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Abstract. We develop “local NIP group theory” in the context of pseudofi-

nite groups. In particular, given a sufficiently saturated pseudofinite structure

G expanding a group, and left invariant NIP formula δ(x; ȳ), we prove various
aspects of “local fsg” for the right-stratified formula δr(x; ȳ, u) := δ(x · u; ȳ).

This includes a δr-type-definable connected component, uniqueness of the

pseudofinite counting measure as a left-invariant measure on δr-formulas, and
generic compact domination for δr-definable sets.

1. Introduction

One of the more remarkable aspects of stable group theory is the ability to formu-
late useful abstract notions of tools from algebra, combinatorics, and topological
dynamics. For example, given a group G definable in a (sufficiently saturated)
model of a stable theory, one has at hand abstract versions of connected compo-
nents, stabilizers, generic points, and invariant probability measures on definable
sets (leading to the notion of definable amenability). As the entire field of model
theory began moving outward from stability, so did the model theoretic study of
groups, leading to a large body of work on groups definable in simple and NIP the-
ories. In the case of NIP theories, connected components and invariant measures
remain powerful tools for studying definable groups (e.g [1], [6], [8], [9]).

Another important aspect of stability theory is that it can be applied locally. In
particular, many of the tools related to nonforking and the geometry of definable
sets remain valid when one works around a single stable formula φ(x̄; ȳ) (see, e.g.,
[7]). This is quite useful for applications to other areas of mathematics, as one
would like to prove results about algebraic or combinatorial objects exhibiting good
behavior related to stability and omitting half-graphs, but also have the freedom
to work in an environment which is not stable (e.g. a nonstandard of model set
theory).

In contrast, the study of local NIP theory is still work in progress, especially in
the setting of groups. The goal of this paper is to examine NIP formulas in the con-
text of pseudofinite groups. We will find that, in pseudofinite groups, NIP formulas
exhibit many properties found in NIP groups with finitely satisfiable generics and
generically stable measures. In fact, the results we obtain here could be formulated
with the pseudofiniteness assumption replaced by a suitably local, albeit slightly
cumbersome, assumption of generic stability for an invariant measure with respect
to an NIP formula (see Remark 1.3). On the other hand, it is quite reasonable to

Date: March 24, 2018.
The second author was supported by NSF grants DMS-1360702 and DMS-1665035. This work

was finished during the Model Theory, Combinatorics and Valued Fields trimester program at
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focus on pseudofinite groups, as this is a natural settings for applications to finite
combinatorics and combinatorial number theory. Indeed, the work in this paper
was originally motivated by generalizing the regularity lemma for stable subsets of
finite groups from [2] (with C. Terry), to the NIP setting. In [3] (also with Terry),
we use the work done here to obtain such a generalization.

Our setting is as follows. We work with a sufficiently saturated elementary
extensionG of an ultraproduct of expansions of finite groups (in some fixed language
L expanding the language of groups), and let µ denote the pseudofinite counting
measure. We also fix a formula δ(x; ȳ), possibly with parameters, which is NIP and
invariant in the sense that any left translate of an instance of δ is again an instance
of δ (the canonical example of an invariant formula is something of the form φ(y ·x),
where φ(x) is any formula). In order to prove our main results, it will be necessary
to work mostly around the “right-stratified” formula δr(x; ȳ, u), which we define to
be δ(x · u; ȳ). The following theorem summarizes the main results of the paper.

Theorem 1.1. Let G be as above, and assume δ(x; ȳ) is NIP.

(a) (Generic types) Given a δr-formula φ(x), the following are equivalent:
(i) φ(x) is left generic;

(ii) φ(x) is right generic;
(iii) µ(φ(x)) > 0.
In particular, global generic δ-types and global generic δr-types exist.

(b) (Local G00) Let G00
δr denote the intersection of all δr-type-definable bounded-

index subgroups of G. Then:
(i) G00

δr is normal and δr-type-definable of bounded index.
(ii) G00

δr is the intersection of all stabilizer subgroups of the form Stabµ(φ(x)) :=
{g ∈ G : µ(φ(g-1x)4φ(x)) = 0}, where φ(x) is a δr-formula.

(iii) G00
δr is the intersection of all stabilizer subgroups of the form Stab(p) :=
{g ∈ G : gp = p}, where p is a generic δ-type over G.

(iv) G00
δr = Stab(p) for any generic δr-type p over G.

(c) (Local G0) Let G0
δr denote the intersection of all δr-definable finite-index sub-

groups of G. Then G0
δr is normal and δr-type-definable of bounded index. More-

over, G0
δr/G

00
δr is the connected component of the identity in G/G00

δr .

(d) (Uniqueness of measure) The measure µ is the unique left-invariant finitely
additive probability measure on the Boolean algebra of δr-formulas.

(e) (Generic compact domination) Given a δr-formula φ(x), define Eφ(x) ⊆ G/G00
δr

to be the (closed) set of C ∈ G/G00
δr such that p |= C ∩φ(x) and q |= C ∩¬φ(x)

for some generic δr-types p, q over G. Then Eφ(x) has Haar measure 0.

Remark 1.2. The reader familiar with [1], [6], [8], and [9] will notice strong similar-
ities between the theorem above and properties of groups definable in NIP theories,
especially those with finitely satisfiable generics (see Remark 1.3). Therefore, it
is worth emphasizing that although these sources provide an invaluable guide for
the proof of Theorem 1.1 (as detailed below), the results above are not simply ob-
tained by direct translation from the global NIP setting. In particular, the formula
δr(x; ȳ) need not be NIP (see Example 3.7), and so we are instead forced to work
with certain families of (non-uniformly) NIP formulas given by instances of δr. For
this reason, many proof techniques from the above sources must either be redone
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from scratch, or replaced with a more combinatorial method that does not rely on
as many model theoretic tools.

Remark 1.3. The essential use of pseudofiniteness is in our work is in deriving
local analogues of definability and finite satisfiability of the pseudofinite counting
measure, with respect to certain families of NIP formulas. Indeed, our results
hold in a more general setting of “local fsg” for NIP formulas, and so we take
the opportunity here to make this explicit. Recall from that a group G, definable
in a saturated model an NIP theory, has finitely satisfiable generics if and only
if it admits a left-invariant finitely additive measure on definable sets, which is
generically stable (i.e. definable and finitely satisfiable) over a small model (see
[15, Proposition 8.33]). Moreover, this measure is right-invariant and unique. A
suitable localization of this behavior is as follows.

Suppose G is a saturated expansion of a group and δ(x; ȳ) is an invariant NIP
formula. Call a formula θ(x; ȳ) a stabilizing formula if it is of the form φ(x · y),
φ(y · x), φ(y1 · x)4φ(y2 · x), or φ(x · y1)4φ(x · y2) for some δr-formula φ(x). For
the purposes of this remark, we say that δ(x; ȳ) is fsg if there is a left and right
invariant measure µ on the Boolean algebra of δr-definable sets such that, for any
stabilizing formula θ(x; y1, y2) and any ε > 0, the following holds:

(i) (local finite satisfiability) there is F ⊆ G finite such that, for any b1, b2 ∈ G,
if µ(θ(x; b1, b2)) > ε then θ(x; b1, b2) is realized in F , and

(ii) (local definability) the set {(b1, b2) ∈ G2 : µ(θ(x; b1, b2)) ≤ ε} is θopp-type-
definable.

In this case, the measure µ satisfies the key properties demonstrated for pseudofinite
counting measures in Section 2. Altogether, if G is as above and δ(x; ȳ) is invariant,
NIP, and fsg, then Theorem 1.1 holds, with µ in place of the pseudofinite counting
measure.

Although we do not pursue any examples of this behavior beyond NIP formulas
in pseudofinite groups, it is worth pointing out that if G is an fsg group definable
in an NIP theory, then any invariant formula δ(x; ȳ) in G is (locally) fsg. In other
words, our work shows that the properties of NIP fsg groups can be localized around
objects defined by controlled instances of a particular formula.

Remark 1.4. The initial motivation for the work in this paper was toward the
subject of arithmetical regularity in finite groups (first developed by Green [4] in
the abelian setting). In analogy to the various strengthened regularity lemmas for
graphs definable in model theoretically tame (e.g. stable or NIP) contexts, there
has been a flurry of recent interest in strengthened arithmetic regularity lemmas
for similarly “tame” subsets of finite groups. In [3] (also with C. Terry), we use
Theorem 1.1, and generic compact domination in particular, to prove arithmetic
regularity lemmas for “VC-sets” in finite groups (i.e., sets whose family of left
translates has absolutely bounded VC-dimension). Further detail is given at the
end of this section.

We now give a brief summary of the paper and compare the various aspects of
the above theorem to previous work on groups definable in NIP theories.

Section 2 contains preliminary observations on the pseudofinite setting above.
In Section 2.2, we show that the VC-theorem transfers naturally to pseudofinite
structures and, as a consequence, the pseudofinite counting measure is definable
and finitely satisfiable when restricted to NIP formulas.
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In Section 3, we construct G00
δr by hand using stabilizers of formulas and generic

types. This section contains proofs of parts (a) and (b) of Theorem 1.1 (see Propo-
sition 3.12 and Theorem 3.15, respectively). These results are local versions, in
this pseudofinite setting, of previous results on fsg groups in NIP theories. Namely,
if G is definable in an NIP theory, then the type-definable connected component
G00 exists, and is the intersection of all type-definable bounded-index subgroups of
G. If G is also fsg, then generic types exist and left and right genericity coincides.
Moreover, in this case there is a left-invariant Keisler measure µ on G, which is
definable and finitely satisfiable in some (any) small model. See [8], [9].

In Section 4, we first “localize” the standard logic topology on G/Γ, where Γ is
type-definable of bounded index, and use this to prove part (c) of Theorem 1.1 (see
Corollary 4.5). This is a local analog of the fact that, for a group G definable in an
NIP theory, the definable connected component G0 exists, and is the intersection
of all definable finite-index subgroups of G. Moreover, in this case, G0/G00 is the
connected component of the identity in G/G00.

We prove part (d) of Theorem 1.1 in Section 5 (see Theorem 5.9), and part (e)
in Section 6 (see Theorem 6.2). These are local analogs of the fact that, for a
group G definable in an NIP theory, if G is fsg then there is a unique left-invariant
Keisler measure on G, and if G is definably amenable (e.g. if G is fsg) then generic
compact domination holds. This latter fact first appears in [9], with some errors
in the proof, and was eventually given a correct proof by Simon in [17]. Our work
in Sections 5 and 6 relies heavily on results of Simon from [16] and [17], and also
involves local versions of several proofs in the work of Chernikov and Simon on
definably amenable NIP groups [1].

The study of generic compact domination (and its stronger relative “compact
domination”) originates from the Pillay conjectures on groups definable in o-minimal
theories (see [6], [13]). It is rather remarkable that generic compact domination de-
scribes, in an infinite setting, the underlying qualitative mechanics of regularity
lemmas in model theoretically tame environments, especially arithmetic regularity
in the context of finite groups. In particular, given a finite group G and a suitably
tame (e.g. stable or NIP) set A ⊆ G, the strongest kind of arithmetic regularity
lemma would produce a normal subgroup H, whose index is uniformly bounded in
some way, such that almost all cosets of H are “strongly regular for A”, i.e. are al-
most entirely contained in A or almost entirely disjoint from A (see [2] for a precise
account in the stable context). In the above setting of pseudofinite groups (which
arise when proving regularity for finite groups via ultraproducts), generic compact
domination says that if A ⊆ G is suitably NIP (e.g. defined by a δr-formula as
above), almost all cosets of G00 are strongly regular for A. This generalizes the
behavior of subsets of groups definable by stable formulas, in which case G00 = G0,
and all cosets of G0 are strongly regular for A, leading to a structural description of
A as a union of cosets of G0 (see [2]). In the NIP setting, the use of generic compact
domination, to deduce results about finite groups using ultraproduct,s requires a
good deal of further work, which we carry out in [3] with C. Terry.

2. Preliminaries

2.1. Set systems and VC-dimension. In this section, we briefly state the basic
definitions and main results on VC-dimension. Further details can be found in [15],
for example.
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A set system is a pair (X,S) where X is a set and S ⊆ P(X).

Definition 2.1. Let (X,S) be a set system.

(1) The shatter function of (X,S) is π(X,S) : N→ N such that

π(X,S)(n) = max{|A ∩ S| : A ⊆ X, |A| = n},

where, given A ⊆ X, A ∩ S = {A ∩ Y : Y ∈ S}.
(2) The VC-dimension of (X,S) is

sup{n ∈ N : π(X,S)(n) = 2n} ∈ N ∪ {∞}.

Fact 2.2 (Sauer-Shelah Lemma). For all k ≥ 1 there is c = c(k) such that, if
(X,S) is a set system of VC-dimension k, then π(X,S)(n) ≤ cnk for all n ≥ 0.

Given a set X, a unary relation U on X, and a tuple (a1, . . . , an) ∈ Xn, define

E(a1, . . . , an;U) := 1
n |{i ∈ [n] : U(ai) holds}|.

For finite sets X, we let µX denote the normalized counting measure on X.

Fact 2.3 (VC-Theorem). For any k ≥ 1 and ε > 0 there is r = r(k, ε) such that
the following holds. Suppose X is a finite set and (X,S) is a set system with VC-
dimension at most k. Then there are (not necessarily distinct) x1, . . . , xr ∈ X such
that |µX(Y )− E(x1, . . . , xr;Y )| < ε for any Y ∈ S.

The sequence (x1, . . . , xr) in the VC-Theorem is often called an ε-approximation
for the set system (X,S), and the set {x1, . . . , xr} is an ε-net for (X,S).

Remark 2.4. Several of the following results will yields various bounds, depending
on some k and ε, which are explicit in terms of r(k, ε) in the VC-Theorem. So it is
worth noting that r(k, ε) is O(kε-2 log(ε-1)) (see [5], [10]).

2.2. NIP formulas in pseudofinite structures. Let L be a first-order language.
In preparation for working with pseudofinite L-structures, we expand L to a lan-
guage L+ containing a new sort I, on which there is a binary relation < and
a binary function d(x, y). In any finite L-structure, we interpret I as [0, 1] and
d(x, y) as the standard distance on [0, 1] (we will also write |x− y| for d(x, y)). For
every L-formula φ(x̄; ȳ), we add to L+ a ȳ-ary function symbol µφ(ȳ) into I. In
any finite L-structure A, µφ(ȳ) is interpreted as µA(φ(Ax̄, ȳ)).

Let M be a fixed, sufficiently saturated elementary extension of an ultraprod-
uct of finite L+-structures (which are canonically expanded from L-structures as
described above). By convention, formulas will always be in the language L and al-
ways allow parameters from M . We will use L-formula to specify formulas with no
extra parameters. We let µ denote the pseudofinite counting measure on M . Specif-
ically, given an L-formula φ(x̄, ȳ) and b̄ ∈M ȳ, µ(φ(x̄, b̄)) is defined as the standard
part of µφ(b̄). It is routine to verify that µ is a finitely additive probability measure
on (powers of) M .

Definition 2.5. Given k ≥ 1, a formula φ(x̄, ȳ) is k-NIP if there do not exist
sequences (āi)i∈[k] in M x̄ and (b̄X)X⊆[k] in M ȳ such that M |= φ(āi, b̄X) if and
only if i ∈ X. A formula φ(x̄; ȳ) is NIP if it is k-NIP for some k ≥ 1.

Remark 2.6. A formula φ(x̄, ȳ) is k-NIP if and only if the set system (M x̄, {φ(M x̄, b̄) :
b̄ ∈M ȳ}) has VC-dimension at most k − 1.
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The rest of this section contains several corollaries of the VC-Theorem for pseu-
dofinite structures. Roughly speaking, the VC-Theorem says that, restricted to set
systems of finite VC-dimension, counting measures on finite sets are approximated
by averages of points. We now observe that this immediately implies the same
statement for the pseudofinite counting measure on M .

Corollary 2.7. For any k ≥ 1 and ε > 0, there is r = r(k, ε) such that the following
holds. Suppose φ(x̄; ȳ) is a k-NIP formula. Then there are (not necessarily distinct)
ā1, . . . , ār ∈M x̄ such that, for any b̄ ∈M ȳ,∣∣µ(φ(x̄; b̄))− E(ā1, . . . , ār;φ(x̄; b̄))

∣∣ ≤ ε.
In particular, if µ(φ(x̄; b̄)) > ε then φ(x̄; b̄) is realized in F (φ, ε) = {ā1, . . . , āt}.

Proof. Fix k and ε and let r(k, ε) be as in the VC-Theorem. Let φ(x̄; ȳ, z̄) be an
L-formula, and let χ(z̄) be an L-formula expressing that φ(x̄; ȳ, z̄) is k-NIP as a
relation in x̄ and ȳ. By the VC-theorem, if A is a finite L-structure then

A |= ∀z̄ (χ(z̄)→ ∃x̄1 . . . x̄r ∀ȳ |µφ(ȳ)− E(x̄1, . . . , x̄r;φ(x̄, ȳ, z̄))| < ε)

(where the expression on the right is an L+-sentence). Therefore, by  Loś’s Theorem
and elementarity, M satisfies this sentence, which yields the desired result. �

Corollary 2.8. Suppose M is pseudofinite. Let ∆ = {φi(x̄; ȳi) : i ∈ I} be a
collection of NIP formulas. Then there is M0 � M , of size at most |I| + ℵ0, such
that for any i ∈ I and b̄ ∈M ȳi , if µ(φi(x̄; b̄)) > 0 then φi(x̄; b̄) is realized in M .

Proof. Let M0 �M be any model, of size at most |I|+ ℵ0, which contains the set
F (φi, ε) from Corollary 2.7 for all i ∈ I and rational ε > 0. �

Definition 2.9. Let φ(x̄; ȳ) be a formula.

(1) An instance of φ(x̄; ȳ) is a formula φ(x̄; b̄) or ¬φ(x̄; b̄), where b̄ ∈M ȳ.
(2) A φ-formula is a finite Boolean combination of instances of φ(x̄; ȳ).
(3) A set X ⊆M x̄ is φ-definable if it is defined by a φ-formula.
(4) A set X ⊆ M x̄ is φ-type-definable if it is defined by an intersection of

boundedly many φ-formulas.
(5) Let φopp(ȳ; x̄) denote φ(x̄; ȳ).

Corollary 2.10. Suppose M is pseudofinite, and fix an NIP formula φ(x̄; ȳ). Then
there is a countable set A ⊂M such that, for any closed C ⊆ [0, 1], the set

{b̄ ∈M ȳ : µ(φ(x̄; b̄)) ∈ C}

is φopp-type-definable over A.

Proof. Given n > 0, we have rn ∈ N and ān1 , . . . , ā
n
rn ∈ M x̄ such that, for all

b̄ ∈M ȳ, |µ(φ(x̄, b̄))− E(ān1 , . . . , ā
n
rn ;φ(x̄; b̄))| ≤ 1

n . Define

Xn =
{
b̄ ∈M ȳ : d(E(ān1 , . . . , ā

n
rn ;φ(x̄; b̄)), C) ≤ 1

n

}
.

Then, since C is closed, it follows that {b̄ ∈ M ȳ : µ(φ(x̄; b̄)) ∈ C} =
⋂
n>0Xn. So

it suffices to show that each Xn is φopp-definable over An =
⋃rn
i=1 ā

n
i . Fix n > 0

and, for I ⊆ [rn], define the formula

θI(ȳ) :=
∧
i∈I

φ(āni ; ȳ) ∧
∧

i∈[rn]\I

¬φ(āni ; ȳ).
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Then θI(ȳ) is a φopp-formula over An. Set F = {I ⊆ [rn] : d( |I|n , C) < 1
n}. Then

Xn is defined by
∨
I∈F θI(ȳ). �

2.3. NIP formulas and generic sets in pseudofinite groups.

Definition 2.11. Let G be a group. Given n ≥ 1, set A ⊆ G is left n-generic
(resp. right n-generic) if there are n left translates (resp. right translates) of A
whose union is G. We say A ⊆ G is left generic (resp. right generic) if it is left
n-generic (resp. right n-generic) for some n ≥ 1.

We now assume that L expands the language of groups, and we let G be a
fixed, sufficiently saturated L-structure which is an elementary extension of an
ultraproduct of finite groups. Note that the pseudofinite counting measure µ on G
is left and right invariant.

Definition 2.12. Let φ(x) be a formula.

(1) Let φ`(x; y) denote the formula φ(y · x).
(2) Let φr(x; y) denote the formula φ(x · y).

Given a formula φ(x), note that φr(x; y) = (φ`)opp(x; y). In particular, φ`(x; y)
is NIP if and only if φr(x; y) is NIP.

Corollary 2.13. For any k ≥ 1 and ε > 0 there is n = n(k, ε) such that, for any
formula φ(x), if φ`(x; y) is k-NIP and µ(φ(x)) > ε, then φ(x) is left n-generic and
right n-generic.

Proof. Fix k ≥ 1 and ε > 0. Let n = max{r(k, ε), r(2k, ε)} be given by Corollary
2.7. Suppose φ(x) is a formula such that φ`(x; y) is k-NIP, and assume µ(φ(x)) > ε.
Then µ(φ(bx)) > ε for any b ∈ G by invariance of µ. By Corollary 2.7, there is
F ⊂ G, of size at most n, such that φ(bx) is realized in F for any b ∈ G. So the
right translates of φ(x) by elements in F -1 cover G, i.e. φ(x) is right n-generic. By
choice of n and the same argument applied to φr(x; y) (which is 2k-NIP), we see
that φ(x) is left n-generic. �

Corollary 2.14. Let φ(x) be a formula such that φ`(x; y) is NIP. The following
are equivalent:

(i) φ(x) is left generic;
(ii) φ(x) is right generic;

(iii) µ(φ(x)) > 0.

Proof. (i) ⇒ (iii) and (ii) ⇒ (iii) are by invariance and finite additivity of µ.
(iii)⇒ (i) and (iii)⇒ (ii) are by Corollary 2.13. �

In light of the previous corollary, we will just say φ(x) is generic (or n-generic),
in the case that φ`(x; y) is NIP and µ(φ(x)) > 0.

Corollary 2.15. Let φ(x) be a formula such that φ`(x; y) is NIP. Then at least
one of φ(x) or ¬φ(x) is generic.

Proof. At least one of φ(x) or ¬φ(x) must have positive µ-measure. �

3. Stabilizers and G00

Throughout this section, and for the rest of the paper, we continue to work with
a sufficiently saturated pseudofinite L-structure G expanding a group.
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3.1. Stabilizers of formulas.

Definition 3.1. Let φ(x) be a formula.

(1) Given ε ≥ 0, define

Stabεµ(φ(x)) = {g ∈ G : µ(φ(g-1x)4φ(x)) ≤ ε}.

(2) Define Stabµ(φ(x)) = Stab0
µ(φ(x)) = {g ∈ G : µ(φ(g-1x)4φ(x)) = 0}.

Proposition 3.2. Suppose φ(x) is a formula such that φ`(x; y) is NIP. Then,
for any ε > 0, Stabεµ(φ(x)) is left generic and φr-type-definable over a countable
parameter set.

Proof. Let ψ(x; y1, y2) denote φ(y1 ·x)4φ(y2 ·x), and note that ψ(x; y1, y2) is NIP.
By Corollary 2.7, we may fix a finite set F ⊂ G such that, for any b1, b2 ∈ G, if
µ(ψ(x; b1, b2)) > ε then ψ(x; b1, b2) is realized in F . Define an equivalence relation
∼ on G such that g ∼ h if and only if F ∩ gφ(G) = F ∩hφ(G). Then ∼ has finitely
many classes and so we may pick representatives g1, . . . , gn. Let X = Stabεµ(φ(x)).
We show G = g1X ∪ . . . ∪ gnX. Fix h ∈ G. Then h ∼ gi for some 1 ≤ i ≤ n. It
follows that ψ(x;h-1, g-1

i ) is not realized in F , and so

µ(φ(h-1gix)4φ(x)) = µ(ψ(x;h-1, g-1
i )) ≥ ε.

Therefore g-1
i h ∈ X, and so h ∈ giX, as desired.

Finally, let θ(x; y) denote φ(y · x)4φ(x), which is NIP. We have

Stabεµ(φ(x)) = {g ∈ G : µ(θ(x; g)) ≤ ε},

and so Stabεµ(φ(x)) is θopp-type-definable over a countable parameter set by Corol-
lary 2.10. Since any instance of θopp(y;x) is equivalent to an instance of φr(x; y),
we have the desired result. �

Remark 3.3. Let φ(x) and ε > 0 be as in the proof of Proposition 3.2. Note that
if φ`(x; y) is k-NIP, and π denotes the shatter function for (G, {φ(gx) : g ∈ G}),
then ∼ has at most π(r(k, ε)) classes, where r(k, ε) is given by Corollary 2.7. By the
Sauer-Shelah Lemma and Remark 2.4, Stabεµ(φ(x)) is n-generic with n ≤ ε-Ok(1).

Corollary 3.4. Suppose φ(x) is a formula such that φ`(x; y) is NIP. Then Stabµ(φ(x))
is a subgroup of G of bounded index, which is φr-type-definable over a countable pa-
rameter set.

Proof. Using invariance and finite additivity of µ, it is straightforward to check that
Stabµ(φ(x)) is a subgroup of G. By definition, Stabµ(φ(x)) =

⋂
ε∈Q+ Stabεµ(φ(x)).

By Proposition 3.2, each set in this intersection is generic and φr-type-definable
over a countable parameter set. Therefore Stabµ(φ(x)) has bounded index and is
φr-type-definable over a countable parameter set. �

Given a formula φ(x), the formula φ`(x; y) is invariant in the sense that any left
translate of an instance of φ`(x; y) is also an instance of φ`(x; y). We want to work
with the general class of formulas satisfying this property.

Definition 3.5. A formula δ(x; ȳ) is (left) invariant if, for any a, b̄ ∈ G, there is
c̄ ∈ G such that δ(ax; b̄) is equivalent to δ(x; c̄).
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The main reason to work with invariant L-formulas is so that we have a well-
defined action by G on the space of δ-types (defined below). However, given a
formula δ(x; ȳ), which is invariant and NIP, it will be necessary to consider right
translates of δ-formulas in order to pinpoint type-definability at various steps of the
subsequent work (as suggested by Proposition 3.2). Therefore, we set the following
notation.

Definition 3.6. Given a formula δ(x; ȳ), let δr(x; ȳ, u) denote the formula δ(x·u; y).

Note that if an invariant L-formula δ(x; ȳ) is also right invariant (e.g. if G is
abelian), then δr(x; ȳ, u) is essentially the same as δ(x; ȳ). However, in general,
δr(x; ȳ, u) may behave quite differently. Most importantly, δr(x; ȳ) may be NIP,
while δr(x; ȳ, u) is not, as demonstrated by the following example.

Example 3.7. Given k ∈ N, let Gk be the group of permutations of {1, . . . , k+1},
and let Hk be the subgroup of permutations fixing 1. Then, with Gk as the ambient
structure, the formula yx ∈ Hk is 2-stable (and thus 2-NIP) since Hk is a subgroup.
But yxy ∈ Hk is not k-NIP. To see this, let X = {2, . . . , k + 1}. Given n ∈ X and
I ⊆ X, let an ∈ Gk be the transposition (1 n), and let bI ∈ Gk be a permutation
whose set of fixed points in X is precisely I (such a permutation always exists since
1 6∈ X). Then, given n ∈ X and I ⊆ X, anbIan ∈ Hk if and only if n ∈ I.

Now let U be a nonprincipal ultrafilter on N and let G =
∏
U Gk. If A =

∏
U Hk,

then yx ∈ A is stable, while yxy ∈ A has the independence property.

Despite the behavior seen in the last example, we will still recover sufficiently
good behavior for instances of the formula δr(x; ȳ, u) (see, e.g., Proposition 3.12).

The next goal is to define the local analog of G00. We will first give an explicit
construction using “measure-stabilizers” of formulas, and then show that the object
obtained behaves as expected (see Theorem 3.15).

Definition 3.8. Let δ(x; ȳ) be a formula. Define

G∗δ =
⋂
ā∈Gȳ

Stabµ(δ(x; ā)).

Lemma 3.9. If δ(x; ȳ) is invariant and NIP, then there is a bounded set A ⊆ Gȳ

such that G∗δ =
⋂
ā∈A Stabµ(δ(x; ā)).

Proof. Define an equivalence relation ∼ on Gȳ such that ā ∼ b̄ if and only if
µ(δ(x; ā)4 δ(x; b̄)). To find the desired set A, it suffices to show that ā ∼ b̄ implies
Stabµ(δ(x; ā)) = Stabµ(δ(x; b̄)), and that ∼ has a bounded number of classes.

For the first claim, fix ā, b̄, g ∈ G. The formula δ(g-1x; ā)4 δ(x; b̄) implies

(δ(g-1x; b̄)4 δ(g-1x; ā)) ∨ (δ(g-1x; ā)4 δ(x; ā)) ∨ (δ(x; ā)4 δ(x; b̄)).

So if ā ∼ b̄ and g ∈ Stabµ(δ(x; ā)), then g ∈ Stabµ(δ(x; b̄)) by invariance and finite
additivity of µ.

The second claim is standard fact about NIP formulas (details are included for
the sake of clarity). If ∼ has unboundedly many classes then by Erdős-Rado there is
an indiscernible sequence (b̄i)i<ω, and some ε > 0, such that µ(δ(x; b̄i)4 δ(x; b̄j)) ≥ ε
for all i 6= j. Then {δ(x; b̄2i)4 δ(x; b̄2i+1) : i < ω} is consistent by [6, Lemma 2.8].
This contradicts that δ(x; ȳ) is NIP and thus has finite alternation number (e.g.
[14, Theorem 12.17]). �

From Corollary 3.4 and Lemma 3.9, we immediately obtain the following result.
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Corollary 3.10. If δ(x; ȳ) is invariant and NIP then G∗δ is a δr-type-definable
bounded-index subgroup of G.

3.2. Stabilizers of types.

Definition 3.11. Fix an invariant formula δ(x; ȳ).

(1) Given A ⊆ G, let Sδ(A) denote the space of complete δ-types (i.e. max-
imal consistent sets of instances of δ) with parameters from A.

(2) Given p ∈ Sδ(G), let Stab(p) = {g ∈ G : gp = p} (where gp = {φ(g-1x) :
φ(x) ∈ p}).

(3) A δ-type p is left generic (resp. right generic) if every formula in p is
left generic (resp. right generic).

Proposition 3.12. Suppose δ(x; ȳ) is invariant and NIP.

(a) If φ(x) is a δr-formula then φ`(x; y) is NIP.
(b) Given p ∈ Sδr (G), the following are equivalent:

(i) p is left generic;
(ii) p is right generic;

(iii) µ(φ(x)) > 0 for all φ(x) ∈ p.
(c) The space of (left) generic types in Sδr (G) is nonempty and invariant under

left and right multiplication.

Proof. Part (a). Fix k ≥ 1 such that δ(x; ȳ) is k-NIP. We first claim that, for any
b̄, c ∈ G, if φ(x) denotes δr(x; b̄, c), then φ`(x; y) is k-NIP. To see this, suppose we
have (ri)i∈[n] and (sI)I⊆[n] such that δr(sIri; b̄, c) holds if and only if i ∈ I. For

any I, there is āI such that δ(sI ·x; b̄) is equivalent to δ(x; āi). So, setting gi = ric,
we have δ(gi; āI) if and only if i ∈ I. So n < k. Part (a) now follows by induction
on the construction of δr-formulas.

Part (b). This follows from part (a) and Corollary 2.14.
Part (c). By finite additivity of µ, the measure 0 sets form an ideal, and so there

are types p ∈ Sδr (G) satisfying condition (iii) of part (b). So the claims follow from
parts (a) and (b). �

Given an invariant NIP formula δ(x; ȳ) and a δr-type p, we will just call p generic
in case it is left generic (equivalently right generic).

The following are some technical observations that will be needed in the proof
of Theorem 3.15.

Proposition 3.13. Suppose δ(x; ȳ) is invariant.

(a) G∗δ ⊆ Stabµ(φ(x)) for any δr-formula φ(x).
(b) G∗δ = G∗δr .
(c) For any p ∈ Sδr (G), there is a unique right coset C of G∗δ such that p |= C.

Proof. Part (a). Given δr-formulas φ(x) and ψ(x), we have Stabµ(¬φ(x)) = Stabµ(φ(x))
and Stabµ(φ(x)) ∩ Stabµ(ψ(x)) ⊆ Stabµ(φ(x) ∧ ψ(x)). So the claim follows by in-
duction on the construction of δr-formulas.

Part (b). By definition, G∗δr ⊆ G∗δ . For the other containment, fix g ∈ G∗δ and
b̄, c ∈ G. By right invariance of µ, and since g ∈ Stabµ(δ(x; b̄)), we have

µ(δr(g-1x; b̄, c)4 δr(x; b̄, c)) = µ(δ(g-1x; b̄)4 δ(x; b̄)) = 0,

and so g ∈ Stabµ(δr(x; b̄, c)).
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Part (c). Note that all right cosets of G∗δ are δr-type-definable, since G∗δ is
δr-type-definable and δr-formulas are right invariant. Since any complete δr-type
concentrates on at most one right coset of G∗δ , it suffices to show that every complete
δr-type concentrates on some right coset of G∗δ . Since G∗δ is δr-type-definable of
bounded index, we may fix a small model M ≺ G such that all right cosets of G∗δ
are δr-type-definable over M . Now, given p ∈ Sδr (G), if a ∈ G realizes p|M , then p
concentrates on G∗δa. �

Definition 3.14. Fix a formula δ(x; ȳ).

(1) Let Sgδ (G) denote the set of generic δ-types in Sδ(G).
(2) Given p ∈ Sδ(G), define Stab(p) = {g ∈ G : gp = p}.
(3) Let G00

δ denote the intersection of all δ-type-definable bounded-index sub-
groups of G.

Note that, for any invariant formula δ(x; ȳ), the class of δr-type-definable bounded-
index subgroups of G is closed under conjugation, and so G00

δr is always a normal
subgroup of G. The next theorem is the main result on G∗δ , for δ(x; ȳ) invariant
and NIP.

Theorem 3.15. Suppose δ(x; ȳ) is invariant and NIP.

(a) G∗δ is a δr-type-definable bounded-index subgroup of G.

(b) G∗δ =
⋂

p∈Sgδ (G)

Stab(p) =
⋂

p∈Sgδ (G)

⋂
φ(x)∈p

Stabµ(φ(x)).

(c) If p ∈ Sδr (G) is generic then

G∗δ = Stab(p) =
⋂

φ(x)∈p

Stabµ(φ(x)).

(d) G∗δ = G00
δr .

Proof. Part (a). This is Corollary 3.10.
Part (b). We show

G∗δ ⊆
⋂

p∈Sgδ (G)

⋂
φ(x)∈p

Stabµ(φ(x)) ⊆
⋂

p∈Sgδ (G)

Stab(p) ⊆ G∗δ .

The first containment is immediate from Proposition 3.13(a). For the second con-
tainment, we fix a generic type p ∈ Sδ(G) and show

⋂
φ(x)∈p Stabµ(φ(x)) ⊆ Stab(p).

Indeed, suppose g ∈
⋂
φ(x)∈p Stabµ(φ(x)) and fix φ(x) ∈ p. If φ(g-1x) 6∈ p then

φ(g-1x)4φ(x) ∈ p, which contradicts that p is generic and g ∈ Stabµ(φ(x)). So
φ(g-1x) ∈ p, and thus we have g ∈ Stab(p).

For the third containment, suppose g 6∈ G∗δ . Then there is a δ-formula φ(x) such
that µ(φ(g-1x)4φ(x)) > 0, and so there is a generic type p ∈ Sδ(G) containing the
formula φ(g-1x)4φ(x). So g 6∈ Stab(p).

Part (c). Fix a generic type p ∈ Sδr (G). We show

G∗δ ⊆
⋂

φ(x)∈p

Stabµ(φ(x)) ⊆ Stab(p) ⊆ G∗δ .

The first containment is immediate from parts (a) and (b) of Proposition 3.13, and
the second containment is similar to part (b).

For the third containment, first fix a ∈M such that p concentrates on G∗δa (such
an a exists by Proposition 3.13(c)). Now fix g ∈ Stab(p). Then p |= gG∗δa, and



12 GABRIEL CONANT AND ANAND PILLAY

so G∗δa ∩ gG∗δa is a consistent type, which is therefore realized in G. So there are
x, y ∈ G∗δ such that xa = gya, and so g = xy-1 ∈ G∗δ , as desired.

Part (d). Since any conjugate of G∗δr is a δr-type-definable bounded index sub-
group of G, it suffices to prove the second claim. So suppose Γ is a δr-type-definable
subgroup of bounded index. We want to show G∗δ ⊆ Γ. Let p ∈ Sδr (G) be a generic
δr-type concentrating on Γ, and fix a ∈ G∗δ . Since G∗δ = Stab(p), it follows that
ap |= Γ, and so aΓ = Γ. �

We end this section by analyzing the situation when δ(x; ȳ) is stable.

Definition 3.16. Given a formula δ(x; ȳ), let G0
δ denote the intersection of all

δ-definable finite-index subgroups of G.

For stable δ(x; ȳ), the group G0
δ is δ-definable of finite index (this follows from

[7], with further detail in [2]). The next corollary explains the relationship between
G0
δ , G

00
δ , G0

δr , and G00
δr in this case (note that δr(x; ȳ, u) need not be stable, as

demonstrated by Example 3.7).

Corollary 3.17. Assume δ(x; ȳ) is invariant and stable. Then G00
δ = G0

δ and
G00
δr = G0

δr . Moreover, G0
δr is the normal core of G0

δ, and thus is δr-definable of
finite index.

Proof. We first claim that, for any generic δ-type p ∈ Sδ(G), if p |= aG0
δ then

Stab(p) = aG0
δa

-1. Indeed, fix p ∈ Sδ(G) generic and let p |= aG0
δ . If g ∈ Stab(p)

then p = gp |= gaG0
δ , and so gaG0

δ = aG0
δ , i.e. g ∈ aG0

δa
-1. Conversely, if g ∈ aG0

δa
-1

then gaG0
δ = aG0

δ , and so gp = p.
By the previous claim, and parts (b) and (d) of Theorem 3.15, we conclude that

G00
δr is the normal core of G0

δ , and therefore G00
δr is δr-definable of finite index. This

further implies that G00
δr = G0

δr .
It remains to show G00

δ = G0
δ . So suppose H is a δ-type-definable subgroup of

G. Then G0
δr = G00

δr ⊆ H, and so H is a union of cosets of G0
δr . Since G0

δr has finite
index, H is definable. By compactness, H is δ-definable, and so G0

δ ⊆ H. �

4. The local logic topology and G0

Recall from [13, Lemma 2.7] that, if Γ is a type-definable bounded-index sub-
group of G, then we have the logic topology on G/Γ under which G/Γ is a com-
pact (Hausdorff) space, and a topological group when Γ is normal. In particular,
X ⊆ G/Γ is closed if {x ∈ G : xΓ ∈ X} is type-definable. In this section we show
that if Γ is δ-type-definable, for some invariant δ(x, ȳ), then it suffices to consider
δ-type-definable sets in the construction of the logic topology on G/Γ. Certain
aspects of this are likely in the folklore, and so some proofs will be brief.

Lemma 4.1. Fix an invariant formula δ(x, ȳ) and suppose Γ ≤ G is δ-type-
definable of bounded index. Then, for any L(G)-formula φ(x), the set

X = {a ∈ G : aΓ ∩ φ(G) 6= ∅}

is δ-type-definable.

Proof. First, since Γ is δ-type-definable, it follows from saturation of G that X is
type-definable (a priori, using φ(x) and existential quantification over δ-formulas).
We need to show that X is type-definable by δ-formulas. By a δ-1-formula we
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mean a formula of the form φ(x-1) where φ(x) is a δ-formula. A δ-1-type is a small
consistent set of δ-1-formulas.

Note that Γ is δ-1-type-definable since Γ-1 = Γ. Since Γ has bounded index, we
may fix a sequence (pi)i<κ of left translates of δ-1-types, with κ small, such that
any coset of Γ is definable by some pi, and p0 is a δ-1-type defining Γ. Let A ⊂ G
be a small set such that each pi is over A and φ(x) is over A. Let M ≺ G be a
small |A|+-saturated model. Now let S = {p ∈ Sδ(M) : X ∩ p(G) = ∅}. We show

(†) X =
⋂
p∈S

⋃
ψ(x)∈p

¬ψ(G).

By saturation and type-definability of X, this will show that X is δ-type-definable.
By choice of S, the left-to-right containment in (†) is clear. So suppose a 6∈ X and

let p = tpδ(a/M). It suffices to show p ∈ S. So suppose, toward a contradiction,
that we have b ∈ X ∩ p(G). Then bΓ ∩ φ(G) 6= ∅. In particular, if pi is the type-
definition of bΓ, then pi(x)∧ φ(x) is consistent, and thus realized by some m ∈M .
Then p0(b-1m) holds and so, since p0 is a δ-1-type, m-1 ∈ M , and b |= p, it follows
that p0(a-1m) holds. But then m ∈ aΓ ∩ φ(G), contradicting that a 6∈ X. �

Corollary 4.2. Fix an invariant formula δ(x; ȳ) and suppose Γ ≤ G is a δ-type-
definable of bounded index. Then X ⊆ G/Γ is closed in the logic topology if and
only if {a ∈ G : aΓ ∈ X} is δ-type-definable.

Proof. Call X ⊆ G/Γ δ-closed if {a ∈ G : aΓ ∈ X} is δ-type-definable. It suffices to
show that the δ-closed sets define a compact Hausdorff topology on G/Γ. Indeed,
given this, since the logic topology clearly refines the δ-topology, it will follow that
the two topologies are the same.

The verification that the δ-closed sets generate a compact topology is exactly as
in the usual case of the logic topology ([11, Lemma 3.3] or [13, Lemma 2.5]). More-
over, Lemma 4.1 is precisely what is needed to show that the standard argument
of Hausdorff separation goes through. �

Now, if δ(x; ȳ) is a formula and Γ ≤ G is δ-definable of bounded index then,
for any p ∈ Sδ(G) there is a unique left coset C of Γ such that p |= C. So we
have a well-defined function πΓ : Sδ(G)→ G/Γ such that p |= πΓ(p). The following
conclusion is a straightforward from Corollary 4.2.

Corollary 4.3. Fix an invariant formula δ(x; ȳ) and suppose Γ ≤ G is δ-type-
definable of bounded index. Then πΓ is continuous.

Remark 4.4. Lemma 4.1, Corollary 4.2, and Corollary 4.3 hold for any (sufficiently
saturated) L-structure G expanding a group (i.e. G need not be pseudofinite).

As a special case of the above situation, we can work with Γ = G00
δr , where δ(x; ȳ)

is invariant and NIP. We have already shown that, for δ(x, ȳ) invariant and NIP,
G00
δr behaves like the “type-definable connected component” of G localized at the

formula δr. Next, we show that G0
δr fits into this picture the way one would expect

from known facts in the global NIP setting.

Corollary 4.5. Suppose δ(x; ȳ) is invariant and NIP. Then G0
δr is a normal δr-

type-definable subgroup of G of bounded index, and G0
δr/G

00
δr is the connected com-

ponent of the identity in G/G00
δr .
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Proof. Let C ⊆ G/G00
δr be the connected component of the identity, and recall that

C is a closed subgroup of G/G00
δr . Let K be the pullback of C to G. Then K is

a normal δr-type-definable bounded-index subgroup of G containing G00
δr . We also

have C = K/G00
δr . Altogether, to prove the result, it suffices to show K = G0

δr .
We first show K ⊆ G0

δr . Let H ≤ G be δr-definable of finite index. We have
G00
δr ≤ H, and H/G00

δr is a clopen subgroup of G/G00
δr containing the identity. So

C ⊆ H/G00
δr , i.e., K ⊆ H.

Now, to prove G0
δr ⊆ K, fix a 6∈ K. There is X ⊆ G/G00

δr clopen such that
X = X-1, aG00

δr 6∈ X, and G00
δr ∈ X. Let A be the pullback of X to G, and

note that a 6∈ A and A is definable. Let H = {g ∈ G : gA = A}. Then H is a
definable subgroup of G, and G00

δr ⊆ H ⊆ A. In particular, H has finite index, and
is δr-definable by Corollary 4.2. Since a 6∈ H, we have shown a 6∈ G0

δr . �

Finally, we set some notation that will be used in later sections.

Definition 4.6. Suppose δ(x; ȳ) is invariant and NIP.

(1) Let Hδ denote the compact Hausdorff group G/G00
δr .

(2) Let ηδ denote the normalized Haar measure on Hδ.
(3) Given a ∈ G, let [a]δ denote the element aG00

δr in Hδ.

5. Uniqueness of Measure

The goal of this section is to show that if δ(x; ȳ) is invariant and NIP, then the
pseudofinite counting measure is the unique left-invariant finitely additive proba-
bility measure on the Boolean algebra of δr-formulas. The proof of this will closely
follow results about globally NIP groups from [1] and [8]. Due to the nature of the
arguments, it will be cleaner to work around formulas φ(x) such that φ`(x; y) is
NIP, rather than fixing δ(x; ȳ) outright.

Definition 5.1. Given a formula δ(x; ȳ), let Bδ(G) be the Boolean algebra of δ-
formulas, and let Mδ(G) be the space of left invariant finitely additive probability
measures defined on Bδ(G).

Proposition 5.2. Fix a formula φ(x) and a measure ν ∈Mφ`(G). Suppose φ`(x; y)

is NIP. Then, for any φ`-formula ψ(x), ν(ψ(x)) > 0 if and only if ψ(x) is generic.

Proof. First, note that ψ`(x; y) is NIP for any φ`-formula ψ(x). Now fix a φ`-
formula ψ(x), and suppose ν(ψ(x)) > 0. By local versions of results from [1], essen-
tially relying on Matoušek’s (p, q)-theorem for set systems of finite VC-dimension,
and since ψ`(x; y) is NIP, it follows that ψ(x) is weakly generic, i.e., there are
g1, . . . , gn ∈ G such that, if θ(x) :=

∨n
i=1 ψ(gix), then ¬θ(x) is not generic. Since

θ`(x; y) is NIP, it follows from Corollary 2.15 that θ(x) is generic, which implies
ψ(x) is generic. �

Lemma 5.3. Fix a formula φ(x) and a measure ν ∈Mφ`(G). Suppose φ`(x; y) is
NIP. Then, for any ε > 0, there are generic p1, . . . , pn ∈ Sφ`(G) such that, for any
g ∈ G,

|ν(φ(x))− E(p1, . . . , pn;φ(gx))| ≤ ε.

Proof. The strategy is to follow Section 4 of [8], in particular Lemma 4.8. We
work over parameters in φ(x). Note that ν extends to a regular Borel probability
measure on Sφ`(G), which we also denote ν. Applying the ∗-version in [8] of the
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VC Theorem, as in [8, Lemma 4.8], there are n ≥ 1 and B ⊆ (Sφ`(G))n such that
νn(B) > 0 and, for any (p1, . . . , pn) ∈ B and for any g ∈ G,

|ν(φ(gx))− E(p1, . . . , pn;φ(gx))| ≤ ε.
By invariance of ν, the only remaining thing to show is that B contains a tuple
(p1, . . . , pn) with each pi generic. To do this, it suffices to show ν(X) = 0, where
X := Sφ`(G)\Sg

φ`
(G) is the (open) set of non-generic φ`-types. Suppose Y ⊆ X

is compact and ν-measurable. Then, by compactness, there are non-generic φ`-
formulas ψ1(x), . . . , ψm(x) such that Y ⊆

⋃m
i=1[ψi(x)]. Since ν(ψi(x)) = 0 for all

1 ≤ i ≤ m, this implies ν(Y ) = 0. By regularity of ν, we have ν(X) = 0. �

For the rest of this section, fix a formula φ(x) such that δ(x; y) := φ`(x; y) is
NIP. We will apply results of the previous section to δ(x; y).

Definition 5.4. Given a δ-formula ψ(x) and a generic type p ∈ Sδ(G), define

Upψ(x) = {[a]δ ∈ Hδ : ψ(x) ∈ ap}.

Note that, in the previous definition, Upψ(x) is well-defined since G∗δ ⊆ Stab(p)

by Theorem 3.15(b).

Proposition 5.5. For any δ-formula ψ(x) and generic type p ∈ Sδ(G), both Upψ(x)

and its complement are Fσ subsets of Hδ.

Proof. Fix a δ-formula ψ(x) and generic p ∈ Sδ(G). Let θ(x; y1, y2) be the formula
ψ(y1 ·x)∧¬ψ(y2 ·x), and note that θ(x; y1, y2) is NIP. By Corollary 2.8, we may find
a countable model M ≺ G such that θ(x; y1, y2) is over M and, for any a1, a2 ∈ G,
if µ(θ(x; a1, a2)) > 0 then θ(x; a1, a2) is realized in M .

We are going to use [16], which requires a countable theory. So let T be the
complete theory of G in the language containing the group operation, ψ(x), and
constants for parameters in ψ(x). For the rest of the proof we work in T . Since M
contains the parameters in ψ(x), we still have M ≺ G and we just treat ψ(x) as a
formula with no parameters. Let p0 be the global ψ`-type obtained by restricting
p to instances of ψ`(x; y). Then p0 is M -invariant. Indeed, if a1 ≡M a2 and
ψ(a1x)∧¬ψ(a2x) ∈ p0, then µ(θ(x; a1, a2)) > 0 since p0 is generic, and so θ(x; a1, a2)
is realized in M , a contradiction. By the main result of [16], if Σ = {q ∈ Sy(M) :
ψ(ax) ∈ p0 for a |= q} then both Σ and its complement are Fσ subsets of Sy(M).
Finally,

{a ∈ G : [a]δ ∈ Upψ(x)} = {a ∈ G : a |= q for some q ∈ Σ},
and so we have the desired result by Corollary 4.3. �

Definition 5.6. Given a generic type p ∈ Sδr (G), define µp : Bδ(G) → [0, 1] such
that

µp(ψ(x)) = ηδ(U
p
ψ(x)).

It is straightforward to check that µp ∈Mφ`(G) for any generic p ∈ Sδ(G).

Definition 5.7. Given a δ-formula ψ(x), define Sψ = {Upψ(gx) : g ∈ G, p ∈ Sgδ (G)}.

We view each Sψ as a set system with base set Hδ. Since ψ`(x; y) is NIP for any
δ-formula ψ(x), it follows that Sψ has finite VC-dimension (see, e.g., [1, Lemma
3.19]). The following is the main technical lemma for proving the desired uniqueness
properties of the pseudofinite measure µ. The proof is largely a local adaptation of
work in [1, Section 3], and so we will sketch the strategy.
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Lemma 5.8. Given a generic type p ∈ Sδ(G) and ν ∈Mφ`(G), we have µp(ψ(x)) =
ν(ψ(x)) for any δ-formula ψ(x).

Proof. First, since G∗δ is type-definable by δr-formulas, we may assume L is count-
able. So Hδ is a Polish space with respect to the logic topology and we may assume
ηδ is complete (see [1, Remark 2.15]).

Claim 1 : If p ∈ Sδ(G) is generic then Sgδ (G) = {gp : g ∈ G}.
Proof : (See also [12].) Fix a generic type p ∈ Sδ(G). Note that Sgδ (G) is closed, and
clearly contains gp for any g ∈ G. For the other containment, suppose q ∈ Sδ(G)
is generic, and let ψ(x) ∈ q. We want to find g ∈ G such that ψ(x) ∈ gp. Since
ψ(x) is generic there are g1, . . . , gn ∈ G such that G = g1ψ(G) ∪ . . . ∪ gnψ(G), and
so ψ(x) ∈ g-1

i p for some i. aClaim 1

Claim 2 : For any δ-formula ψ(x), ε > 0, and countable S ⊆ Sgδ (G), there are
g1, . . . , gm ∈ G such that, for any a, a′ ∈ G and p ∈ S,

|µap(ψ(x))− E(ag1a
′p, . . . , agma

′p;ψ(x))| ≤ ε.
Proof : This is a direct translation of [1, Proposition 3.23], which involves an appli-
cation of the full VC Theorem to Sψ (see [1, Lemma 3.21], which uses the Polish
structure on Hδ and completeness of ηδ). aClaim 2

Claim 3 : If p, q ∈ Sδ(G) are generic, then µp = µq.
Proof : This is a direct translation of [1, Proposition 3.24], which relies on Claims
1 and 2. aClaim 3

We now combine everything to prove the lemma, which essentially amounts to
translating Lemma 3.26 and Corollary 3.27 of [1]. Fix p ∈ Sgδ (G), ν ∈ Mφ`(G),
ψ(x) ∈ Bδ(G), and ε > 0. We show |ν(ψ(x)) − µp(ψ(x))| ≤ ε. By Claim 3, it is
enough to find generic p1, . . . , pn ∈ Sδ(G) such that∣∣ν(φ(x))− 1

n

∑n
i=1 µpi(φ(x))

∣∣ ≤ ε.
To do this, one directly translates [1, Lemma 3.26]. The proof in [1] cites [1, Fact
2.9] and [1, Proposition 3.23], which we replace with Lemma 5.3 and Claim 2,
respectively. �

From Lemma 5.8, and the fact that µ is a left invariant finitely additive proba-
bility measure on all formulas, we immediately have the following result.

Theorem 5.9. Let φ(x) be a formula such that φ`(x; y) is NIP. Suppose ν is a
left invariant finitely additive probability measure defined on some Boolean algebra
containing all left translates of φ(x). Then ν(φ(x)) = µ(φ(x)).

6. Generic compact domination

Throughout this section, we fix an invariant NIP formula δ(x; ȳ).

Definition 6.1.

(1) Let πδ denote the map πG00
δr

: Sδr (G)→ Hδ defined before Corollary 4.3.

(2) Given α ∈ Hδ, define

Sαδr (G) := π-1
δ (α) ∩ Sgδr (G),
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i.e. p ∈ Sαδr (G) if and only if p is a global generic δr-type containing the
δr-type-definition of α (as a coset of G00

δr ).
(3) Given a δr-formula φ(x), define

Eφ = {α ∈ Hδ : Sαδr (G) ∩ φ(x) 6= ∅ and Sαδr (G) ∩ ¬φ(x) 6= ∅},
where we identify a δr-formula with a clopen set of types in Sδr (G).

(4) Given a δr-formula φ(x) and a generic type p ∈ Sδr (G), define

Upφ = {[a]δ ∈ Hδ : φ(x) ∈ ap}.

Note that, in the previous definition, Upφ(x) is well-defined since G00
δr = Stab(p)

by Theorem 3.15(c).

Theorem 6.2. For any δr-formula φ(x), Eφ is closed and ηδ(Eφ) = 0.

Proof. The proof adapts parts of [1] and [17], and relies on the main results of [16]
and [17]. Throughout the proof we will use the fact that, for any δr-formula φ(x),
the formula φ(x · y) is NIP (see Proposition 3.12(a)). In particular, for any generic
p ∈ Sδr (G), and any δr-formula φ(x), the family of left translates of Upφ has finite

VC-dimension (as a set system on Hδ).
First, we observe that Eφ is the intersection of πδ(S

g
δr (G)∩φ(x)) and πδ(S

g
δr (G)∩

¬φ(x)). Thus Eφ is closed since Sgδr (G), φ(x), and ¬φ(x) are closed, and πδ is a
continuous map between compact Hausdorff spaces.

Claim 1 : If φ(x) is a δr-formula and p ∈ Sδr (G) is generic, then both Upφ and its
complement are Fσ subsets of Hδ.
Proof : Let p0 be the restriction of p to instances of φ(gx) or ¬φ(gx) for g ∈ G.
Then p0 is a generic φ`-type and {a ∈ G : φ(ax) ∈ p} = {a ∈ G : φ(ax) ∈ p0}. So
the result follows as in Proposition 5.5 (using [16]). aClaim 1

By Claim 1, each generic p ∈ Sδr (G) induces a left-invariant finitely additive
probability measure on δr-formulas, by assigning the measure of a δr-formula φ(x)
to be ηδ(U

p
φ). By Theorem 5.9, ηδ(U

p
φ) = µ(φ(x)) for any δr-formula φ(x). For the

rest of the proof, fix a generic type p ∈ Sδr (G) concentrating on G00
δr .

Claim 2 : For any δr-formula φ(x) and any α ∈ Upφ , if V ⊆ Hδ is an open neighbor-

hood of α then ηδ(U
p
φ ∩ V ) > 0.

Proof : We follow the proof of Claim 2 of [17, Theorem 3.2]. Since π-1
δ (α) and

π-1
δ (¬V ) are disjoint closed subsets of Sδr (G), there is some δr-formula ψ(x) such

that π-1
δ (α) ⊆ ψ(x) ⊆ π-1

δ (V ). Fix a ∈ α. Then ψ(x) ∈ ap, and so φ(x) ∧ ψ(x) ∈
ap, which implies µ(φ(x) ∧ ψ(x)) > 0. Since Upφ(x)∧ψ(x) = Upφ ∩ U

p
ψ, we have

ηδ(U
p
φ ∩ U

p
ψ) > 0. Now suppose [g]δ ∈ Upψ. Then ψ(x) ∈ gp and so, since p concen-

trates on G00
δr , we have gG00

δr ⊆ ψ(G), and so π-1
δ ([g]δ) ∈ ψ(x) ⊆ π-1

δ (V ). So Upψ ⊆ V
and thus ηδ(U

p
φ ∩ V ) > 0. aClaim 2

By Claim 2, Proposition 5.5, and [17, Theorem 2.7], we have ηδ(∂U
p
φ) = 0. So, to

prove the result, it suffices to show Eφ ⊆ ∂Upφ . The argument follows the proof of

[1, Theorem 5.3]. Fix α ∈ Eφ, and let V ⊆ Hδ be open, with α ∈ V . Since α ∈ Eφ,
there are q, q′ ∈ Sαδr (G) such that φ(x) ∈ q and ¬φ(x) ∈ q′. Let S = π-1

δ (V ), and
note that S ⊆ Sδr (G) is open, with π-1

δ (α) ⊆ S. In particular, q ∈ S ∩ φ(x) and
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q′ ∈ S ∩ ¬φ(x), and so these are are nonempty open sets in Sδr (G). As in Claim

1 in the proof of Lemma 5.8, we have Sgδr (G) = {gp : g ∈ G}. Therefore, there are
g, g′ ∈ G such that gp ∈ S ∩ φ(x) and g′p ∈ S ∩ ¬φ(x). Since p concentrates on
G00
δr , we have πδ(gp) ∈ V ∩ Upφ and πδ(g

′p) ∈ V ∩ ¬Upφ . Altogether, α ∈ ∂Upφ . �

Corollary 6.3. Suppose C ⊆ Hδ is closed, with ηδ(C) = 0, and let X = {a ∈ G :
[a]δ ∈ C}. Then, for any ε > 0, there is a δr-definable set Z ⊆ G such that X ⊆ Z
and µ(Z) ≤ ε.

Proof. We follow [6, Section 9] and [9, Section 5]. First, we use ηδ to define a left-
invariant finitely additive probability measure ν on δr-definable sets. In particular,
given a δr-formula φ(x), define

Cφ = {α ∈ Hδ : Sαδr (G) ∩ φ(x) 6= ∅}.

We have already observed that Cφ is closed. Define ν(φ(x)) = ηδ(Cφ). Given a
δr-formula φ(x) and g ∈ G, we have [g]δCφ = Cφ(g-1x), and so ν is left invariant by
left invariance of ηδ. It remains to show finite additivity, so fix disjoint δr-formulas
φ(x) and ψ(x). Since Cφ∨ψ = Cφ∪Cψ, it suffices, by finite additivity of ηδ, to show
ηδ(Cφ∩Cψ) = 0. Since Cψ ⊆ C¬φ, we have Cφ∩Cψ ⊆ Eφ, and so this follows from
Theorem 6.2.

By Theorem 5.9, we have ν(φ(x)) = µ(φ(x)) for any δr-formula φ(x). Fix a
closed set C ⊆ Hδ, with ηδ(C) = 0, and let X = {a ∈ G : [a]δ ∈ C}. Then X
is type-definable and so we may fix a small family {φi(x) : i ∈ I} of δr-formulas,
which is closed under finite conjunctions, such that X =

⋂
i∈I φi(G). To prove the

result, it suffices to show infi∈I ν(φi(x)) = 0. Given i ∈ I, let Ci = Cφi and define
the closed set D =

⋂
i∈I Ci. Note that D ⊆ C since, if α ∈ D then α∩

⋂
i∈I φi(G) is

finitely satisfiable, and so α∩X 6= ∅, which implies α ∈ C. In particular, ηδ(D) = 0.
By compactness of Hδ, if U ⊆ Hδ is open and D ⊆ U , then there is some i ∈ I
such that Ci ⊆ U . Altogether, by regularity of ηδ, it follows that

0 = ηδ(D) = inf
i∈I

ηδ(Ci) = inf
i∈I

ν(φi(x)),

as desired. �
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