then for

p1, p2 ∈ SG(M), p1 ∗ π(p2) = π(p1 ∗ p2).
(iii) For any q ∈ SP1(M) the closure of the G(M)-orbit G(M) · q is precisely

{p ∗ q : p ∈ SG(M)}.
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We now use some notation from earlier sections.

Specifically p0 ∈ SB(M) ⊂ SG(M) and q0 ∈ SK(M) ⊂ SG(M) are specific

f -generic types. Let

TP∞ =

{
tp

([
a
1

]
/Qp

)
∈ SP1(Qp)| v(a) < n : n ∈ Z

}
.

So TP∞ is the infinitesimal neighbourhood of ∞ in SP1(M) (with the

topology coming from the manifold topology on P1(Qp)), minus the point

∞ itself.

Then

Lemma 4.5. For every q ∈ SP1(Qp),

• if q 6=∞, then p0 ∗ q ∈ TP∞.

• p0 ∗∞ =∞.

Proof. • Suppose that q ∈ SP1(Qp) and q 6=∞. Let

[
a
1

]
be a realization

of q and h =

[
b c
0 b−1

]
a realization of p0 such that tp(a/Qp, b, c) is

the heir of tp(a/Qp). Then

p0 ∗ q = tp

([
b c
0 b−1

]
·
[
a
1

]
/Qp

)
= tp(ab2 + bc/Qp).

If v(a) > n for some n ∈ Z, since v(c) < dcl(Z, b) we have v(bc) <

v(ab2) and thus v(ab2 + bc) = v(bc) < Z; if v(a) < Z, then v(ab2) <

v(bc) since tp(v(a)/Z, v(b), v(c)) is an heir of tp((v(a)/Z), so v(ab2 +

bc) = v(ab2) < Z. This implies that p0 ∗ q ∈ TP∞.

• As B(K) stabilizes∞ and p0 ∈ SB(Qp), we have that p0 ∗ q = q where

q =∞.

Lemma 4.6. For every q ∈ TP∞, we have q0 ∗ q = q0 ∗∞.

Proof. Suppose that q ∈ TP∞ and q 6= ∞. Let

[
c
1

]
be a realization of q.

Then

[
c
1

]
=

[
1 0
c−1 1

]
·
[
1
0

]
. Since v(c) < Z, st

([
1 0
c−1 1

])
=

[
1 0
0 1

]
. So[

1 0
c−1 1

]
∈ K0. Let p = tp(

[
1 0
c−1 1

]
/Qp). Then q = p ∗ (

[
1
0

]
). So

q0 ∗ q = q0 ∗ (p ∗ (

[
1
0

]
)) = (q0 ∗ p) ∗ (

[
1
0

]
).

Since q0 is generic in SK(M) and p is realized by some element from K0,

we have q0 ∗ p = q0.
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By Lemma 4.5 and Lemma 4.6, we have

Theorem 4.7. (q0 ∗ p0) ∗ (SP1(Qp)) =

{
q0 ∗

([
1
0

])}
.

Corollary 4.8. The set of nonalgebraic types in SP1(M) is a minimal prox-

imal SL(2,Qp)-flow.

Proof. Firstly the set SP1,na(M) of nonalgebraic types in SP1(M) is closed

and SL(2,Qp)-invariant. Secondly (see Remark 4.4(iii)), any minimal

SL(2,Qp)-subflow of SP1,na(M), is closed under SG(M)∗, so by Theorem

4.7 contains q0 ∗
([

1
0

])
. We have shown so far that SP1(M) has a unique

minimal subflow which is the closure of the orbit of q0 ∗ ∞ and that this

minimal subflow is proximal. It remains to see that SP1,na(M) is a minimal

subflow. It is clearly closed and SL(2,Qp)-invariant. Note that the unique

minimal subflow of SP1(M) contains a minimal subflow with respect to

the multiplicative group, which by Proposition 2.4 consists either of the

complete nonalgebraic 1-types over M which are “infinitesimally close” to 0,

or the complete nonalgebraic 1-types over M which are “at infinity”, namely

what we called above the infinitesimal neighbourhood of∞ in SP1,na(M). As

SL(2,Qp) acts transitively on P1(Qp), it follows that for every a ∈ P1(Qp),

the set of complete nonalgebraic 1-types over M infinitesimally close to a is

included in the unique minimal subflow of SP1,na(M). But this accounts for

all of SP1,na(M) which is therefore minimal as claimed.

Question 4.9. (i) Is SP1,na(M) the universal minimal proximal definable

SL(2,Qp) flow?

(ii) Is SP1,na(M) a strongly proximal SL(2,Qp)-flow?

Explanation. (i) The universal minimal proximal definable flow exists and

will be a minimal proximal SL(2,Qp)-flow which is a “homomorphic image”

of the universal minimal definable flow, and universal such.

(ii) Strong proximality of (X,G) means that the action of G on the space

of Borel probability measures on X is proximal.

In our context, (SP1,na(M), SL(2,Qp)), the action will be definable. See

Proposition 6.3 of [16]. We guess that the answer to (ii) is positive.
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